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Abstract— Accurate predictions of variance can be useful for
algorithm analysis and for the design of regularization methods.
Computing predicted variances at every pixel using matrix-based
approximations [1] is impractical. Even the recently adopted
methods that are based on local discrete Fourier approximations
are impractical since they would require two 2D FFT calcula-
tions for every pixel, particularly for shift-variant systems like
fan-beam tomography. This paper describes a new analytical
approach to predict the approximate variance maps of images
reconstructed by penalized likelihood estimation with quadratic
regularization in a fan-beam geometry. This analytical approach
requires computation equivalent to one backprojection and some
simple summations, so it is computationally practical even for
the data sizes in X-ray CT. Simulation results show that it gives
accurate predictions of the variance maps. The parallel-beam
geometry is a simple special case of the fan-beam analysis.

Index Terms— variance approximation, local discrete Fourier
analysis, fan-beam tomography.

I. INTRODUCTION

STATISTICAL methods have obtained increasing attention
in tomography image reconstruction for the improved noise

and resolution properties. These methods are usually nonlinear
and shift-variant. To analyze the statistical characteristics of
the reconstructed images, one would often like to predict the
variance of pixel values. The variance information provides an
uncertainty measure of the reconstructed image and may be
useful in regularization parameter selection.

We focus here on penalized likelihood estimators obtained
by minimizing a cost function

µ̂ = arg min
µ

Φ(µ,Y ).

The cost function includes a log-likelihood term and a regular-
ization term:

Φ(µ,Y ) = −L(µ,Y ) + βR(µ).

For monoenergetic transmission tomography under the Poisson
noise model, the log-likelihood is

L(µ,Y ) =
∑

i

Yi log
(
Ȳi

)
(µ) − Ȳi(µ)
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where
Ȳi = bi e−[Aµ]i + ri,

where A is the system matrix, bi denotes the blank scan, and
ri denotes the additive contribution of scatter. The goal is to
estimate the attenuation image µ from the data Y .

We focus here on quadratic regularization for which

R(µ) =
β

2
µ′Rµ,

where R denotes the Hessian of the penalty function.
In [1], the following approximation to the covariance of µ̂

was derived:

Cov{µ̂} ≈ (A′WA + βR)−1A′WA(A′WA + βR)−1, (1)

using the implicit function theorem, the Taylor expansion and
the chain rule. The matrix method described in (1) has been
used in various applications, [2], [3]. Simulation and experi-
mental results show the accuracy of this covariance approxi-
mation in image regions where the nonnegativity constraint is
usually inactive. To accelerate variance computation, circulant
approximations are usually used in practice, as follows:

Var{µ̂j} ≈
∑

k

F(A′WAej)k

[F(A′WAej)k + F(βRej)k]2
,

where F is a discrete Fourier Transform and ej is the jth unit
vector of length p. Evaluating this expression requires two FFTs
per pixel.

The computation of this DFT approximation are still ex-
pensive for realistic image size when the variance must be
computed for all pixels, particularly for shift-variant systems
like fan-beam tomography.

In this paper, we propose to return to the continuous space
and use “local Fourier analysis” to approximate the variance
of the fan-beam reconstructed tomographic images, based on a
key concept from previous work, local shift invariance [4]–[6]
and the relationship between the fan-beam and parallel-beam
coordinates.

The paper is organized as follows. Section II briefly describes
the general analytical approach for the variance approximation
for fan-beam tomography. Section III applies this method to the
quadratic regularization case, particularly a standard quadratic



penalty as an example. Section IV gives simulation results,
including an comparison of the analytical, FFT-based and
empirical standard deviation images. Finally, discussion and
conclusions are in Section V.

II. THE ANALYTICAL VARIANCE APPROXIMATION

With the same philosophy in [1], one can derive the
continuous-space counterpart of equation (1),

Cov{µ̂} ≈ (A∗WA + βR)−1A∗WA(A∗WA + βR)−1,
(2)

where A is the projection operator, W is the fan-beam
weighting operator (Wp)(σ, β) = w(σ, β)p(σ, β) and R is
the regularization operator.

