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ABSTRACT

In previous work, we proposed a Poisson statistical model

for gated PET data in which the distribution was parametrized

in terms of both image intensity and motion parameters.

The motion parameters related the activity image in each

gate to that of a base image in some fixed gate. By doing

maximum loglikelihood (ML) estimation of all parameters

simultaneously, one obtains an estimate of the base gate im-

age that exploits the full set of measured sinogram data. Pre-

viously, this joint ML approach was compared, in a highly

simplified single-slice setting, to more conventional meth-

ods. Performance was measured in terms of the recovery of

tracer uptake in a synthetic lung nodule. This paper reports

the extension to 3D with much more realistic simulated mo-

tion. Furthermore, in addition to pure ML estimation, we

consider the use of side information from a breath-hold CT

scan to facilitate regularization, while preserving hot lesions

of the kind seen in FDG oncology studies.

1. INTRODUCTION

In past years, the conventional practice in PET has been to

reconstruct based on ungated sinogram data and to ignore

the effects of anatomical motion in the patient. The conse-

quences of this practice are motion artefacts in the recon-

structed image and the blur of possibly cancerous lesions

that one wishes to quantify. In more recent years, there

has been much interest (e.g., [1, 2, 3]) in overcoming these

drawbacks by reconstructing from gated sinograms in ways

that account for patient motion between gates.

The intuitive extension of conventional reconstruction

methods to gated data is to reconstruct an image from each

sinogram gate (or frame), align these images by image reg-

istration methods, and finally to fuse them together in some

sort of consolidation step (e.g., by averaging them). Vari-

ants of this approach, which we call Frame-Wise recon-

struction with Post-Registration (FWPR) have been proposed

[1, 2, 3]. In these types of approaches, the registration step

is done post-reconstruction and hence, typically, does not
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make full use of the sinogrammeasurement statistics. More-

over, each image registration step occurs between noisy im-

ages reconstructed from low-count, single-gate data, and

can be expected to result in poor alignment.

This motivated us in earlier work [4] to pose a para-

metric Poisson model for the gated measurements involving

a single unknown activity image and a set of deformation

variables describing how that image deforms from gate to

gate due to patient motion. By maximizing the loglikeli-

hood for this model, a method we call Joint Estimation by

Deformation Modeling (JEDM), one determines both im-

age and deformation parameter estimates jointly from the

full set of sinogram measurements. We previously assessed

JEDM for a highly simplified simulated thorax scan, in-

volving a single-slice image, a 2-gate acquisition and a 1-

parameter deformation model. Preliminary results showed

JEDM to outperform other methods in terms of both lung

lesion tracer uptake recovery and motion estimation.

In this article, we continue this work, but look at much

more realistic simulations. Reconstruction is done with a

3D B-spline motion model based on 2300 parameters per

gate. Moreover, the simulated phantom is derived from CT

scans of actual thorax anatomy. Thirdly, whereas before we

tested only pure maximum likelihood estimation, here we

add a roughness penalty term to accomplish regularization.

In designing the penalty, we exploit side information – that

is assumed to be available from a breath hold CT scan – to

avoid smoothing over hot lesions in a region of interest.

1.1. Parametric Statistical Model for Gated PET Data

In the statistical PET reconstruction literature, it is com-

mon to model a vector of ungated measured projections y

as Poisson with mean

ȳ(λ) = τ(Pλ + r) (1)

where λ is an unknown vector of activity image samples,

i.e., each component λj , j = {1, . . . , J} of λ represents

a sample of a continuous activity distribution at location

(xj , yj , zj). We also think of λ as the image volume that we
wish to reconstruct. The remaining quantities (all assumed
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known) are the duration of the scan τ , a forward projection

matrix P , and a mean vector of background count rates r.

When considering a concatentation y = (y0, . . . ,yT−1)
of gated sinograms, where T is the number of gates, a natu-

ral extension of (1) is

ȳ0(λ) = τ0(Pλ + r0) (2)

ȳt(λ,αt) = τt(PT (αt)λ + rt), 1 ≤ t ≤ T − 1. (3)

That is, the mean of the sinogram data in gate 0 are now

based on projections of λ, the activity image samples in that

gate. In each subsequent gate, however, the mean is based

on projections of T (αt)λ, a transformation of λ. The trans-
formation operator T (αt) is parametrized by an unknown
deformation parameter vector αt.

We shall restrict our attention to a class of transforma-

tions T commonly considered in non-rigid, intensity-based
image registration,

[T (αt)λ]j =
∑

k

λkhk(d(xj , yj , zj ,α
t)), t > 0.

