
Estimating 3D Respiratory Motion from Orbiting
Views

Rongping Zeng1, Jeffrey A. Fessler1, and James M. Balter2
rzeng@eecs.umich.edu, fessler@eecs.umich.edu, jbalter@med.umich.edu

Abstract— This paper describes a method for estimating 3D
respiratory motion so as to characterize tumor motion. This
method uses two sets of measurements. One is a reference thorax
volume obtained from a conventional fast CT scanner under
breath-hold condition. The other is a sequence of projection views
of the same patient (acquired at treatment time) using a slowly
rotating cone-beam system (1 minute per rotation) during free
breathing. We named this method Deformation from Orbiting
Views (DOV). Breathing motion over the entire acquisition period
is estimated by deforming the reference volume through time so
that its projections best match the measured projection views.
The nonrigid breathing motion is described by a B-spline based
deformation model. The parameters of this model are estimated
by minimizing a regularized squared error cost function, using
a conjugate gradient descent algorithm. Performance of this
approach was evaluated by simulation. Results showed good
agreement between the estimated and synthesized motion, with
a mean absolute error of 1.63mm. Relatively larger errors tended
to occur in uniform regions, which would not have significant
effects on generating deformed volumes based on the estimated
motion. The results indicate that it is feasible to estimate realistic
nonrigid motion from a sequence of slowly rotating cone beam
projection views.

Index Terms— 4D CT, respiratory motion, cubic B-spline, cone-
beam scanners.

I. INTRODUCTION

CONFORMAL radiotherapy requires that the delivery of X-
ray is focused on the tumor area while sparing the normal

adjacent tissue. However, geometric uncertainties caused by
respiratory motion bring difficulties in conformal radiotherapy.
Most current 4D (3D spatial + 1D breathing index) CT imag-
ing techniques use conventional scanners to study respiratory
motion [1]–[3]. These methods often acquire multiple 2D
slices at each table position, sort these slices into several
respiratory phase bins, and then stack those slices within the
same phase bins to form 4D images. Due to the insufficient
spatial coverage for imaging an entire volume for one breathing
cycle, an assumption is made that there is a the reproducibility
relationship between the internal motion and the “phase” of
external monitoring index. Inaccurate sorting due to imperfect
correlation often leads to tissue discontinuity artifacts in the
reconstructed CT volumes, especially at mid-inspiration or
mid-expiration phases. It is also feasible to acquire 4D data
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using cone-beam CT scanners [4]. However, the limitation from
motion reproducibility assumption still exists.

We propose a different way to study respiratory motion
using a cone-beam scanner that is integrated into a radiotherapy
system. This type of cone-beam scanner usually rotates slowly
with about 1 minute per full rotation. This type of system
provides large volume coverage (a 41×41 cm2 detector) and a
high temporal sampling rate (3-15 projection views per second).
Therefore, it is possible to estimate respiratory motion from
a sequence of cone-beam projection views acquired during
free breathing, assuming that we also have available a static
prior model of the anatomy, such as a breathhold planning
CT. The basic idea of this approach is to model the motion
as deformation of the prior through time and to estimate the
motion parameters by maximizing the similarity between the
modeled and measured projection views. We call it deformation
from orbiting views (DOV). This method reduces the motion
reproducibility requirement of aforementioned 4D CT imaging
methods.

II. THEORY OF DOV
The proposed motion estimation method uses two sets of

measurements. One is a reference thorax CT volume obtained
from a conventional fast CT scanner under breath-hold con-
dition, denoted as fref(x),x ∈ R

3. The other is a sequence
of projection views of the same patient (acquired at treatment
time) using a slowly rotating cone-beam system (1 minute per
rotation), represented as gm, m = 1, . . . ,M (M is the number
of projections). Although we allow the cone-beam scanners to
rotate slowly, we require the acquisition time of each projection
view to be short. For example, recently developed systems
can acquire 15 frames per second, i.e., around 0.067 second
per frame. We therefore assume that the respiratory motion is
negligible within each single projection view. Let the motion
be denoted as T θ(x; tm), a time-dependent deformation con-
trolled by parameters θ. Since the projection views and the
reference volume are all from the same patient, a mathematical
relationship between gm and fref can be represented by the
following equations, ignoring any noise and imaging artifacts,

gm = Aφm
ftm

, (1)
ftm

(x) = fref(T θ(x; tm)), (2)

where Aφm
denotes the projection operator from projection

angle φm, and ftm
is the deformed volume at time tm.



