
Abstract— In order to reconstruct attenuation maps with 
enhanced resolution and accuracy, we developed a method of 
incorporating the detector resolution compensation (DRC) in the 
ordered-subset transmission (OSTR) algorithm for transmission 
imaging, which approximately models the blur caused by the 
finite intrinsic detector resolution, the non-ideal source 
collimation and detector collimation. We derived the 
formulation using the optimization transfer principle as in the 
derivation of the OSTR algorithm. The formulation includes one 
forward-blur step and one back-blur step, which do not severely 
slow down reconstruction. The formulation could be applicable
to various transmission geometries, and easily adapted to 
compensation for finite energy resolution of the transmission 
system. We used a digital rod phantom to validate our method. 

I. INTRODUCTION

N SPECT attenuation and finite distance-dependent 
resolution of the detector are two sources of image 

degradation [1-4]. Patient-specific attenuation map is needed 
to perform accurate attenuation compensation (AC). 
Attenuation maps are normally obtained from transmission 
acquisition using various transmission sources (Ba-133, Tc-
99m, Gd-153 …) and imaging geometries (point, line, sheet 
source …) [5-12]. The finite intrinsic spatial resolution and 
non-ideal collimation cause an imprecision in the detected 
location and assumed origin of the transmission photons, 
which results in the blurred attenuation maps [13, 14]. For 
point source transmission system, Manglos et. al. [15] showed 
that the spatial resolution of the system is close to the intrinsic 
detector resolution.  For extended sheet source transmission 
system, Cao and Tsui [16] showed that the spatial resolution 
is further decreased by the non-ideal source and camera
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collimation. For line-source [5, 13] or scanning line-source 
[10, 17] transmission systems, the spatial resolution could be 
different between the transverse and longitudinal directions, 
since in one direction the position of the source is well-defined
or the source is well-collimated via electronic collimation and 
in another direction it should be treated as the extended source
[18]. 
  As in the emission imaging, finite spatial resolution of 
detector causes degradation of transmission reconstruction
[13, 14]. To model the Poisson statistics in transmission 
imaging, compensation for the finite spatial resolution should 
be incorporated in the iterative transmission reconstruction 
algorithms [19, 20], which models the overall blur caused by 
the finite intrinsic resolution and non-ideal source and camera 
collimation. For an ideal system with perfect resolution, a 
photon is detected in a certain detector bin.  For a realistic 
system with finite resolution, the system-blur-function (SBF) 
is defined to describe the probability of detecting that photon 
in other detector bins. This is an approximation in which the 
imaging system is assumed with an ideal system matrix and 
counts disperse into neighboring detector bins due to the finite 
spatial resolution.
  Erdoğan and Fessler [21] proposed a monotonic 

transmission reconstruction algorithm called “Separable 
Paraboloidal Surrogates” (SPS) algorithm which models 
Poisson statistics in transmission imaging and can be easily 
penalized with piece-wise smoothness prior.  The Ordered-
Subset Transmission (OSTR) algorithm [22] is the ordered-
subset version of SPS which accelerates efficiently the 
reconstruction. Our work is to incorporate compensation for 
the finite spatial resolution of detector into the OSTR 
algorithm. Similar to the derivation of the SPS and OSTR 
algorithms, we adopted optimization transfer principle [23, 
24] which transfers the original optimization task to another 
easier optimization task or series of easier tasks. We derived 
the formulation for detector spatial resolution compensation in 
the frame of the SPS algorithm and adapted it to the OSTR 
algorithm, and finally in DISCUSSIONS we adapted it to 
compensation for the finite energy resolution of detector.  To 
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make our derivation general, we made no assumptions on the 
form of the system-blur-function. 