Here hk(x, y, z) are activity basis functions used to inter-
polate the voxel values λk in between voxel locations and

d(x, y, z,α) is a α-dependent coordinate transformation of

the form

⎡
⎣x

y

z

⎤
⎦ d
�→

⎡
⎢⎣

x +
∑Kx

k=1
αX,kbX

k (x, y, z)

y +
∑Ky

k=1
αY,kbY

k (x, y, z)

z +
∑Kz

k=1
αZ,kbZ

k (x, y, z)

⎤
⎥⎦ .

The {bC
k (x, y, z)}C={X,Y,Z} are deformation basis functions.

In what follows, we shall use, for the bC
k , cubic B-splines

centered at the nodes of a control point grid. This choice

has been found to provide an effective motion model for

various imaging modalities [5, 6] . For the image domain

interpolators hk, we use cubic cardinal splines situated at

each pixel location.

1.2. Proposed Reconstruction Methods

In this work, we shall compare three methods, described be-

low, for reconstructing λ. Two of these (JEDM and FWPR-

PA) were considered in our previous work [4].

1. Joint Estimation with DeformationModeling (JEDM).
In the JEDM method, we consider the joint penalized log-

likelihood function based on (2) and (3)

ΦJEDM(λ, {αt}) = KL(y0, ȳ0(λ))

+
∑
t>0

KL(yt, ȳt(λ,αt)) + βRact(λ). (4)

where KL() is the Kullback-Leibler distance,1 Ract is an

activity roughness penalty function, and β ≥ 0 is a regular-
ization parameter. We then reconstruct an image λ̂ accord-

ing to

λ̂ = argmin
λ

{
min
{αt}

ΦJEDM(λ̂, {αt})

}

We introduced this approach in [4], but tested there only the

unregularized case (i.e., β = 0), which corresponds to pure
maximum likelihood estimation.

2. Frame-Wise reconstruction with Post-Registration
(FWPR). An FWPR method is our generic terminology for
a method in which images {λ̂

t
}, each reconstructed sepa-

rately from the corresponding sinogram gate yt, are post-

registered and consolidated in some way to produce a final

image λ̂. There are two varieties that we consider here.

(a) FWPRwith Post-Averaging (FWPR-PA). In the post-
registration step, each λ̂

t
, t > 0, is registered to the

common target image λ̂
0

. This yields deformation

parameter estimates {α̂t} satisfying, to some degree
of accuracy

T (α̂t)λ̂
t
≈ λ̂

0

. (5)

Consolidation is then accomplished by taking the weighted

average (according to gate duration) of λ̂
0

and the

{T (α̂t)λ̂
t
},

λ̂ =
τ0λ̂

0

+
∑T−1

t=1
τtT (α̂t)λ̂

t

∑T−1

t=0
τt

.

This approach is an intuitive and natural one, and

seems to have occured independently to various in-

vestigators (e.g., [1, 2, 4]). However, unlike JEDM,

neither the determination of {α̂t}, nor the final con-

solidation of the {λ̂
t
} are based on a model for the

measurement statistics.

(b) FWPR with Penalized-Likelihood Consolidation
(FWPR-PLC). In the post-registration step, each λ̂

t
,

t > 0, serves this time as a target image to which

λ̂
0

is registered. This yields deformation parameter

estimates {α̂t} satisfying, to some degree of accuracy

T (α̂t)λ̂
0

≈ λ̂
t
. (6)

Consolidation is then accomplished by substituting

these {α̂t} into (4) as knowns and carrying out pe-
nalized likelihood minimization with respect to λ,

λ̂ = argmin
λ

{
ΦJEDM(λ, {α̂t})

}
.

1The KL distance is the negative of a loglikelihood function for Poisson
measurements. Minimizing it corresponds to maximum likelihood estima-

tion.
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This variation is slightly more statistically principled

than FWPR-PA, in that the consolidation step exploits

the loglikelihood of the measurements. A similar ap-

proach has been considered recently in [3], but where

the {α̂t} are derived from the registration of gated
CT scans. Here, we assume that only a breath-hold

CT scan is available, and so we must derive the defor-

mation parameter estimates from the gated emission

data.

1.3. Lesion Preserving Penalty Design Strategy

One of the aims of motion correction in thorax scans (and

the one of central interest to us here) is to prevent the blur

of lung lesions that one wishes to quantify. If Ract(λ) pe-
nalizes roughness indiscriminately throughout the image λ,

we would blur such lesions and perhaps detract from the

purpose of the motion-correction. We therefore employ a

scheme whereby CT side-information is used to exclude

these lesions from penalization.

Since a breath hold CT scan is available, we know the

approximate location of the lesion in the PET image near

full inspiration. In addition, we know the approximate am-

plitude of typical respiratory motion. These two pieces of

information can be combined to localize the lesion to some

generously sized ROI, whose dimensions are on the order

of a few centimeters. We can adjust Ract(λ) to ignore vox-
els in this region. However, since many voxels outside of

this ROI remain subject to the roughness penalty, we can

still hope that the regularization will greatly reduce under-

determined behavior in the reconstruction.

