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ABSTRACT

Iterative methods for image reconstruction in MRI are
useful in several applications, including reconstruction from
non-Cartesian k-space samples, compensation for magnetic
field inhomogeneities, and imaging with multiple receive
coils. Existing iterative MR image reconstruction methods
are either unregularized, and therefore sensitive to noise, or
have used regularization methods that smooth the complex
valued image. These existing methods regularize the real
and imaginary components of the image equally. In many
MRI applications, including T ∗

2 -weighted imaging as used
in fMRI BOLD imaging, one expects most of the signal in-
formation of interest to be contained in the magnitude of
the voxel value, whereas the phase values are expected to
vary smoothly spatially. This paper proposes separate regu-
larization of the magnitude and phase components, preserv-
ing the spatial resolution of the magnitude component while
strongly regularizing the phase component. This leads to
a non-convex regularized least-squares cost function. We
describe a new iterative algorithm that monotonically de-
creases this cost function. The resulting images have re-
duced noise relative to conventional regularization methods.

1. INTRODUCTION

The most prevalent method for image reconstruction in MRI
is to compute the inverse fast Fourier transform (FFT) of
the measurements, under the assumption that the measure-
ments are samples of the Fourier transform (k-space data)
of the object being imaged. In the case of non-Cartesian k-
space samples, usually the FFT is preceded by interpolation
(gridding), e.g., [1].

Iterative methods for image reconstruction in MRI are
useful in several applications, including reconstruction from
non-Cartesian k-space samples [2], compensation for the ef-
fects of magnetic field inhomogeneities [3], and reconstruct-
ing from multiple receiver coil signals [4]. Existing iterative
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image reconstruction methods for MRI are either unregu-
larized, and therefore sensitive to noise, or have used regu-
larization methods that encourage the complex-valued im-
age to be smooth or piece-wise smooth by penalizing some
function of the absolute differences between the complex
values of neighboring voxels. In essence, existing methods
regularize equally the real and imaginary components of the
image. In many MRI applications, including T ∗

2 -weighted
imaging as used in fMRI BOLD imaging, one expects most
of the signal information of interest to be contained in the
magnitude of the voxel value, whereas the phase values are
expected to vary smoothly spatially. Indeed, some methods
have even constrained the phase to be zero, but this is of-
ten unrealistic in practice since there can be residual phase
components that are non-negligible but spatially smooth.

In this paper, we propose to regularize the magnitude
and phase components separately, aiming to preserve the
spatial resolution of the magnitude while strongly regular-
izing the phase component. We note that in the radar lit-
erature, the “opposite” strategy has been employed. The
phase in radar imagery is often highly fluctuating, so Cetin
et al. used a regularization method that smoothed only the
magnitude component, leaving the phase component unreg-
ularized [5]. The problem that we address is more chal-
lenging since the phase term enters the signal model “more
nonlinearly” than the magnitude term. In fact, the resulting
regularized least-squares cost function is non-convex. Nev-
ertheless, we are able to derive an iterative algorithm that
monotonically decreases this cost function, by applying the
principle of optimization transfer [6]. That principle has
been used frequently in the PET literature for deriving im-
age reconstruction methods with desirable monotone con-
vergence properties e.g., [7–9], but to our knowledge this
paper is the first such development in MRI.

In the “homodyning” approach of Noll et al. [10], the
central portion of k-space was used to estimate a spatially
smooth phase map, and then the real image component was
reconstructed from (a bit more than) half of the usual k-
space data. Depending on the type of k-space data available,
there were three primary motivations for that work: reduc-
ing noise, reconstruction from partial k-space data, and pre-
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serving the sign information in inversion recovery MR im-
ages. These motivations also underly the present work, with
the additional challenges that we want to compensate for the
effects of magnetic field inhomogeneities during the recon-
struction, and we want to accommodate non-Cartesian k-
space trajectories. The non-iterative approach of [10] would
be difficult to extend to these more complicated cases; in
contrast, the regularized least-squares (aka MAP) approach
can accommodate these effects naturally.

2. THEORY

For completeness, we first describe the “conventional” ap-
proach to iterative MR image reconstruction with compen-
sation for the effects of field inhomogeneity and allowing
non-Cartesian k-space samples. For simplicity we focus
on the case of a single receive coil. The extension to the
case of multiple receive coils (i.e., sensitivity encoded imag-
ing [4, 11]) is straightforward for a model-based iterative
approach.