However, in practice the measured projection views Ym are
always degraded by noise,

Ym,n ∼ Poisson(Im,ne−gm,n + Sm,n), (3)

where Im,n is a constant related to the incident X-ray energy,
Sm,n denotes the scatter contribution to Ym,n and n is the
number of detector elements.

T θ(x; t) can be any suitable deformation models. We
adopted a cubic B-spline based motion model as follows,

T θ(x; t) = x +
∑

j

∑

i

θj,i β

(

t − τj

∆t

)

β

(

x − xi

∆x

)

(4)

where β(.) is the cubic B-spline function and β(x) the tensor
product of cubic B-spline functions, τj and xi the spatial and
temporal knot locations, ∆x and ∆t control the width of the
spatial and temporal basis functions respectively, and θ the knot
coefficients. There are two advantages to use a cubic B-spline
model. One is that the small support of the cubic B-spline
function eases the computation and optimization. The other is
that the B-spline control grid can be flexibly adjusted to meet
the approximation accuracy of continuous signals. Based on
the motion model (4), the estimation goal is to find the motion
parameters θ from the projection views gm and fref .

Based on the relationship between gm and fref described in
(1) and (2), we construct a regularized least square estimator
of θ as follows,

θ̂ = arg min
θ

(L(θ) + βsRs(θ) + βtRt(θ)), (5)

where L(θ) = 1

2

∑M

m=1
‖gm −Aφm

fref(T θ(x; tm))‖
2, a data

fidelity term, Rs(θ) is a spatial motion roughness penalty term,
Rt(θ) is a temporal motion aperiodicity penalty term, and
βs and βt are scalars that control the trade-off between the
three terms. Rs(θ) discourages wiggly spatial deformation, and
Rt(θ) encourages similarity between deformations in similar
respiratory phases. We refer to Rt(θ) as the “aperiodicity
penalty”, and we included this term to help overcome the
limit angular range (20◦ to 40◦ for one breathing cycle) of a
slowly rotating cone-beam scanner. The drawback of this small
angular range is that the projection views for one breathing
cycle may be less informative about the motion along certain
directions. The aperiodicity penalty term can bring in some
motion information contained in the adjacent breathing cycles
to compensate for the angular limitation.

The aperiodicity penalty is a temporal regularity term. If
the temporal knots are evenly spaced in each breathing period
and each breathing period contains the same number of knots,
then the deformation similarity can be approximated by the
closeness of the coefficient values of knots that are located
at similar respiratory phases. To determine the correspondence
between the temporal knots, we need a respiratory signal. We
adopted the idea presented in Zijp’s paper [5] and simplified
their method. The basic idea is to capture the superior-inferior
(SI) transition of the diaphragm in the collected projection
views.

Since there is no analytical solution for (5), We used iter-
ative method to search for θ̂. The conjugate gradient descent
algorithm was chosen. The multi-resolution technique was also
applied to speed up the optimization and to help avoid local
minima.