2. EXPERIMENTS

We derived synthetic thorax PET images at 5 levels of res-

piration from real thorax CT images. The CT images were

downsampled to voxels of size 4×4×2millimeters, cropped
to a grid size of 81 × 105 × 17, and mapped to appropri-
ate PET image intensity values. These 5 images were co-

registered using using an 11 × 14 × 5 × 3 control point
grid of cubic B-spline deformation basis functions using the

Sum of Squared Differences (SSD) criterion. The resulting

parameters {αt
true

} were taken as ground truth. A synthetic
ellipsoidal lung lesion of axial radius 2 mm and transaxial

radius 4 mm was inserted into the gate 0 image λtrue. The

four subsequent gates were then replaced by T (αt
true

)λ. A
slice of λtrue containing the lung lesion is shown in Fig-

ure 1(a). A sense of the lesion blur that would result from

an ungated reconstruction is given in Figure 1(b) where the

superposition of the image from all gates is shown.

Poisson sinogram measurements {yt} described by (2)
and (3) were simulated with 0.5 million total counts per

slice, 10% of which were background. Each slice of the

5 gates was forward projected into a 105 radial by 128 an-

gle system of sinogram bins. In Figures 2(a)-(c), a common

slice of images reconstructed using the 3 motion correction

strategies of Section 1.2 are shown, along with the percent

lesion uptake recovered. Similarly, in Figure 2(d), we re-

constructed from the superposition of the {yt} (to imitate
an ungated reconstruction). All frame-wise reconstructions

(in FWPR schemes) and the ungated reconstruction used

quadratically penalized likelihood estimation. Moreover, all

penalized likelihood steps used to obtain these images ex-

cluded an approximately 3 × 3 × 1.5 cm ROI around the
lesion (as discussed in Section 1.3). We also tested JEDM

without excluding any ROI from the roughness penalty (see

Figure 2(e)). Conversely, Figure 2(f) shows the result of

pure maximum likelihood estimation, in which the motion

parameters were known and no roughness penalty was ap-

plied (i.e., ΦJEDM(·, {αt
true

}) was minimized with β = 0).

3. CONCLUSIONS

In these preliminary results, the JEDM approach greatly

outperformed ungated, unmotion-corrected reconstruction

and significantly outperformed FWPRmotion-correction strate-

gies in terms of tracer uptake estimation. However, the

semi-statistical FWPR-PLC approach does not lag too far

behind. This may motivate a hybrid approach in which an

FWPR-PLC reconstruction is used to initialize a JEDM re-

construction, and thereby refined. We shall consider this

further in future work. Comparing Figures 2(a) and (e), one

sees that indiscriminate roughness penalties can greatly de-

tract from lesion recovery. The lesion-preserving strategy

of Section 1.3 appears to achieve the best of both worlds in

terms of recovery and noise reduction. In Figure 2(a), the

technique endowed JEDM with nearly the same uptake re-

covery as the fully unsmoothed, known-motion case (f) but

with the lower background noise of (e).

4. REFERENCES

[1] G. J. Klein, B. W. Reutter, and R. H. Huesman, “Four-

dimensional affine registration models for respiratory-

gated PET,” IEEE Trans. Nuc. Sci., vol. 48, no. 3, pp.
756–60, June 2001.

[2] B. Thorndyke, E. Schreibmann, P. Maxim, B. Loo,

A. Boyer, A. Koong, and L. Xing, “Enhancing 4D

PET through retrospective stacking,” Proc. Amer. As-
soc. Phys. Med., vol. 32, no. 6, pp. 2096, June 2005.

[3] F. Qiao, T. Pan, J. W. Clark, and O. R. Mawlawi, “Com-

pensating respiratory motion in PET image reconstruc-

tion using 4D PET/CT,” in Proc. IEEE Nuc. Sci. Symp.
Med. Im. Conf., 2005.

277



True Image(a) Mean Pre−Image of Ungated Data(b)

Fig. 1. (a) The true activity (slice #8) in gate 0. (b) The superposition of the true activity (slice #8) from all gates.
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Lesion Recovery = 81.41%
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Lesion Recovery = 69.36%
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Ungated Penalized Likelihood
Unpenalized ROI

Lesion Recovery = 56.51%

(d) Uniformly Penalized JEDM

Lesion Recovery = 63.11%

(e)

Totally Unpenalized ML
with Known Motion

Lesion Recovery = 87.22%
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Fig. 2. Slice #8 of the image reconstructed by various methods, and with the percent tracer uptake recovery shown for each.
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