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ABSTRACT

We provide approximate expressions for the covariance ma-
trix of kinetic parameter estimators based on time activity
curve (TAC) reconstructions when TACs are modeled as a
linear combination of temporal basis functions such as B-
splines. The approximations are useful tools for assessing
and optimizing the basis functions for TACs and the tempo-
ral bins for data in terms of computation and efficiency. In
this paper we analyze a 1D temporal problem for simplicity,
and we consider a scenario where TACs are reconstructed
by penalized-likelihood (PL) estimation incorporating tem-
poral regularization, and kinetic parameters are obtained by
maximum likelihood (ML) estimation. We derive approx-
imate formulas for the covariance of the kinetic parame-
ter estimators using 1) the mean and variance approxima-
tions for PL estimators in (Fessler, 1996) and 2) Cramér-
Rao bounds. The approximations apply to list-mode data as
well as bin-mode data.

1. INTRODUCTION

A primary application of dynamic PET or SPECT imaging
is to quantify parameters of nonlinear tracer kinetic models
or compartmental models representing specific physiologi-
cal processes. The goal is to estimate the kinetic parameters
for each region of interest (ROI) or voxel. Kinetic param-
eters are conventionally estimated as follows [1]: a series
of images are reconstructed frame-by-frame, ROIs are iden-
tified and then kinetic parameters are obtained by fitting a
compartmental model (with a measured or estimated input
function) to spatially averaged image values for each ROI.

Recently have spatiotemporal reconstruction methods been
proposed to reconstruct time activity curves (TACs) by mod-
eling each TAC as a linear combination of cubic B-splines [2].
Also, TAC reconstructions for each ROI obtained using B-
spline temporal basis functions have been used to estimate
kinetic parameters [3]. The performance, such as bias and
variance, of the kinetic parameter estimators is affected by
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the choice of temporal basis functions for TACs (e.g., the or-
der of B-splines [3] and their knot locations). Although the
effects of basis functions on TAC reconstructions have been
studied in [4, 5], the effects on kinetic parameter estimators
have little been analyzed.

In this paper we provide analytical approximate expres-
sions for the covariance of kinetic parameter estimators in
a simple 1D temporal “imaging” case. We do not analyze
bias since we estimate the kinetic parameters from TAC re-
constructions by (asymptotically) unbiased maximum like-
lihood (ML) estimators as opposed to widely-used (data-
weighted) least squares estimators. The approximation for-
mulas are very useful tools since they enable one to assess
and optimize temporal basis functions in terms of complex-
ity and variance without exhaustive simulations.

Our approximations apply to list-mode data as well as
(temporal) bin-mode data. List-mode acquisitions are more
attractive than conventional frame-by-frame scans since all
temporal information is contained in the event list. Our ex-
pressions can be used to compute how much information is
lost through temporal binning compared to list-mode data,
and they also show the effects of temporal regularization in
TAC reconstruction.

2. PROBLEM

To focus on temporal aspects rather than interactions with
spatial distributions, we consider a single-voxel or single-
ROI object, containing a radiotracer, and a single detector
unit, recording list-mode data, that is, the arrival times of
detected photons, or temporal bin-mode data. The model
is not an unrealistically simple one; for example, in planar
dynamic imaging, one could take a ROI and investigate the
(average or dominant) dynamic tracer behavior using corre-
sponding data. The goal is to estimate tracer kinetic param-
eters governing dynamic activity changes.

The photon emissions in the object can be modeled as an
inhomogeneous Poisson process whose rate function η(t;θ)
corresponds to a TAC parameterized by kinetic parameters
θ = [θ1 . . . θp]′ where ′ denotes vector and matrix trans-
pose [2]. Suppose {τk}K

k=1 denotes list-mode data, that is,
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event arrival times. Then the log-likelihood of θ given the
list-mode data is [6, p. 57]

L(θ, {τk}K
k=1) =

K∑
k=1

log{α(η(τk;θ) + r(τk))}

−
∫ T

0

α(η(t;θ) + r(t))dt

where r(t) is the rate function of the background process
such as scatters and randoms, T denotes the total scan time,
and α denotes a constant factor proportional to a radioiso-
tope dosage. Although the background process r(t) can be
a function of α, we neglect the dependence for simplicity.
One can obtain the Fisher information matrix Iτ (θ) as [6,
p. 81]

[Iτ (θ)]ij = α

∫ T

0

∂η(t;θ)
∂θi

∂η(t;θ)
∂θj

1
η(t;θ) + r(t)

dt.

The inverse of Iτ (θ) can serve as an approximation to the
baseline covariance of the direct estimator of θ (without
TAC reconstruction) based on list-mode data. However, in
cases where the kinetic model is under development, it can
be preferable to first estimate a TAC, and then fit various
kinetic models to it.

