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Quadratic Regularization Design for Iterative
Reconstruction in 3D multi-slice Axial CT

Hugo Shi and Jeffrey A. Fessler

ABSTRACT

In X-ray CT, statistical methods for tomographic image
reconstruction create images with better noise properties
than conventional Filtered Back Projection (FBP) techniques.
Penalized-likelihood (PL) image reconstruction methods max-
imize an objective function based on the log-likelihood of
sinogram measurements and on a user defined roughness
penalty which controls noise. Penalized-likelihood methods (as
well as Penalized Weighted Least Squares methods) based on
conventional quadratic regularizers result in nonuniform and
anisotropic spatial resolution. We have previously addressed
this problem for 2D emission tomography, 2D fan-beam trans-
mission tomography, and 3D cylindrical emission tomography.
This paper extends those methods to 3D multi-slice axial CT
with small cone angles.

I. INTRODUCTION

Interactions between the non-quadratic Poisson log-
likelihood and a conventional quadratic regularizer lead to
nonuniform and anisotropic spatial resolution in CT images
reconstructed by penalized-likelihood (or penalized weighted
least squares) methods, even for idealized shift-invariant
imaging systems [1]. This “problem” could be circumvented
by using a quadratically-penalized, unweighted least-squares
(QPULS) estimation method, but QPULS images have poor
noise properties (akin to FBP in fact) because the weighting,
which is explicit in PWLS methods and implicit in penalized-
likelihood methods, is a central advantage of statistical meth-
ods over FBP. We previously described methods for designing
regularizers to try to improve the uniformity and isotropy
of reconstructed images for 2D parallel-beam systems, 2D
fan-beam systems, and 3D cylindrical PET [1]–[5]. Here we
describe a design method for 3D axial multi-slice CT that has
the goal of providing uniform and isotropic spatial resolution
properties by combining the fan-beam approach of [3] and the
3D regularization approach of [5]. Regularization parameters
designed with these methods may also be useful for non-
quadratic regularizers [6].

II. THEORY

A. Local Impulse Response

As shown in [1], the impulse response at the jth voxel for a
CT image reconstructed using a penalized-likelihood algorithm
is:

lj = [A′WA + βR]−1A′WAδj ,

where A is the system matrix, W = diag[Yi], and R is the
Hessian of our regularizer. Throughout this paper we will
use the index j to represent a lexicographical ordering of
voxels which can also be indexed with (n,m, z). Assuming
that the matrices A′WA and R are approximately locally
circulant, the Fourier transform of the local impulse response
is as follows

Lj =
F (A′WAδj)

F (A′WAδj) + βF (Rδj)
, (1)

where F () denotes a Fourier transform and δj denotes an
impulse function at the jth voxel. Each element in weighting
matrix W , which is based on the projection data, can be
denoted as w(s, β, t), where s is arc length along the detector,
and β is the source angle, and t is the index to a row of the
detector. Prior to [2], design methods were based on discrete
Fourier transforms, e.g., in [4]. We show in [5] that the local
frequency response for parallel beam cylindrical geometries is

Lj(�,Φ,Θ) =
w̃j(Φ)

w̃j(Φ) + β|�|R(�,Φ,Θ)
. (2)

Using analysis from [3], we can apply (2) to multi-slice
fan beam axial CT geometries if we replace w̃j(Φ) with new
weightings derived from a change of variables to shift from a
parallel beam coordinate space to a fan-beam coordinate space.
In space, the new weightings are

w′j(φ) = w(s′, β′, t′) J(s′)
∣∣∣
φ=φ′

+w(s′, β′, t′) J(s′)
∣∣∣
φ=φ′−π

.

(3)
where s′, t′, and β′, which are dependent on φ and j,
represent the change of variables and J(s′) is the Jacobian
corresponding to such a change of variables.