Let K(x, y;x′, y′) = Cov{µ̂(x, y), µ̂(x′, y′)} denote the
spatial autocovariance function of µ̂(x, y). Based on the fact
that the statistics in W vary smoothly spatially, we make the
following “local stationarity” approximation of K around a
point (xj , yj):

K(x, y;x′, y′) ≈ Kj(x − x′, y − y′)
Kj(�x,�y) � K(xj + �x, yj + �y;xj , yj).

Using this approximation along with local Fourier analysis, the
local covariance operator near (xj , yj) can be expressed as

Kj
µ̂ � Cov{µ̂}

= F−1
2 D

(
Hj(ρ,Φ)

(Hj(ρ,Φ) + βRj(ρ,Φ))2

)
F2,

where Hj(ρ,Φ) is the local frequency response of the Gram op-
erator A∗WAδj and Rj(ρ,Φ) is the local frequency response
of Rδj , where δj(x, y) � δ(x − xj , y − yj). The variance at
the location of interest (xj , yj) is given by

Var{µ̂j} = 〈δj , Kj
µ̂δj〉

= 〈Fδj ,

(
Hj(ρ,Φ)

(Hj(ρ,Φ) + βRj(ρ,Φ))2

)
〉

=
∫ 2π

0

∫ ∞

0

Hj(ρ,Φ)ρdρ dΦ
[Hj(ρ,Φ) + βRj(ρ,Φ)]2

. (3)

This is a general expression for predicting the variance of a
penalized-likelihood estimator for any geometry.

We focus on fan-beam CT here. Let hj(x, y) be the impulse
response of the fan-beam Gram operator A∗WA, defined as
follows:

hj(x, y) � (A∗WAδj)(x, y). (4)

Ignoring detector response, one can show that (4) can be
expressed in polar coordinates (r, ϕ) as

hj(r, ϕ) =
1
|r|wj(ϕ + π/2), (5)

where the angular dependent weighting wj(ϕ) is given by

wj(ϕ) = w(σ′, β′)J(σ′)
∣∣∣
ϕ′=ϕ

+ w(σ′, β′)J(σ′)
∣∣∣
ϕ′=ϕ−π

.

J(σ) is the determinant of the Jacobian matrix of transforming
from the fan-beam coordinates to parallel-beam coordinates:

J(σ′) = 1/ |Dso cos γ(σ′)γ̇(σ′)| ,

where Dso is the distance from source to rotation center and
γ(σ′) = σ′/Dsd for the equiangular case. Dsd is the distance
from source to detector.

Thus, we can obtain the local frequency response of the
Gram operator by taking local Fourier transform of hj(r, ϕ)
in equation (5):

Hj(ρ,Φ) =
∫ π

0

∫ ∞

−∞
hj(r, ϕ) e−ı2πrρ cos(ϕ−Φ) |r|dr dϕ

=
∫ π

0

wj(ϕ + π/2)
∫ ∞

−∞
δ(ρ cos(ϕ − Φ)) dϕ

=
1
|ρ|

∫ π

0

wj(ϕ′) δ(sin(ϕ′ − Φ)) dϕ′

=
1
|ρ|wj(Φ).

The local Fourier transform is used as an analysis tool in our
derivation of Hj(ρ,Φ). However, there is no need to take any
Fourier transform in our computation!

In fan-beam tomography, detector blur effects depend on the
distances between each image pixel and the detector elements,
and hence cannot be modeled exactly in the frequency do-
main. We approximate the depth-dependent detector response
by an effective beam width (Dso/Dsd)�s at the rotation
center, where �s is the detector spacing. For simplicity, we
model the frequency response of this effective detector blur as
Crect(ρ/2ρmax), where ρmax = Dsd

2Dso�s
. The local frequency

response of the Gram operator becomes

Hj(ρ,Φ) =
Crect(ρ/2ρmax)

|ρ| wj(Φ).

Substituting Hj(ρ,Φ) into (3), the variance of µ̂j can be
approximated analytically as

Var{µ̂j} ≈
∫ 2π

0

∫ ρmax

0

Cwj(Φ)
|ρ|(

Cwj(Φ)
|ρ| + βRj(ρ,Φ)

)2 ρdρ dΦ .

(6)
The parallel-beam geometry is just a special case with the

angular weighting function consisting only of the data statistics
w(σ′, β′).