Next, we describe the procedure of TAC reconstruction
using temporal basis functions followed by kinetic parame-
ter estimation.

2.1. TAC Reconstruction

We model the rate function as a linear combination of tem-
poral basis functions {Bl(t)}L

l=1, which for example can be
B-splines, as

η(t) ∼=
L∑

l=1

wlBl(t),

and we reconstruct the coefficients by penalized-likelihood
(PL) estimation.

For simplicity we consider temporal bin-mode data y =
[y1 . . . yN ]′ where yn is the number of events detected in
the nth temporal bin (note N ≥ L or possibly N � L);
the list-mode data is a limiting case where N → ∞ and the
bin widths approach zero [4]. The bin-mode data y are in-
dependent Poisson random variables, and the mean of each
element is given by

ȳn(θ)
�
= E[yn] = αpn(θ) (1)

pn(θ) =
∫ tn

tn−1

η(t;θ)dt + rn (2)

where tn−1 and tn are the end points of the nth temporal
bin, and rn represents background contributions. The log-
likelihood of w given y can be obtained, ignoring constants

independent of w, as

L(w,y)=
N∑

n=1

{yn log(αp̃n(w)) − αp̃n(w)}

where
p̃n(w) = [Bw]n + rn.

The N × L matrix B has the (n, l)th entry as

bnl =
∫ tn

tn−1

Bl(t)dt.

We assume that the {rn} are known (see [2] for methods of
estimating randoms and scatters).

A PL estimate of w is obtained finding the following
maximizer:

ŵ(y) = arg max
w∈W

Φ(w,y) (3)

where

Φ(w,y) = L(w,y) − β

2
w′Rw (4)

and

W =

{
w :

L∑
l=1

wlBl(t) ≥ 0, ∀t ∈ [0, T ]

}
. (5)

The last term in (4) represents a roughness penalty encour-
aging temporal smoothness [2, 4], R is some symmetric
nonnegative definite matrix (e.g., see [7] for an uniform
quadratic penalty), and β is a regularization parameter. The
set in (5) represents the nonnegativity constraint on recon-
structed TACs, η̂(t) =

∑L
l=1 ŵlBl(t).

2.2. Kinetic Parameter Estimation

To estimate kinetic parameters θ from ŵ in (3), we assume
ŵ is Gaussian-distributed as

ŵ ∼ N (µŵ(θ),Kŵ(θ)) (6)

where µŵ and Kŵ are the mean and the covariance ma-
trix of the estimator ŵ, respectively. The higher counts per
time (or temporal bin), the more the Gaussian assumption
becomes accurate. Then one can compute a ML estimate of
θ as follows:

θ̂(ŵ) = arg max
θ∈Θ

Ψ(θ, ŵ) (7)

where Θ is a set of feasible θ, and the log-likelihood of θ
given ŵ can be obtained, neglecting constants independent
of θ, as

Ψ(θ, ŵ) = −1
2
(ŵ − µŵ(θ))′[Kŵ(θ)]−1(ŵ − µŵ(θ))

− 1
2

log |Kŵ(θ)| (8)
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where |·| denotes determinant. Generally, the TAC estimator
η̂(t) =

∑L
l=1 ŵlBl(t) from (3) is not consistent since it can

be a case that η(t;θtrue) �= ∑L
l=1 wlBl(t) for all wl’s; even

in such a case, however, the ML kinetic parameter estimator
θ̂ in (7) can be (nearly) unbiased as shown in Sec. 4. There-
fore, the inverse of the Fisher information matrix, which is
shown in the next section, can serve as an approximation to
the covariance of θ̂.

3. COVARIANCE OF KINETIC PARAMETER
ESTIMATORS

3.1. Derivation

First, we need approximate expressions for µŵ and Kŵ in
(6). Using a first-order Taylor approximation of ŵ(y) at
ȳ = [ȳ1 . . . ȳN ]′ in (1), the chain rule and the implicit func-
tion theorem with some reasonable assumptions [8], one can
obtain the following approximations:

µŵ(θ) ∼= ŵ(ȳ(θ))
�
= w̌(θ) (9)

and

Kŵ(θ)

∼= 1
α

[
F (θ) +

β

α
R

]−1

F (θ)
[
F (θ) +

β

α
R

]−1

(10)

�
= [F̃ (θ)]−1

where

F (θ) = B′diag

{
pn(θ)

p̃2
n(w̌(θ))

}
B.

