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ABSTRACT

A common method of improving the conditioning in itera-
tive image reconstruction is to include regularization in the re-
construction algorithm. One such regularization is the rough-
ness penalty, which when used in the algorithm encourages
smoother images. For complex valued images, the rough-
ness penalty typically penalizes equally the real and imagi-
nary parts. The desired resolution of the reconstructed image
can then be evaluated using the local impulse response. A fast
algorithm to calculate it was developed for the typical rough-
ness penalty, used for matching the regularization parameter
expediently to the desired resolution. For some cases its ad-
vantageous to penalize independently the real and imaginary
parts. This paper proposes a fast algorithm to calculate the
local impulse response for that penalty and applies it to an
fMRI reconstruction problem.

1. INTRODUCTION

Iterative image reconstruction methods are growing in pop-
ularity for many imaging devices. This involves iteratively
minimizing/maximizing a cost function, which fits the ac-
quired data to a physics based signal model. Since the data re-
ceived from the imaging device is usually contaminated with
noise, the reconstructed image can have noise propagation
due to ill-conditioning. A method to control that is to add
a regularization term to the cost function. In image recon-
struction, one common regularization is a roughness penalty,
that encourages smoothness on the solution.

For complex valued images, the conventional roughness
penalty penalizes equally the real and imaginary parts. Some-
times unconventional roughness penalties are needed, for ex-
ample separate regularization of magnitude and phase [1, 2].
Another example is separate regularization of the the real and
imaginary parts, which is what this paper focuses on. This
type of regularization has been used in image reconstruction
in digital holography [3] and in functional MRI to jointly re-
construct images of changes in signal relaxation (real part)
and off-resonance (imaginary part) [4].
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The weight of the roughness penalty in the cost function
dictates how smooth the reconstructed image becomes. One
way of choosing this weight is to choose a desired resolu-
tion for the reconstructed image. This relationship of penalty
weight and resolution can be analyzed using a point spread
function or impulse response function for the imaging device.
For many imaging devices the impulse response is space vari-
ant, and this has led to the use of the local impulse response
[5, 6] to analyse the spatially local resolution properties of the
reconstructed image.

For spatial uniformity analysis the local impulse response
must be evaluated for many pixels. To reduce compute time a
fast approximate local impulse response calculation was pre-
viously derived for a quadratic penalized least-squares (QPLS)
cost function using the conventional roughness penalty [6].
However, that approach is not applicable to the case of in-
terest here, where the real and imaginary components of the
image are regularized separately. This paper will present a
fast method of calculating an approximate local impulse re-
sponse for a separate real and imaginary roughness penalty,
which is then used in the previous fMRI example [4].

2. THEORY

We assume the following discrete and linear model for the
noisy acquired data vector y:

y = Ax + ε, (1)

where x is a vector containing the unknown discrete object
that is being imaged, A is a linear transform from image
space to acquired data space, sometimes called the system
matrix, and ε is a vector containing samples of the noise in
the acquired data. Minimizing a QPLS cost function has been
a popular method of solving the inverse problem, i.e., to esti-
mate x from y using the model in (1). Additionally, the min-
imization can be solved efficiently using an iterative gradient
descent algorithm, like conjugate gradient. A QPLS mini-
mization problem can be described as follows:

Ψ(x) =
1
2
||y − Ax||2 + R(x)

x̂ = arg min
x

Ψ(x), (2)



where R(·) is the penalty, used here to improve the overall
conditioning of the problem and 1

2 ||y − Ax||2 is called the
data fit term.

In imaging, the conventional choice for the penalty R(·)
is the regular roughness penalty, described by:

R(x) =
1
2
β||Cx||2, (3)

where C is a real valued matrix that evaluates the differences
of neighboring pixels in x and β is a parameter that controls
how much weight the roughness penalty gets relative to the
data fit term of the cost function. We would like to separately
penalize the real and imaginary parts of the resulting image x̂.
Since the penalty in (3) does not allow for that, we propose to
use the following roughness penalty:

R(x) =
1
2
(
β1||CxR||2 + β2||CxI||2

)
, (4)

where xR is the real part of x and xI is the imaginary part of
x. The parameters β1 and β2 control how much weight there
should be on the roughness penalty of each term versus the
data fit term in (2).

To control the resolution of the estimated image x̂, it is
necessary to know the relationship of the weight of the penalty
to the point spread function (PSF) of x̂. It has been shown [6]
for the QPLS cost function in (2) and using the roughness
penalty in (3), that the local PSF or local impulse response at
spatial position n is given by,

ln = (A′A + βC ′C)−1
A′Aen, n = 1, . . . , N (5)

where en is a column vector with 1 at vector element po-
sition n and zeros elsewhere (Kronecker impulse) and ln is
the subsequent local impulse response at spatial position n.
However, the local impulse response in (5) does not apply
when using our preferred penalty in (4), thus a new analysis
is needed to find its local impulse response.