III. SIMULATIONS AND RESULTS

A. Experiment setup
Performance of this approach was evaluated by simulation.

The synthetic respiratory motion in the simulation was based
on three breathhold thorax CTs at 0%, 20% and 60% tidal
volume, with voxel size 0.2 × 0.2 × 0.5 cm3. We selected the
0% breathhold CT (end-expiration) as the reference volume. 70
cone-beam projection views of the warped reference volume
over a 180◦ rotation were generated in this simulation. The
warping was according to a synthetic motion. In order to
simulate a realistic respiratory motion, we first registered the
three breathhold thorax CTs to find the deformations of 20%
and 60% relative to 0%. Then we resolved the corresponding
time phases for 20% and 60% tidal volume phases, by putting
the SI displacements of some points into the following temporal
breathing motion model [6],

z(t) = z0 − a cos6(πt/T − π/2), (6)

where z0 is the SI position at exhale, a the amplitude of
the motion and T the period of breathing cycle. Knowing
the deformations at three time points and with the symmetry
assumption between the motion of exhalation and inhalation,
we performed cubic spline interpolation of the deformations
at each voxel to form one cycle of temporally continuous
breathing motion. Four breathing cycles were simulated, a total
duration of 30 seconds with a different breathing period for
each cycle. The simulated cone-beam system had a flat-panel
detector of 180 × 200 elements with each element area of
0.4×0.4 cm2. The source to isocenter distance and the isocenter
to detector distance were 100cm and 50cm respectively. The
gantry rotated from the anterior view with 6◦ per second and
spanned 180◦ over the four breathing cycles. The simulated
projection views were degraded by scatter effect and Poisson
noise as described in the noisy model (3), where the scatter
effect was generated using the convolutional method [7].

Before estimation, we removed the scatter effect first. We
assumed the same convolutional kernel, convolved it with the
noisy projection views and then subtracted the convolution
result from the noisy projection views. So there was model
mismatch between the estimated and the actual scatter since
the convolution step was operated on the non-noisy projection
views for generating the scatter effect while on the noisy
projection views for removing the scatter effect. After removing
scatter, we estimate the line integrals gm based on (3), i.e.,

ĝm,n = log

(

Im,n

Ym,n − Sm,n

)

, (7)

The spatial control knots were evenly spaced in the thorax
region. They were placed differently from the knot locations



used when simulating the motion, and with less density. The
temporal knots were distributed non-uniformly along the entire
temporal axis, with the same number of knots evenly spaced
in each active breathing cycle.

B. Results and discussion
We present two groups of results. One case was with ideal

temporal knot placement (’*’ signs in Fig. 1), assuming the
true respiratory phase signal is known; the other case was with
automatic temporal knot placement according to the estimated
respiratory phase signal from projection views (’+’ signs in
Fig. 1). The former one offers us a guideline on how well this
proposed algorithm would perform under ideal situation, while
the latter one represents a practical case, where the ground truth
of the respiratory signal is unavailable.
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Fig. 1. Ideal temporal knot placement (’*’ line) and automatic knot placement
(’+’ line)

• Case 1: ideal temporal knot placement
With the ideal temporal knot placement, the deformation

estimation errors over the entire volume through time had a
nearly zero-mean Gaussian distribution. As can be seen from
Table I, the STD deviation were less than 1 mm along the
LR and AP direction and less than 2mm along SI, similar for
the root mean square (RMS) errors. These numbers indicated
that most of estimation errors were very small. The RMS error
along the SI direction was almost twice of that along the LR
and AP direction due to a doubled image resolution in the
SI direction. As an example of the estimation accuracy, we
plotted the averaged motion curves of 20 randomly selected in
the thorax region in Fig. 2. This plot showed a good agreement
between the estimated and the true motion. Notice that slightly
larger deviations from the truth presented near the peaks of
the 2nd and 3rd breathing cycles for the LR motion curve
and near the peaks of the 1st and 4th breathing cycles for the
AP motion curve. These deviations were reasonable since the
projection views from those projection angles poorly captured
the thorax deformations along the LR or AP direction. But due
to the periodicity regularization, the deficiency of motion info

due to limited angular span in one breathing cycle was greatly
compensated.

TABLE I
DEFORMATION ESTIMATION ACCURACY UNDER IDEAL TEMPORAL KNOT

PLACEMENT.