Now one can compute the Fisher information matrix
from (8) by replacing µŵ and Kŵ with their approxima-
tions in (9) and (10). Some manipulation leads to our final
expression for the Fisher information matrix for estimating
θ from ŵ,

Iŵ,bin(θ) = Eθ[−∇2
θ Ψ(θ, ŵ)]

∼= [∇θw̌(θ)]′F̃ (θ)∇θw̌(θ)

= α[∇θp(θ)]′diag

{
1

p̃n(w̌(θ))

}
B[F (θ)]−1 ·

B′diag

{
1

p̃n(w̌(θ))

}
∇θp(θ) (11)

where ∇θ = [ ∂
∂θ1

. . . ∂
∂θp

] denotes the row gradient opera-

tors, ∇2
θ denotes the Hessian operator, and p = [p1 . . . pN ]′

is defined in (2). The information matrix Iŵ,bin(θ) de-
pends implicitly on temporal regularization only through
p̃n(w̌(θ)) [see (3), (4) and (9)].

3.2. Information Matrix for List-Mode Data

By increasing the number of bins N to ∞ and decreasing
the bin widths to 0 in (11), one can obtain the following
information matrix for list-mode data:

[Iŵ,list(θ)]ij ∼= α[F (θ)−1]pq·
L∑

p=1

L∑
q=1

∫ T

0

∂η(t;θ)
∂θi

Bp(t)∑L
l=1 w̌l(θ)Bl(t) + r(t)

dt ·
∫ T

0

∂η(t;θ)
∂θj

Bq(t)∑L
l=1 w̌l(θ)Bl(t) + r(t)

dt (12)

where

[F (θ)]ij =
∫ T

0

Bi(t)Bj(t)
η(t;θ) + r(t)(∑L

l=1 w̌l(θ)Bl(t) + r(t)
)2 dt.

If temporal basis functions are constant B-splines as

Bl(t) = I[tl−1, tl](t)

where I[tl−1, tl] is an indicator function, then the informa-
tion matrix in (12) becomes

Iŵ,list(θ) ∼= α[∇θp(θ)]′diag

{
1

pn(θ)

}
∇θp(θ). (13)

This information matrix is independent of temporal regu-
larization! One can also obtain the same result as (13) from
(11) by making temporal bins agree with the constant B-
spline basis functions {Bl(t)}. In this case B and F are
diagonal, and the regularization-related terms p̃n(w̌(θ)) are
canceled out in (11). In fact, the equality happens to hold in
(13) [6, p. 81].

4. RESULTS

To assess the accuracy of the approximation for the covari-
ance of kinetic parameter estimators given by the inverse of
(11), we simulated dynamic imaging data. The simulated
TAC was given by

η(t;θ) = θ2 exp(−θ1t)

for t ≥ 0 to mimic the response of a one tissue compartment
model, and the input function was considered an ideal im-
pulse δ(t) for simplicity. The total scan time T was set to 15
min, and the true kinetic parameters were set as [θ1, θ2] =
[0.15, 0.7]. The total counts were 300, and rn corresponded
to a temporally uniform field of 10% of background events.
The data were acquired using 30 uniform temporal bins (N =
30). We used the uniform quadratic penalty with β = 10,
and 10 B-spline basis functions of different orders with uni-
formly spaced knots for TAC reconstruction (L = 10). Given
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temporal basis functions and given (simulated) noisy data,
ŵ was estimated by (3) with linear constraints Bw ≥ 0
as reasonable approximations to (5), and then θ̂ was esti-
mated by (7) using (9) and (10) with nonnegativity con-
straints θ ≥ 0. We computed the sample mean and the
sample covariance of θ̂ from 200 realizations for each set of
basis functions. For maximization in (3) and (7), we used
separable surrogates [9], and the fmincon and sqscon
functions of Matlab.

Table 1 shows that (7) yielded unbiased estimates, and
Table 2 shows that approximate variances obtained from the
inverse of (11) were reasonably close to empirical variances.

5. CONCLUSION

We derived the covariance matrix (the inverse of the Fisher
information matrix) of kinetic parameter estimators based
on TAC reconstructions using temporal basis functions for
list-mode data as well as bin-mode data in a 1D temporal
problem. We demonstrated the covariance approximation
works well for simulated data. We plan to perform exten-
sive comparison of temporal basis functions and to extend
the results to the case where tomographic spatial aspects
are incorporated. Future work will also include optimiz-
ing B-spline knot locations and developing computationally
cheaper approximate expressions for kinetic parameter esti-
mator covariances.

Table 1. Sample means of kinetic parameter estimators θ̂

basis parameter true sample mean

cubic θ1 0.15 0.151 ± 0.001

B-splines θ2 0.70 0.696 ± 0.005

quadratic θ1 0.15 0.150 ± 0.001

B-splines θ2 0.70 0.695 ± 0.005

linear θ1 0.15 0.150 ± 0.002

B-splines θ2 0.70 0.695 ± 0.007

constant θ1 0.15 0.150 ± 0.002

B-splines θ2 0.70 0.695 ± 0.007
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