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ABSTRACT

Statistical methods for tomographic image reconstructionhave shown considerable potential for improving image qual-
ity in X-ray CT. Penalized-likelihood (PL) image reconstruction methods require maximizing an objective function that
is based on the log-likelihood of the sinogram measurementsand on a roughness penalty function to control noise. In
transmission tomography, PL methods (and MAP methods) based on conventional quadratic regularization functions lead
to nonuniform and anisotropic spatial resolution, even foridealized shift-invariant imaging systems. We have previously
addressed this problem for parallel-beam emission tomography by designing data-dependent, shift-variant regularizers that
improve resolution uniformity. This paper extends those methods to the fan-beam geometry used in X-ray CT imaging.
Simulation results demonstrate that the new method for regularization design requires very modest computation and leads
to nearly uniform and isotropic spatial resolution in the fan-beam geometry when using quadratic regularization.
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1. INTRODUCTION

There is growing interest in the use of statistical image reconstruction methods for X-ray CT imaging due to the
potential for reducing patient dose, reducing artifacts due to beam hardening and metal objects, and to accommodate
scanning geometries that are poorly suited to conventionalFBP reconstruction. Maximum likelihood methods for image
reconstruction lead to excessively noisy images, so one must include some form of noise control, such as adopting a
penalized-likelihood (PL) approach, or similarly a maximum a posteriori(MAP) method.

Although PL methods can control noise effectively, if one uses a conventional quadratic roughness penalty then the
resulting reconstructed images will have nonuniform and anisotropic spatial resolution, even for idealized shift-invariant
imaging systems, due to interactions between the non-quadratic Poisson log-likelihood and the regularization term [1].
For shift-variant systems, including the fan-beam geometry used in X-ray CT, there will be additional variation in spatial
resolution over the field of view (FOV). This “problem” couldbe circumvented by using a conventional quadratically-
penalized,unweightedleast-squares (QPULS) estimation method, but QPULS imageshave poor noise properties (akin to
FBP in fact) because theweighting, which is explicit in PWLS methods [2] and implicit in penalized-likelihood methods,
is a central advantage of statistical methods over FBP. We previously described a method for designing quadratic regular-
izers that improve the resolution uniformity and isotropy of reconstructed images forparallel-beamsystems, focusing on
emission tomography [3]. This paper addresses thefan-beamgeometry for transmission tomography.

2. SPATIAL RESOLUTION ANALYSIS AND REG. DESIGN

We use two key concepts from previous work. One concept islocal shift invariance[4–6]. Although fan-beam to-
mography systems are shift variant, the system and reconstruction method are often approximately shift invariant in the
local neighborhood around any given pixel. This characteristic enables “local Fourier analysis” of the spatial resolution
properties. The other concept is that for any given pixel, the effect of (implicit or explicit) ray-dependent weightingin a
statistical reconstruction method can be approximated by one weight per projection view [6].
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2.1. Local impulse response

One can quantify spatial resolution properties of image reconstruction methods using the local impulse response. Lety

denote the projection measurement vector,A the system matrix, andx the unknown object vector (pixel values), where
y ≈ Ax. For an estimator̂x(y), we define the local impulse response for thejth pixel to be

lj = lim
δ→0

x̂(y + δAej) − x̂(y)

δ
.

This PSF shows how a pertubation in thejth pixel affects other pixels, and is our tool for regularization design.

2.2. Regularized reconstruction

Penalized likelihood reconstruction methods have the form

x̂ = arg min
x

L(Ax,y) + R(x),

whereL denotes the negative log-likelihood andR(x) denotes a roughness penalty function that regularizes the problem.
We focus here on quadratic roughness penalties of the formR(x) = 1

2x′Rx, whereR is the Hessian of the penalty
function.

For such estimators, the local impulse response is [1,7]:

lj =
[

A′∇20L(Ax̂,y)A + R
]−1

A′
[

−∇11L(Ax̂,y)
]

Aej .

For typical log-likelihoods, this simplifies as follows [7]:

lj = [A′WA + R]
−1

A′WAej ,

whereW is a diagonal matrix that depends on the log-likelihood andy. For transmission tomography with the usual
Poisson model,W ≈ diag{yi} [7].

2.3. Regularization design

Our goal is to choose the penalty coefficientsrj = (r1, . . . , rL) (and henceR) so that the local impulse response at each
pixel j closely matches some target PSFl0. Experience has shown that reasonable target PSFs have the form

l
j
0 = [G′G + R0]

−1
G′Gej ,

whereG denotes a shift-invariant system that approximates the possibly shift-varying system modelA, andR0 denotes a
conventional shift-invariant regularizer. In other words, we would like to chooseR (by choosing

{

rj
}

) such that

[A′WA + R]
−1

A′WAej ≈ [G′G + R0]
−1

G′Gej .