2.1. Stacked Cost Function

We first rewrite all the matrices and vectors in a stacked for-
mat, as follows:

yS =

[
yR

yI

]
, xS =

[
xR

xI

]
,

AS =

[
AR −AI

AI AR

]
, CS =

[
C1 0

0 C2

]
,

where the subscripts R and I refer to the real and imaginary
part of the variable respectively, CS is block diagonal with
C1 =

√
β1C and C2 =

√
β2C. Note that β1 and β2 can be

chosen independently of each other. Using these definitions
for the stacked matrices and vectors we can rewrite the cost

function Ψ(x) as an equivalent stacked cost function Ψ(xS)
such that,

Ψ(xS) =
1
2
||yS − ASxS||2 +

1
2
||CSxS||2. (6)

This stacked formulation of the penalty in (6) can be shown
to equal (4), as follows:

1
2
||CSxS||2 =

1
2
x′

SC ′
SCSxS

=
1
2
(
β1||CxR||2 + β2||CxI||2

)
. (7)

As before we can now solve for the minimization problem in
(6) using an iterative gradient descent algorithm such as the
conjugate gradient algorithm. This can be done efficiently,
but our focus here is on the spatial resolution properties of
(6).

2.2. Stacked Point Spread Function

For the stacked cost function in (6), the stacked local point
spread function can be shown to be,

lSn = (A′
SAS + C ′

SCS)−1
A′

SASeSn, (8)

with,

lSn =

[
lRn

lIn

]
, eSn =

[
αen

(1 − α)en

]
, α ∈ {0, 1}

A′
SAS =

[
� (A′A) −� (A′A)
� (A′A) � (A′A)

]
,

C ′
SCS =

[
β1C

′C 0

0 β2C
′C

]
,

where α is a variable that we set to 1 to calculate the point
spread function of the real part and 0 for the imaginary part.
Using (8) directly to calculate the real and imaginary local
impulse response would involve taking an inverse of A′

SAS+
C ′

SCS which is extremely time consuming. We would like to
make the evaluation of the local impulse response fast.

2.3. Fast Local Impulse Response Calculations

If A′A and C ′C is circulant then � (A′A) and � (A′A)
are also circulant. Circulant matrices are diagonalizable using
FFT transforms:

� (A′A) = QΛ1Q
−1, � (A′A) = QΛ2Q

−1,

C ′C = QΩQ−1,

where, Q−1 is the orthonormal 2D DFT matrix and Λ1, Λ2

and Ω are diagonal matrices given by,

Λ1 = diag
{
Q−1� (A′A) e1

}
, Λ2 = diag

{
Q−1� (A′A) e1

}
,

Ω = diag
{
Q−1C ′Ce1

}
. (9)



Column n of a circulant matrix is a copy of its first column
that has been circularly shifted n places. Using this in con-
junction with the circular shift property of the DFT transform,
the diagonal matrices in (9) can be equivalently calculated for
any en, by accounting for the added phase due to the shift, as
follows:

Λ1 = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1� (A′A) en

}
,

Λ2 = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1� (A′A) en

}
,

Ω = diag
{

diag
{

e−i∠(Q−1en)
}

Q−1C ′Cen

}
. (10)

Using this FFT formulation we can rewrite (8) such that,

lSn = QD (ΛS + ΩS)−1 ΛSQ−1
D eSn (11)

where,

QD =

[
Q 0

0 Q

]
, ΛS =

[
Λ1 −Λ2

Λ2 Λ1

]
,

ΩS =

[
β1Ω 0

0 β2Ω

]
.

Thus for the case when A′A and C ′C are circulant, we have
reduced the calculation of the local impulse response consid-
erably since it now involves only the inverse of ΛS + ΩS,
which is a sparse matrix of diagonal blocks, and several FFT
calculations.

For many imaging problems A′A is not circulant, but
C ′C is. However, often we can claim that A′A, and hence
� (A′A) and � (A′A), are approximately locally circulant.
This is sufficient to find the approximate local impulse re-
sponse, since we assume that the local response affects only
its neighboring spatial coordinates. With this in mind we can
approximate A′A, � (A′A) and � (A′A) locally as follows:

A′Aen ≈ QΛQ−1en, (12)

� (A′A) en ≈ QΛ1Q
−1en, � (A′A) en ≈ QΛ2Q

−1en,

where Λ1 and Λ2 are defined in (10) and Λ = Λ1 + iΛ2.
Using this idea of locally circulant matrix A′A we can still
approximate the local impulse response as in (11).