B. Target Impulse Response

In 2D, using a target LIR associated with penalized un-
weighted reconstruction is reasonable because it is isotropic.
However in 3D, the corresponding LIR is

Lj(�,Φ,Θ) ≈ 1
1 + β cos(Θ) |�|R0(�,Φ,Θ)

, (4)

which is not isotropic due to the cos(Θ) term. We pick a value
for

R0(�,Φ,Θ) =
|2π�|2
cos(Θ)

, (5)

which results in

Lj(�,Φ,Θ) =
1

1 + β(2π)2|�|3 . (6)
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C. Regularization Structure

In this section we will derive a minimization problem which
when solved, will yield the desired regularizer. Regularizers
penalize roughness by penalizing differences amongst neigh-
boring pixels. We define a basis function for a regularizer
which penalizes the lth neighbor as

cl =
1√

n2
l + m2

l + z2
l

(δ(n,m, z)−δ(n−nl,m−ml, z−zl)),

where nl,ml, zl denote the offset of the neighbor whose
difference is being penalized. The conventional regularizer can
be expressed as

R(x) =
1
2
x′Rx =

∑
n,m,z

L∑
l=1

1
2
((cl ∗ ∗ ∗ x)(n,m, z))2. (7)

In this conventional regularizer, the difference between each
neighbor receives the same penalty. We make the regularizer
spatially adaptive with the addition of coefficients rj

l , yielding

R(x) =
1
2
x′Rx =

∑
n,m,z

L∑
l=1

r
j(n,m,z)
l

1
2
((cl∗∗∗x)(n,m, z))2.

(8)
Designing our regularizer reduces to choosing L coefficients
rj
l , l = 1, 2, ..., L, per voxel, where L is the number of

neighbors we are penalizing. If we take the Fourier transform,
we get the following expression for |Cl(ω1, ω2, ω3)|2,

=
1

n2
l + m2

l + z2
l

|1 − e−i(ω1nl+ω2ml+ω3zl)|2

=
1

n2
l + m2

l + z2
l

(2 − 2 cos(ω1nl + ω2ml + ω3zl))

≈ 1
n2

l + m2
l + z2

l

(
2 − 2

(
1 − 1

2
(ω1nl + ω2ml + ω3zl)2

))

≈ 1
n2

l + m2
l + z2

l

(ω1nl + ω2ml + ω3zl)2. (9)

In previous work, we have assumed that we were using
square (in 2D) or cubic voxels. While square pixels are
realistic in in 2D, real slice thicknesses in imaging systems
often never result in non-cubic voxels. Therefore we generalize
the analysis of the 3D roughness penalty in [5]. To convert the
above expression to polar frequency coordinates, we use our
knowledge of frequency and sampling relationships to derive
w1 = 2π∆x� cos(Φ) cos(Θ), w2 = 2π∆y� sin(Φ) cos(Θ),
and w3 = 2π∆z� sin(Θ). Substituting the following into (9),
we get the following expression for |Cl(w1, w2, w3)|2,

≈ 1
n2

l + m2
l + z2

l

(nl2π∆x� cos(Φ) cos(Θ)

+ ml2π∆y� sin(Φ) cos(Θ) +zl2π∆z� sin(Θ))2

=
1

n2
l + m2

l + z2
l

(2πρ)2(nl∆x cos(Φ) cos(Θ)

+ ml∆y sin(Φ) cos(Θ) +zl∆z sin(Θ))2.

The resulting local frequency response (using polar coordi-
nates) of this regularizer is:

Rj(�,Φ,Θ) = (2π�)2
∑
l=1

rj
l (f(Φl,Θl) · e(Φ,Θ))2, (10)

where e(Φ,Θ) � (cos Θ cos Φ, cosΘ sin Φ, sin Θ) and
f(Φl,Θl) � (∆x cos Θl cos Φl,∆y cos Θl sin Φl,∆z sin Θl).

D. Matching the LIR to the Target Impulse Response

We would like to design R so that the LIR matches the
target as close as possible, i.e., such that

w′j(Φ)
w′j(Φ) + β|�| cos(Θ) Rj(�,Φ,Θ)

≈ 1
1 + β(2π)2|�|3

β|�| cos(Θ) Rj(�,Φ,Θ) ≈ βw′j(Φ)(2π)2|�|3
cos(Θ) Rj(�,Φ,Θ) ≈ w′j(Φ)(2π|�|)2∑

l=1

rj
l cos(Θ)(f(Φl,Θl) · e(Φ,Θ))2 ≈ w′j(Φ). (11)

To select {rj
l }, we solve the following minimization prob-

lem

r̂j = arg min
rj≥0

∫ π

0

∫ π/2

−π/2

|w(Φ)

−
∑
l=1

rl cos(Θ)(f(Φl,Θl) · e(Φ,Θ))2|2dΘ, dΦ. (12)