Achieving this goal should lead to nearly uniform and anisotropic spatial resolution.

Motivated by continuous-space analogs not shown, we “crossmultiply,” rearrange the matrices, and simplify, yielding

R0A
′WAej ≈ RG′Gej .

(Since all circulant matrices commute, matrices that arelocally shift invariant will commute approximately.) Roughly
speaking then, we would like to solve

min
{r

j}

∑

j

‖R0A
′WAej − RG′Gej‖ , (1)

whereR depends on
{

rj
}

, for some type of norm. Instead of solving this minimizationproblem using matrix-vector
operations, we follow the philosophy of [3] and replace all the matrices above with corresponding continuous-space Fourier
domain expressions. We then solve forrj analytically in the Fourier domain.
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In the above expressions,G′G is the cascade of forward and back-projection operations. In continuous-space, this
ideally would correspond to convolution with1/r or multiplication by1/ρ in the Fourier domain, where(ρ, ϕ) denotes
polar coordinates in frequency space. A more reasonable model accounts at least for some “typical” detector response,
such as in the following approximation:

G′G ≡
|B(ρ)|

2

ρ
, (2)

whereB(·) denotes some user-selected frequency response, corresponding to the “typical” radial blur function,e.g., the
blur at the center of a single projection view. For shift varying systems, letbj

ϕ(r) denote the detector response at angleϕ
local to where thejth pixel projects onto the detector at that angle. (For a shift-invariant systemb(r) would be independent
of ϕ andj.) Let Bj

ϕ(ρ) denote the corresponding (local) frequency response. Similarly, let wϕ(r) denote the diagonal
“element” ofW corresponding to angleϕ and radial positionr, and define the following effective “certainty” at angleϕ
for thejth pixel (cf. [6, eq. (19)]):

wj(ϕ) ,

∫ ∞

−∞

∣

∣bj
ϕ(r)

∣

∣

2
wϕ(r) dr

∫ ∞

−∞

∣

∣

∣
bj
ϕ(r)

∣

∣

∣

2

dr
. (3)

Using continuous-space analogies, one can show

A′WA ≡
wj(ϕ)

∣

∣Bj
ϕ(ρ)

∣

∣

2

ρ
.

We refer toA′ W A as the Gram operator.

Previous work [3] continues from this point and leads to a regularizer design method that yields nearly uniform and
isotropic spatial resolution for the parallel beam case. Here, we transformwj(ϕ) to fit a fan beam geometry. Then we can
substitute our newly computedwj(ϕ) into the previous design method. This results in a corresponding regularizer that
yields nearly uniform and isotropic spatial resolution forthe fan beam case.

3. FAN BEAM GEOMETRY

Many contemporary tomographic imaging systems havefan beamgeometries, including commercial X-ray CT scan-
ners and some collimators for SPECT systems. For hypothetical continuous measurements, one could transform fan-beam
projections into parallel-beam projections by a simple change of variables. For discrete, noisy measurements,rebinning
fan-beam measurements into parallel-beam projections requires an interpolation operation that could degrade spatial reso-
lution. To avoid such rebinning, one can derive reconstruction methods (and regularization methods) directly in termsof
the fan-beam coordinates.

Fig. 1 illustrates the fan-beam geometry that will be considered here. Since it can be challenging mechanically to
ensure that the line between the X-ray source and the midpoint of the detector passes through the exact center of rotation,
we allow an offsetroff between that line and the center [8]. LetP denote the point along that line that intersects the circle
of radiusroff centered at the rotation isocenter.Dd denotes the distance from the pointP to the detector,Ds denotes the
distance from the X-ray source toP , andDf denotes the distance from the X-ray source to the focal pointof the detector
arc. DefineDc , Dd + Ds to be the total distance from the X-ray source to the center ofthe detector. This formulation
allows the detector focal point to differ from the X-ray source location to encompass a variety of system configurations.
For flat detectors,Df = ∞. For third-generation X-ray CT systems,Df = 0. For fourth generation X-ray CT systems,
Df = −Ds.

In our notation, the distancesDd andDs are constants, rather than being functions of angleβ. Generalizations exist to
allow non-circular source trajectories [9].

Let s ∈ [−smax, smax] denote the (signed)arc lengthalong the detector, withs = 0 corresponding the detector center.
Arc length is the natural parameterization for detector elements that are spaced equally along the detector. (For a flat
detector withDf = ∞, the arc lengths is simply the position along the detector.) The various angles have the following
relationships:

α(s) =
s

Dc + Df
, γ(s) = tan−1

(

(Dc + Df) sin α(s)

(Dc + Df) cos α(s) − Df

)

, (4)
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Figure 1. Illustration of fan beam geometry.

where the two most important cases are

tan γ(s) =

{

tan α(s), Df = 0
s/Dc, Df = ∞.