We assume that the fieldmap ω(�r) describing the lo-
cal off-resonance frequency is known, i.e., is determined
from a shifted-echo sequence at the start of the study, as is
common practice in many fMRI centers. (Alternatively the
fieldmap can be ignored if off-resonance effects are negli-
gible.) The (baseband) signal equation for MRI, including
off-resonance effects, is the following:

s(t) =
∫

f(�r) e−ıω(�r) e−ı2π�k(t)·�r d�r, (1)

where �r denotes object-space coordinates (2D or 3D), f(�r)
denotes the unknown object magnetization that is to be re-
constructed, and �k(t) denotes the k-space trajectory. (One
could also include receive coil sensitivity in the model (1).)
We measure N noisy samples of this signal:

yi = s(ti) + εi, i = 1, . . . , N. (2)

The goal is to estimate f from the “k-space data” vector
y = (y1, . . . , yN ).

This problem is inherently ill-posed since the unknown
object f is a continuous-space function yet only a finite
number of measurements are available. Therefore we ap-
proximate f using a finite-series expansion:

f(�r) ≈
M∑

j=1

fjb(�r − �rj),

where b denotes a basis function such as a rect function with
voxel width, and �rj denotes the center of the jth voxel. Sub-
stituting this object model into the signal equation (1) yields

s(ti) ≈
M∑

j=1

aijfj ,

where the following values are known:

aij
�
=

∫
b(�r) e−ıω(�r) e−ı2π�k(ti)·�r d�r.

In matrix form, we rewrite (2) as follows:

y = Af + ε, (3)

where the N ×M system matrix A has elements {aij} and
where f = (f1, . . . , fM ) denotes the vector of unknown
image voxel values that we wish to reconstruct from y.

2.1. Conventional regularized least-squares

Usually M ≈ N , i.e., the number of unknown voxels is on
the order of the number of data points, so typically the sys-
tem of equations (3) is ill-conditioned if not outright under
determined. Therefore, our previous reconstruction meth-
ods have used a regularized least-squares cost function of
the following form:

f̂ = arg min
f∈CM

Ψ0(f)

Ψ0(f) = ‖y − Af‖2 + αR(f) , (4)

where the penalty function R(f) is chosen to control noise
by discouraging excessive image roughness, i.e.,

R(f) ≈
∫

‖∇f(�r)‖2 d�r.

The regularization parameter α controls the tradeoff between
spatial resolution and noise. We have developed a fast and
efficient iterative algorithm for minimizing the cost func-
tion (4) by combining the conjugate gradient iteration with
nonuniform FFT (NUFFT) methods [12] and min-max tem-
poral interpolation [3]. However, the roughness penalty func-
tion R(f) acts on complex image values f ∈ C

M , so the
real and imaginary components are penalized equally. This
yields good images in our experience [3], but they may still
have less than the best possible SNR since the a priori knowl-
edge that the phase of f is smooth has not been exploited.
Alternatively, in the context of sensitivity encoded imag-
ing (SENSE) with multiple receive coils [4, 11], the con-
ventional approach will not yield the maximum possible
speedup factor.

2.2. Proposed regularization

To facilitate separate regularization of the magnitude and
phase components, we write the image f explicitly in terms
of its “magnitude” and phase as follows:

fj = mj eıxj , j = 1, . . . ,M. (5)
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We allow the “magnitudes” m = (m1, . . . ,mM ) to include
negative values; this is desirable for inversion recovery se-
quences, and, more generally, we want the phase image
x = (x1, . . . , xM ) to be smooth spatially, so it should not
have to absorb any π jumps that would occur if mj could not
have negative values. Our goal then is to reconstruct both
the magnitude map m ∈ IRM and the phase map x ∈ IRM

from the measured data y, with minimal or modest regular-
ization of the magnitude map m but substantial regulariza-
tion of the phase map x. To this end we define the following
regularized least-squares cost function:

Ψ(m,x) = ‖y − Af(m,x)‖2 + βR(x) + γR(m) ,

where fj(m,x) = mj eıxj and we intend to choose β � γ.
We wish to jointly estimate m and x by minimizing this
cost function:

(m̂, x̂) = arg min
m∈IRM , x∈IRM

Ψ(m,x).