III. QUADRATICALLY PENALIZED-LIKELIHOOD

ESTIMATOR

Consider the quadratic regularization design for fan-beam
tomography whose R(ρ,Φ) is approximately separable in ρ
and Φ,

Rj(ρ,Φ) ≈ (2πρ)2R̃j(Φ).



The variance approximation in (6) becomes

Var{µ̂j} ≈
∫ 2π

0

∫ ρmax

0

Cwj(Φ)
|ρ|(

Cwj(Φ)
|ρ| + β(2πρ)2R̃j(Φ)

)2 ρdρ

=
∫ 2π

0

ρ3
max/3[

Cwj(Φ) + β4π2ρ3
maxR̃j(Φ)

]2 dΦ, (7)

for a quadratic penalty function. The computation of wj(Φ)
for all pixels only requires the same computation time as
one backprojection. The integral can be evaluated by a finite
summation with correctly chosen ρmax. The variance image
prediction in (7) requires much less computation than (1) and
thus is practical even for realistic tomographic image sizes.

A. Standard Quadratic Penalty Function

Consider a standard quadratic penalty where R̃j(Φ) = R̃j =
κ2

j is independent of Φ. R̃j is the design parameter that
allows different degree of regularization and hence controls the
amplitude of PSF.

The variance approximation in this case has a very simple
form:

Var{µ̂j} ≈ ρ3
max

3

∫ 2π

0

1[
Cwj(Φ) + β4π2ρ3

maxR̃j

]2 dΦ . (8)

IV. EXAMPLE RESULTS

To evaluate the performance of the proposed method, we
implemented the above prediction for the fan-beam tomo-
graphic images reconstructed by quadratically penalized like-
lihood algorithm. We simulated 450 realizations of fan-beam
transmission scans using 128 × 128 Zubal phantom with the
corresponding sinogram size is 222 samples in σ, spaced by
�σ ≈ 0.248

◦
and 246 source positions over 360

◦
. ρmax =

0.224mm−1. The regularization parameter β = 212 is chosen
to give FWHM = 1.76 pixels, i.e., 6.0mm at the center of
the image. For each realization, µ̂ is reconstructed using 400
iterations of the incremental optimization transfer algorithm
(PL-IOT) of [7] to ensure the convergence. The initial images
are the FBP images with equivalent spatial resolutions. The
sample standard deviation is then calculated pixel by pixel
within the finite support used in reconstruction.

The reconstructed images and standard deviation images
are displayed in Fig. 1. For a complete comparison, we also
computed the predicted standard deviation using the FFT
method along two profiles. The standard deviation image for
450 realizations of FBP image is also computed and displayed
in Fig. 1. Note that the values of the FBP standard deviation
are approximately 4 times higher than that of the PL-IOT
reconstruction. The advantage of the statistical reconstruction
methods in the noise and resolution tradeoff has been further
confirmed.

The central horizontal and vertical profiles are shown in
Fig. 2 and Fig. 3. The analytical, the FFT-based and empirical
standard deviations agree with one another very closely within
the finite support used in image reconstruction.
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Fig. 2. Central vertical profiles for predicted and empirical standard deviation
images shown in Fig. 1.
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Fig. 3. Central horizontal profiles for predicted and empirical standard
deviation images shown in Fig. 1.

V. DISCUSSION

In this paper, an analytical variance approximation is given
by (3), more particularly by (7) for a quadratically penalized
likelihood estimator in fan-beam tomography. The computation
of this proposed method is equivalent to one backprojection
with an additional summation, and is much less than the
previous methods. The empirical result from the simulated
fan-beam CT transmission scans demonstrates the proposed
variance approximation is very accurate and thus provides
a useful means to estimate the variance image for realistic
tomographic image size.

Further work is needed to evaluate the proposed variance
prediction in a modified quadratic penalty design for fan-beam
tomography in [8] that leads to nearly uniform and isotropic
spatial resolution. We also need to evaluate the application
of the proposed “continuous space” philosophy in covariance
matrix approximation which is very useful in detection tasks.
Furthermore, we will also investigate how to apply this variance
approximation in choosing the regularization parameter for
the edge-preserving regularization, possibly a locally-varied δ.
Finally, we want to generalize this work to 3D cone beam
tomography.
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Fig. 1. Predicted and empirical standard deviation images (in HU) for Zabul phantom for PL fan-beam transmission image reconstruction using the standard
quadratic penalty.
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