(5)

The (inverse) relationship betweenγ ands is:

s =

{

(Dc + Df)
[

γ − arcsin
(

Df

Dc+Df
sin γ

)]

, 0 ≤ Df < ∞

Dc tan γ, Df = ∞.
(6)

The ray corresponding to angleβ and detector elements is

L(s, β) = {(x, y) : x cos ϕ(s, β) + y sin ϕ(s, β) = r(s)} ,

where

ϕ(s, β) , β + γ(s)

r(s) , Ds sin γ(s) + roff cos γ(s)

=
√

D2
s + r2

off sin(γ(s) + βoff), (7)

where we defineβoff , ∠(Ds, roff). The range ofr is limited inherently by the position of the X-ray source andthe extent
of the detector:

|r(s)| ≤ rmax , Ds sin γmax, (8)

whereγmax , γ(smax) andsmax is half of the total arc length of the detector. The radiusrmax defines the circularfield
of viewof the imaging system: the subset of the plane that is measured completely. (We assume thatDd ≥ rmax, since
otherwise even the detector center would limit the field of view.) The angle2γmax is called thefan angle.
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The line-integral projectionp(s, β) of f alongL(s, β) is∗:

p(s, β) =

∫

L(s,β)

f(x, y) d`

=

∫∫

f(x, y) δ(x cosϕ(s, β) +y sinϕ(s, β)−r(s)) dx dy, (9)

for |s| ≤ smax and0 ≤ β < βmax. We assumeβmax ≥ π + 2γmax to ensure complete sampling. The FBP reconstruction
problem is to estimatef from the fan-beam projections{p(s, β)}.

4. ANALYSIS OF GRAM OPERATOR IN THE FAN BEAM CASE

The usual inner product for fan-beam projection space is

〈p1, p2〉 =

∫ smax

−smax

∫ βmax

0

p1(s, β) p2(s, β) dsdβ .

This is the natural inner product when considering the usualcase of samples that are equally-spaced in arc lengths and in
source angleβ. For this inner product, the adjoint ofP is given by

(P∗p)(x, y) =

∫ smax

−smax

∫ βmax

0

δ(x cos ϕ(s, β) +y sinϕ(s, β)− r(s)) p(s, β) dsdβ,

wherer(s) andϕ(s, β) were defined in (7).

Define a “diagonal” weighting operatorW by

(Wp)(s, β) = w(s, β) p(s, β),

wherew(s, β) is a user-selected nonnegative weighting function. The natural QPWLS estimator for this continuous-space
version of the image reconstruction problem has the form

f̂ = arg min
f∈C

‖p − P f‖
2
W1/2 + R(f) (10)

where

R(f) =
1

2
〈f, R f〉 =

1

2

∥

∥

∥
D

(

√

R(ρ,Φ)
)

F2 f
∥

∥

∥

2

(11)

andC ,

{

f ∈ L2(R
2) :

√

x2 + y2 > rmax =⇒ f(x, y) = 0
}

, the subset of objects that are nonzero only within the field

of view. (Without this restriction, it seems unlikely that the minimizer would be unique.)

We assume hereafter thatw(s, β) is chosen such thatw(s, β) = 0 whenβ > βmax. Thus we can assumeβmax = 2π
for the analysis, yet the results are still applicable to “short” scans providedw(s, β) is chosen appropriately. To analyze
the impulse response of the Gram operatorP

∗
WP , consider an impulse objectδ0(x, y) = δ(x − x0, y − y0) as follows:

h(x, y;x0, y0) = (P∗
WP δ0) (x, y)

=

∫ 2π

0

∫ smax

−smax

δ(x cos ϕ(s, β) +y sinϕ(s, β)− r(s))

δ(x0 cos ϕ(s, β) +y0 sinϕ(s, β)− r(s))w(s, β) dsdβ .

∗Practically speaking, the integral should be restricted to the field of view:
√

x2 + y2 ≤ rmax, but this restriction would complicate
analysis by introducing a shift variance into the problem, so we ignore it.
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For convenience, we express the point(x0, y0) in polar coordinates(r0, ϕ0). Now make the change of variablesr′ =
Ds sin γ(s), ϕ′ = β + γ(s) as defined in (7), assuming hereafter thatroff = 0. Using the corresponding Jacobian determi-
nant ,the impulse response expression becomes

h(x, y;x0, y0) =

∫ 2π

0

∫ rmax

−rmax

δ
(

x cosϕ′ +y sinϕ′ −r′
)