We can rewrite the term
∑

l=1 rl cos(Θ)(f(Φl,Θl) ·
e(Φ,Θ))2 as BCr where r is a L × 1 vector of penalty
coefficients. cos(Θ)(f(Φl,Θl) · e(Φ,Θ))2 will expand into 6
orthonormal basis functions that form the columns of B. C
is a matrix of linear combination coefficients such that∑

l=1

rl cos(Θ)(f(Φl,Θl) · e(Φ,Θ))2 = BCr. (13)

We undergo this factorization to simplify the problem. Our
current problem is therefore framed as

rj = arg min
r≥0

||wj − BCr||2

This is equivalent too

= arg min
r≥0

||wj − BCr||2

= arg min
r≥0

< wj − BCr,wj − BCr >

= arg min
r≥0

||wj ||2 − 2 < wj ,BCr > + < BCr,BCr >

= arg min
r≥0

||wj ||2 − 2 < BHwj ,Cr >

+ < BHBCr,Cr > .

Since the columns of B are orthonormal functions, BHB is
the Identity matrix. We can replace ||wj ||2 with ||BHwj ||2
since it is an irrelevant constant which has no effect on our
minimization, leaving us with

= arg min
r≥0

||BHwj ||2 − 2 < BHwj ,Cr > +||Cr||2

= arg min
r≥0

||BHwj − Cr||2. (14)
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Because BHw produces a 6× 1 vector, and C is 6×L, The
minimization problem (14) is much smaller than (12) and can
be solved with any NNLS algorithm.

E. Implementation Details

In the 2D case, one can minimize (14) analytically [2] such
that the solution is minimum norm. In a NNLS problem that
is under-determined there are many solutions that minimize
the cost function. Finding the solution with a minimum norm
solves for rj as a continuous function of BHwj and leads to
good image reconstruction properties. Without the continuous
mapping from BHwj to rj , neighboring pixels can have
drastically different weights, thus violating our assumptions of
local spatial invariance. [2] exploits properties of the matrices
used to solve the 2D problem to find a minimum norm
solution. Unfortunately those properties do not hold in the
3D case. To compensate for this problem, we try to alter the
minimization problem from

arg min
r≥0

||BHwj − Cr||2,
to

arg min
r≥0

||BHwj − Cr||2 + ε||r||2,

so that the norm of rj becomes a factor in the cost function.
We append a scaled identity matrix to the bottom of C and
zero pad BHwj

C̃ =
(

C
εI

)
, d̃j =

(
BHwj

0

)

so that (14) is changed to

rj = arg min
r≥0

||d̃j − C̃r|| (15)

= arg min
r≥0

||BHwj − Cr||2 + ε||r||2.

This modification makes rj a continuous function of wj

thereby eliminating the discontinuities.
Since we are minimizing with a non-negative constraint, our

design has the potential to yield many rj values that are zero.
If there are too many zeros in rj , there will be zeros in the
Hessian, leaving us with bad convergence properties. Instead
of using a non-negative constraint, we would like to have rj

be greater than ε for selected rj
l to ensure that enough rj

l are
non-zero. We select the 3 adjacent neighbors in the immediate
x,y, and z directions to be non-zero. We turn to previous work
to select ε. In [1], Fessler derives a spatially variant β which
seeks to preserve uniform spatial resolution. So for any given
pixel, we take ε = α(βj)2 where this βj is the spatially variant
β for a pixel (xj , yj , zj). Increasing α improves convergence
at the expense of isotropy, while use of the spatially variant β
helps us preserve uniformity.

Now we must formulate our problem so that NNLS algo-
rithms will accept this new constraint. We can create a vector
ε that is zero for most neighbors, and α(βj)2 for immediate x,
y and z neighbors. let r̃j = rj −ε. Solving with the constraint
of r̃j ≥ 0 ensures that rj ≥ ε. Plugging r̃j into (16) we get
|C̃r̃j−d̃| = |C̃(rj−ε)−d̃| = |C̃rj−(d̃+C̃ε)| which can be
plugged into an NNLS algorithm. Using r̃j for reconstruction
achieves this minimum condition.

III. CONCLUSION

Preliminary results are worse than we expected. We believe
this to be a result of wj(Φ) being more complicated for
real CT data than phantoms we have previously worked with
which make them harder to approximate. Our system also
works hard to compensate for the cos(Θ) term in (11) even
though completely undoing it is impossible. This results in
a tradeoff between isotropy in the z direction for isotropy in
the x,y directions which can be undesirable. Future work will
consider using 2D regularization with this framework which
has achieved positive results in the past, combined with post-
filtering in the z direction to preserve isotropy.
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