We know that A′A and C ′C are nonnegative definite,
and thus have real and nonnegative eigenvalues. Thus we
would like the eigenvalues of ΛS and ΩS to be real an non-
negative. The elements of ΩS are nonnegative in practice due
to the construction of CS. However, special care is needed to
ensure that ΛS is nonnegative, as described next.

2.4. Fast Calculation of the Eigenvalues of ΛS

Under the approximation in (12), we have:

Q−1� (A′A) en = Q−1 QΛQ−1en +
(
QΛQ−1en

)∗
2

=
1
2
v +

1
2
Q−1 (Qv)∗ , (13)

where Λ = diag{λ} and v is a vector with kth element

vk = λk ei∠(Q−1en)
k and ∗ is the conjugate operator. The ex-

pression above involves a conjugate of the IDFT of v, which
simplifies as follows:

(Qv)∗n =

(∑
k

Qnkvk

)∗
=
∑

k

Q∗
nkv∗

k =
∑

k

Qnkv∗
−k,

with the index −k ≡ −k (mod K). Thus (Qv)∗ can be
rewritten as an IDFT of a circularly shifted version of v. Us-
ing this in (13), we now get for the kth element,(

Q−1� (A′A) en

)
k
≈ 1

2
(
vk + v∗

−k

)
.

Using this expression, the diagonal elements of Λ1 (10), which
we write here as λ1k, can be expressed in terms of the eigen-
values of A′A as follows,

λ1k ≈ e−i∠(Q−1en)
k

1
2
(
vk + v∗

−k

)
=

1
2

(λk + λ−k) .

This form ensures the eigenvalues of � (A′A) are approxi-
mately real and nonnegative under the local impulse response
approximation. Similarly, the eigenvalues of � (A′A) under
the local impulse response approximation can be written in
terms of the eigenvalues of A′A as follows:

λ2k ≈ 1
2i

(λk − λ−k) ,

which makes the eigenvalues of � (A′A) to be approximately
purely imaginary. Using this formulation for the elements of
Λ1 and Λ2 to form ΛS, we can easily show that the eigen-
values of ΛS are approximately real and nonnegative, making
the matrix sum ΛS + ΩS in (11) positive for all values of β1

and β2 when evaluating the local impulse response.
Of note, we can also use these equations to form of Λ1 and

Λ2, reducing the algorithm to a single pair of DFT and IDFT
on A′A. Also, the real nonnegative property might need to
be enforced, since all the calculations in this subsection have
all been done under the local approximation of the impulse
response.

3. SIMULATIONS

Here we simulate an fMRI example, where we want recon-
struct changes in signal relaxation (xR) and off-resonance
(xI) [4]. Here, the system matrix in the signal model (1) has
elements,

amn = fn e−tmzn tm e−i2π(kmrn) ,

where fn is the magnetization after excitation, zn (assumed to
be known) is a complex spatial map of the initial signal relax-
ation (real part) and off-resonance (imaginary part) and km is
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Fig. 1. Simulation maps of |f |, signal relaxation (zR) (top
row) and off-resonance (zI) (left, middle row). A map of the
locations where the impulse responses were calculated (right,
middle row), and a spatial map of the absolute difference in
FWHM values between the exact and approximate methods,
with the outline of |f | for reference (lowest row).

the k-space trajectory used to acquire the MR data, which in
this case was a spiral.

In Figure 1 the simulation maps for fn and zn are shown.
The exact stacked local impulse response in (8) was calcu-
lated by fully forming A′

SAS and C ′
SCS and the approxima-

tion in (11) was calculated by forming ΛS and ΩS using equa-
tions from section 2.4, with AS formed using a fast version
of the system matrix [7, 8].

Figure 1 shows the locations where the local impulse re-
sponses were evaluated. Since FWHM of the impulse re-
sponse is used for resolution evaluation, the absolute differ-
ence in FWHM calculated using the exact and approximate
stacked local impulse response is shown in Figure 1. For the
exact method the average FWHM was 1.35 and 1.5 and the
average error in FWHM was 0.0133 and 0.016 for the real and
imaginary parts respectively. For both parts the approxima-
tion error is below 5%. Notice that the maximum errors are in
locations where there are edges in f . The exact method took
4050 sec to run for all the locations but the fast approximate
method took 32 sec, which is more then a 100-fold reduction.

4. DISCUSSION

We have derived a fast method to approximate the local im-
pulse response for an iterative reconstruction algorithm, where
we separately penalize the real and the imaginary parts of the
image. This approximation has been shown to closely ap-
proximate the exact impulse response method with more then
a 100-fold reduction in compute time. The fact that the max-
imum error in FWHM values occurs close to edges in f indi-
cates that local shift invariance for the impulse response does
not hold well close to edges in f . This might improve by us-
ing a spatially variant penalty, where spatial nonuniformity in
f can be accounted for.
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