LR AP SI
Mean error (cm) 0.013 0.009 0.011

STD deviation (cm) 0.069 0.083 0.179
RMS error (cm) .064 .076 .164
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Fig. 2. Accuracy plot of the randomly selected 20 points under the
optimization with ideal temporal knot placement. The Thick lines represents
the true motion curves averaged over the 20 points. The thin lines represents
the estimated motion curves averaged over the 20 points. Error bars on the thin
lines represent the standard deviations of the deformation estimation errors.

However, there existed some large deformation errors, e.g.
a maximum absolute error of 1cm in the LR direction. By
examining the locations of the relatively large errors, we found
that they tended to occur at the image regions with low con-
trast, which would not produce significant effect on generating
deformed volumes based on the estimated deformations. As can
be seen in Fig. 4 and Fig. 5,the differences between the true
and predicted deformed volumes were quite small.

• Case 2: non-ideal temporal knot placement
In this case, the temporal knots were automatically placed based
on the estimated respiratory signal. Because of the mismatch
between the estimated and true respiratory signals, there were
offsets between the phases of the deformations that were
assumed to correspond to the same breathing phases by the
aperiodicity penalty term.

The statistics of the deformation estimation errors are listed
in Table II. Comparing the result with that in Table I, the
deformation errors were generally larger than those under
optimization with ideal temporal knot placement. Comparison
of the true and estimated motion curves were plotted in Fig. 3.
Unsurprisingly, the estimated motion curves also showed larger
deviation from the truth than that in the previous case. This
degraded performance was partially due to the larger B-spline
approximation errors from motion model mismatch. Another
reason was that there were offsets between the temporal knot



locations decided by automatic placement and ideal placement
(Fig. 1). Periodicity regularization with these phase offsets
resulted in less accuracy in the estimated motion, however, it
did help overcome the insufficiency of angular span for one
breathing cycle of the slowly rotating cone-beam scanners.
Good placement of B-spline control knots is essential for this
work. More investigation is needed on this issue.

TABLE II
ESTIMATION ACCURACY UNDER AUTOMATIC TEMPORAL KNOT

PLACEMENT.

LR AP SI
Mean error (cm) 0.017 -0.001 0.014

STD deviation (cm) 0.0774 .1092 .2014
RMS error (cm) .0740 .0995 .1875
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Fig. 3. Accuracy plot of the randomly selected 20 points under the
optimization with automatic knot placement. The Thick lines represents the
true motion curves averaged over the 20 points. The thin lines represents the
estimated motion curves averaged over the 20 points. Error bars on the thin
lines represent the standard deviations of the deformation estimation errors.

IV. CONCLUSION

We proposed DOV, a respiratory motion estimation method
from a sequence of slowly rotating cone-beam projection views.
In this method, we adopt a B-spline motion model, deform an
breathhold thorax CT volume according to the motion model,
and find the parameters of the motion model by optimizing
the similarity between the measured projection views and the
modeled projection views of the deformed reference volume.
The simulation yielded encouraging results, with the averaged
deformation estimation errors around 1mm. Although there
were some large deformation errors over the entire volume
through time, but they tended to occur at uniform regions,
which may not have significant meaning. In practice a region
of interest should be identified by radiotherapists and the
maximum errors in that region are more important, or we could
set constraints on the maximum displacements of some voxels
during optimization based on prior clinical information.

Currently we used a penalized least square estimator. Based
on the the statistical property of the projection views, we can

design a weighted least square estimator which may improve
the estimation accuracy. We also need to investigate more on
how to better place the spatial knots and temporal knots to
reduce motion model mismatch. Finally, this method will be
applied to real clinical cone-beam data.
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Fig. 4. Comparison of the true and estimated deformed volumes (axial view) at four time points under optimization with ideal temporal knot placement
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Fig. 5. Comparison of the true and estimated deformed volumes (axial view) at four time points under optimization with ideal temporal knot placement