II. METHODS

  In transmission imaging, the measurement model is

}{~ ii yPoissony ,

where dni ,...,1  denotes the detector index, the measurement 

means for a detector with ideal spatial resolution are
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where 0img only for rays within the same projection view, 
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The negative log-likelihood is 
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  Instead minimizing )(x  directly, we tried to construct the 

separable surrogate function of )(x  [21, 22]. By minimizing 

or decreasing the surrogate function at each iteration, the 
optimization transfer principle will guarantee a monotonic 
decrease of )(x at each iteration and convergence to at least a 

local minimum [21]. From (3) and (4), we have
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for v , we applied De Pierro’s multiplicative trick [23], and 
generated the following surrogate function
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Using the scaling property ),()/,( vuvu   , we have
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rays within the same projection view, these blurring steps are 
performed frame-by-frame within projection/backprojection 
process and does not affect severely the reconstruction. By far 
the monotonicity still holds. 
  To adapt our method to the OSTR algorithm, we replaced 
the sum over m in (16) with the sum over subsets of the rays, 
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Finally we obtained the formulation of incorporating the 
detector resolution compensation in the OSTR algorithm 
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where S  is one of M subsets of the rays. For simplicity we 
omitted the usual terms for regularization [21]. Taking into 
account 0img only for rays within the same projection view, 

we rewrite (19) explicitly as
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III. SIMULATIONS AND RESULTS

  Our method applies to various transmission geometries. As a 
special case to evaluate our method, we approximately 
simulated the transmission acquisition of a digital rod
phantom (Fig. 1) using a SPECT camera equipped with sheet 
source and parallel collimators. The blur on camera is 
attributed to two parts. One is from the finite intrinsic 
resolution of the camera, assumed a two dimensional (2D) 
Gaussian with 5 mm FWHM. The second is from the non-
ideal source and camera collimation, assumed a 2D Gaussian 
with 12 mm FWHM when measured at the source position, 
which was 70 cm from the camera. The radius-of-rotation was 
assumed 30 cm. The rod phantom consists of three groups of 
uniform cylindrical rods whose radii are 2, 3, and 4 pixels, 
respectively. The size of detector bin is 3.17 mm, the same as 
the pixel size into which the rod phantom was digitized (with 
a 50-fold sub-sampling). We used a ray-driven cone-beam
projector to generate 120-frame transmission projections
through 360 degrees, modeling the source and camera 
collimation blur by multiplying each cone-beam ray with a 
weight calculated from the 2D Gaussian with 12 mm FWHM. 
To simulate the intrinsic blur caused by the finite intrinsic
resolution, the transmission projections were further smoothed 
by a two-dimensional Gaussian with 5 mm FWHM.  The 
average system-blur-function was calculated at the center of 
object, which was a 2D Gaussian with 7.2 mm FWHM, taking 
into account the contributions from collimations (5.1 mm 
FWHM) and intrinsic resolution (5 mm FWHM).
  The resultant noise-free transmission projections were 
reconstructed using the OSTR algorithm with and without 
compensation for the finite spatial resolution. A weak 
regularization term with Huber’s type [25] was included each 
case. Each case we stopped the reconstruction at the 50th 
iteration. The reconstructions are shown in Figure 2.  From 
the simulation it was clear that inclusion of the detector 
resolution compensation greatly enhanced the resolution and 
accuracy of the transmission reconstruction. 

IV. DISCUSSIONS

  We derived the formulation of compensation for the finite 
spatial resolution of detector in the transmission 
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reconstruction with the OSTR algorithm. Though it was 
derived for compensation of the finite spatial resolution, it 
could be adapted to compensation for the finite energy 
resolution of detector. If we assume that monoenergetic 
photons disperse into the nearby energy bins according to one-
dimensional energy-response-function, there is analogy 
between compensation for energy resolution and 
compensation for spatial resolution. Following the above 
derivation, we could arrive at the same formulation as (20), 
except for interpreting that the forward-blur and back-blur in 
(20) are performed in the energy dimension.

Fig. 1. (Left) The trans-axial view of original digital rod phantom. (Middle) 
Trans-axial view of the OSTR reconstructions from the noise-free transmission 
projections simulated for a parallel detector with a 12 mm collimation resolution
and 5 mm intrinsic resolution, without detector resolution compensation. 
(Right)With detector resolution compensation for the average blurring measured 
at the center of the object.

V. CONCLUSION

  We developed a method of incorporating the compensation 
for the finite spatial and energy resolution of detector in the 
OSTR algorithm for the transmission reconstruction in 
SPECT, which enhances the resolution and accuracy of the 
attenuation map, and therefore enhances the attenuation 
compensation for the emission reconstruction.
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