· δ(r0 cos(ϕ′ − ϕ0)−r′) w(s′, β′) J(s′) dr′ dϕ′

=

∫ 2π

0

δ
(

x cosϕ′ +y sinϕ′ −r′0
)

w(s′, β′) J(s′) 1{|r′

0|≤rmax} dϕ′,

where, using (6) and (7):

r′0 = r0 cos(ϕ′ − ϕ0)

s′ = (Dc + Df)

[

arcsin

(

r′0
Ds

)

− arcsin

(

Df

Dc + Df

r′0
Ds

)]

β′ = ϕ′ − arcsin

(

r′0
Ds

)

. (12)

Hereafter we focus on points within the FOV wherer0 ≤ rmax. In the spirit of local shift invariance, consider the following
local impulse response

h0(r, ϕ) , h(x0 + r cosϕ, y0 + r sinϕ; x0, y0)

=

∫ 2π

0

δ(r cos(ϕ − ϕ′))w(s′, β′) J(s′) dϕ′

=
1

|r|

[

w(s′, β′) J(s′)
∣

∣

∣

ϕ′=ϕ+π/2
+ w(s′, β′) J(s′)

∣

∣

∣

ϕ′=ϕ−π/2

]

.

Thus, similar to the parallel-beam case, for the fan-beam case the local impulse response of the Gram operator is

h0(r, ϕ) =
1

|r|
w0(ϕ + π/2),

where the angular-dependent weighting is

w0(ϕ) , w(s′, β′) J(s′)
∣

∣

∣

ϕ′=ϕ
+ w(s′, β′) J(s′)

∣

∣

∣

ϕ′=ϕ−π
. (13)

It follows then, that the the local frequency response of theGram operator is

H0(ρ,Φ) =
1

|ρ|
w0(Φ).

It is interesting that the local impulse response and frequency response have the same form in the fan-beam and parallel-
beam cases.

In the equiangular case, whereDf = 0, we have the following simplifications:

r′0 = ±r0 cos(ϕ − ϕ0)

s′ = ±Dc arcsin

(

r0 cos(ϕ − ϕ0)

Ds

)

β′ =







ϕ − arcsin
(

r0 cos(ϕ−ϕ0)
Ds

)

, r′0 = +r0 cos(ϕ − ϕ0)

ϕ − π + arcsin
(

r0 cos(ϕ−ϕ0)
Ds

)

, r′0 = −r0 cos(ϕ − ϕ0)

J(s′) =
Ds

Dc

√

1 −

(

r0

Ds

)2

cos2(ϕ − ϕ0), (14)

from which we can computew0(ϕ) easily using (13).
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5. SIMULATION RESULTS

We simulate a 2D fan-beam CT system that images a 240mmx240mmarea. The center of our object is 408.075mm
from the detector, and the source is 949.075mm from the detector. The axis of rotation is at the center of the object. The
simulated imaging system has 280 rays per view spaced 4mm apart, and 100 evenly spaced view angles over a full2π
rotation. The reconstructed images consisted of a120 × 120 grid of 2mm pixels.

We chose a target spatial resolution of 2.6 pixels or equivalently 5.2 mm. Fig. 2 and Fig. 3 show the ideal local impulse
response, the local impulse response for a conventional regularization method, and the local impulse response that results
from regularization with our proposed Fourier-based design method for a pixel located at an offset of (20,10) and (-15, -15)
pixels respectively from the center of the image. As is clearfrom the figure, the proposed regularization scheme yields
more isotropic impulse responses.

The penalty coefficients yielding these results are shown inFig. 4. The top images show coefficients in the horizontal
and vertical neighbors, and the bottom images show coefficients for diagonal neighbors.

We simulated a noiseless fan-beam sinogram using the true imagex shown in Fig. 5. We reconstructed imagesx̂

using three methods. Fig. 5 shows the image resulting from unweighted reconstruction (QPULS), conventional regularized
weighted least squares reconstruction and our Fourier based regularized reconstruction. One can see that the rings in the
conventionally reconstructed image have less uniform brightness than the image reconstructed by our proposed method.
Fig. 6 shows profiles around the rings of the reconstructed images, verifying that our proposed scheme improves resoluton
uniformity.

Local impulse response functions at (20,10)

−5

0

5

−5

0

5

Contours

Target Standard Proposed

Figure 2. impulse responses

6. SUMMARY

This paper has summarized an extension of previous Fourier-based regularization design [3] to the fan-beam case. This
extension is suprisingly simple and relatively easy to compute. Simulation results show that the method improves isotropy
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Local impulse response functions at (−15,−15)
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Figure 3. impulse responses

and uniformity of spatial resolution properties compared to conventional quadratic regularization schemes. Future work
includes generalization to spatially variant blur, 3D extensions to cone beam CT, and application to real X-ray CT data.
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