We follow the typical alternating minimization approach for
such optimization problems; after determining initial esti-
mates of m and x using some type of “conventional” (it-
erative or non-iterative) estimation method for f , we then
alternate between updating m and x as follows:

xnew = arg min
x∈IRM

Ψ(mold,x) (6)

mnew = arg min
m∈IRM

Ψ(m,xnew), (7)

where we always use the most recent estimates of m and
x. This approach monotonically decreases the cost function
Ψ. Since the cost function Ψ is non-convex, stronger con-
vergence claims than montonicity are difficult to obtain, and
typically the algorithm will converge to a local minimizer
near the initial point. If the initial point is sufficiently good,
then the algorithm should converge to a global minimizer
or at least a local minimizer with desirable properties. We
use the iterative algorithm described below (4) to initialize
the iterations proposed here, so we are confident of having
a good initial estimate.

Since f(m,x) is linear in m, the magnitude update (6)
is very easy to implement using our previous conjugate gra-
dient algorithm [3] with a minor modification to account for
the fact that the magnitude m is real.

In contrast, the phase minimization problem (6) is more
challenging since f(m,x) in (5) is a highly nonlinear func-
tion of the phase x. One could apply a classical gradient-
based iteration such as steepest descent to try to update x,
but such methods require either a 1D line-search, which
would be prohibitively expensive computationally for the
MRI application, or require a cumbersome quest for an ap-
propriate step size parameter, e.g., [13]. Instead, here we
use the optimization transfer principle [6, 14] to derive a

simple update for the phase x that is guaranteed to mono-
tonically decrease Ψ each sub-iteration.

To simplify notation, since we are focusing here on the
minimization problem (6) we define Φ(x) = Ψ(mold,x).
We would like to minimize this cost function. Since Φ is
difficult to minimize directly, the optimization transfer ap-
proach is to find a sequence of surrogate functions φ(n)(x)
that must be chosen by the algorithm desinger to satisfy the
following majorization conditions:

φ(n)
(
x(n)

)
= Φ(x(n))

φ(n)(x) ≥ Φ(x), ∀x ∈ IRM ,

and then to iteratively minimize the surrogates as follows:

x(n+1) = arg min
x(n)∈IRM

φ(n)(x) . (8)

It follows from the majorization conditions that this approach
will decrease Φ (and hence Ψ) monotonically. The “art” lies
in choosing suitable surrogate functions φ(n). The expecta-
tion maximization (EM) approach [15] provides one possi-
ble recipe for surrogate construction using statistical prin-
ciples, but those principles provide little insight here. In-
stead, we adapt and extend techniques that have been used
for other tomographic reconstruction problems [7–9].

Space constraints preclude providing a complete deriva-
tion. Like many other optimization transfer methods, the
final iteration is a type of diagonally preconditioned gradi-
ent descent algorithm with a diagonal preconditioner that
ensures monotone decreases in the cost function.

3. SIMULATIONS

To date we have implemented a simplified version of the
algorithm without field inhomogeneity correction. We sim-
ulated data using the analytical Fourier transform of the ob-
ject shown in Fig. 1 consisting of rectangles. The k-space
trajectory was 400 samples in an Archimedian spiral with
10 rotations, i.e., appropriate for a 20 × 20 image. We re-
constructed a 32 × 28 image, so this is a “partial k-space”
problem.

We first ran 40 iterations of the CG algorithm of [3] to
form a preliminary estimate of f̂ . We then applied the pro-
posed algorithm alternating 10 times between the magni-
tude update (10 subiterations each) and phase update (40
subiterations each). These are all probably overkill.

Fig. 1 shows the results of iterative reconstruction us-
ing the conventional regularization approach and that from
the proposed method. Both used quadratic regularization
with first-order finite differences between each pixel and its
8 neighbors. The phase estimates with the new method are
improved substantially thanks to the stronger regularization.
The NRMS errors for the magnitude component were 22%
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Fig. 1. True magnitude and phase image and reconstructed
estimates from under-sampled k-space data.

for the conventional approach and 12% for the proposed ap-
proach. Cramer-Rao bound analysis for the case of a non-
singular problem with exactly known phase predicts a factor
of 2 reduction in variance relative to the case of completely
unknown phase.

4. DISCUSSION

There are several interesting potential extensions of the al-
gorithm described here. In this derivation, we used implic-
itly the same basis functions for the magnitude and phase
terms. It could be useful to use wider basis functions for
the phase terms since the phase varies slowly spatially. The
general principles are also applicable to other problems in-
volving phase estimation, including joint estimation of the
image f(�r) and the field map ω(�r), and other phase retrieval
problems.

We plan further investigations that include real data, field
inhomogeneity effects, and sensitivity encoded imaging.
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