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ABSTRACT

Fourier-based forward and back-projection methods have
the potential to reduce computation demands in iterative to-
mographic image reconstruction. Interpolation errors are
a limitation of conventional Fourier-based projectors. Re-
cently, the min-max optimized Kaiser-Bessel interpolation
within the nonuniform Fast Fourier transform (NUFFT) ap-
proach has been applied in parallel-beam image reconstruc-
tion, whose results show lower approximation errors than
conventional interpolation methods. However, the exten-
sion of min-max NUFFT approach to fan-beam data has not
been investigated. We have extended the min-max NUFFT
framework to the fan-beam tomography case, using the rela-
tionship between the fan-beam projections and correspond-
ing projections in parallel-beam geometry. Our studies show
that the fan-beam Fourier-based forward and back-projection
methods can significantly reduce computation time while
still providing comparable accuracy to their space-based coun-
terparts.

1. INTRODUCTION

The classical approach to reconstructing fan-beam tomog-
raphy images is filtered back-projection. Iterative image re-
construction methods are based on measurement statistics
and physics models, and offer numerous advantages, such
as the potential for improved bias-variance performance.
The primary computation burden of iterative image recon-
struction method is forward and back-projections. Recently,
Matej et al. evaluated Fourier-based forward and back pro-
jectors [1] in parallel-beam geometry, with min-max opti-
mized Kaiser-Bessel NUFFT. Their results showed low in-
terpolation error and computation efficiency.

The fan-beam case is more complicated because Fourier
slice theorem is not valid for fan-beam geometry. To apply
Fourier-based forward and back projectors in fan-beam to-
mography, we need to associate fan-beam projections with
parallel beam projections. Then Fourier slice theorem can
be used to relate the 1D FT of each projection (on a polar
grid) to samples of the 2D FT of the object on a Cartesian
grid.

The key steps influencing the image quality and com-
putation time are the interpolation between polar and Carte-
sian frequency samples, and between parallel- and fan-beam
projection samples. The min-max NUFFT is still applied in
the frequency space interpolation. For the interpolation of
projections samples, Peng et al. [2] have applied interpola-
tion procedure proposed by Clark, Palmer and Lawrence [3]
(CPL theorem). We have accomplished this step by apply-
ing a 1D min-max NUFFT and a one-dimensional Dirichlet-
like ”periodic sinc” interpolation done by FFT fractional
shift.

The organization of this paper is as follows. Section 1
briefly reviews the fan-beam geometry. Section 2 describes
the framework of the proposed NUFFT method. Section 3
gives simulation results, including an accuracy comparison
of NUFFT-based, space-based and analytically computed
forward and back-projections, as stand alone modules and
within iterations. Finally, discussion and conclusions are in
Section 4.

2. THEORY

2.1. Fourier slice theorem

The Fourier slice theorem is the basis of the Fourier-based
forward and back-projections in parallel beam CT image re-
construction. Let g(x, y) denote the 2D image and its 2D FT
is G(fX , fY ). In polar coordinates,

Gθ(ρ) = G(ρ cos θ, ρ sin θ) (1)

By Fourier slice theorem [4], the projection at angle θ as a
function of radial distance r is given by

pθ(r) =
∫

L(r,θ)

g(x, y)d� =
∫

Gθ(ρ) ei2πρr , (2)

where L(r, θ) denotes the line at angle θ taken from y axis
counter-clockwise, at distance r from the origin. The back-
projection operator is the adjoint of the forward projection
operator.



2.2. Non-uniform FFT

Fourier-based projectors are based on discretized versions
of the Fourier slice theorem. The 2D FT of a discretized
object gives the discrete Fourier data on Cartesian lattice,
while the 1D inverse FT of Gθ(ρ) requires Fourier samples
on a polar grid. The min-max NUFFT [5] method allows us
to retain computational advantages of FFT with lower inter-
polation errors and is directly applicable where nonuniform
Cartesian Fourier samples are required.

Basic steps of the min-max NUFFT are:

1. Calculation of a K/N times scaled and oversampled
FFT.

2. Interpolation onto the desired, nonuniformly-spaced
frequency locations using the interpolator that mini-
mizes the worst approximation error.

2.3. Min-max NUFFT applied to fan-beam tomography

Fan-beam projection data is indexed by two angular coordi-
nates (β, σ) where β is the angular position of source taken
from y axis counter-clockwise, and σ is the angular posi-
tion, relative to source, of the line.

The Fourier slice theorem does not apply to the fan-
beam geometry directly. However, the unique mapping be-
tween parallel-beam and fan-beam coordinates allows us to
apply Fourier slice theorem and therefore Fourier-based for-
ward and back-projections. The well-known relation be-
tween (β, σ) and (r, θ) is [2]

r = R sin σ (3)

θ = β + σ

For uniformly incremented (β, σ), the corresponding parallel-
beam data are nonuniformly-spaced in r for any given θ and
uniformly-spaced in θ for any given r, but shifted by n�σ .

Fig. 1 shows the basic steps of the application of the
min-max NUFFT in fan-beam tomography:

1. 2D NUFFT on image of size N to obtain desired fre-
quency samples that are uniformly-spaced on polar
grid.

2. 1D nonuniform IFFT (by means of 1D NUFFT) on
the samples of each central section to obtain desired
projection samples with nonuniform radial sampling
suitable for fan-beam geometry.

3. 1D Dirichlet-like “periodic sinc” interpolation (by means
of FFT and modulated IFFT) on θ direction to shift
each column of the sinogram appropriately.

For completeness, steps of the application in parallel-beam
tomography are also depicted in Fig. 1.
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Fig. 1. Basic steps of NUFFT forward projection in fan-
beam CT

For iterative algorithms, both forward and back-projection
(adjoint of forward projection) are needed. Our approach
provides an exact adjoint.

3. SIMULATIONS

3.1. Forward and back-projector as single modules

We evaluated the NUFFT-based fan-beam forward and back-
projectors using the Shepp-Logan digital phantom with var-
ious image sizes, N1 × N2 = 128 × 128, 256 × 256 and
384 × 384. We simulated a 3rd-generation fan-beam X-
ray CT system with sinogram size of approximately 2N1

radial bins by N1 views over 360o. Source to detector dis-
tance is 949.075mm and rotation center to detector distance
is 408.075mm. Adjoint source positions were incremented
by �β = 2.81 degrees.

For the Shepp-Logan object shown in Fig. 2, we first
computed the exact fan-beam projections analytically to serve
as a gold standard. We computed the exact projections by
analytically computing the length of each ray’s path through
the ellipses, each is of constant attenuation coefficients. Then
we computed analytically space-based and NUFFT-based
projections. Maximum percentage error and root mean square
error have been evaluated. For 1D and 2D NUFFT, we used
the optimized Kaiser-Bessel interpolation with K/N = 2
and J = 6. For space-based projections, we computed the
area of intersection between each ray beam and each pixel.

Fig. 2 shows the simulation results for forward projec-
tor of image size 512 × 512. We can see that the projec-
tions of three different methods are all visually indistin-
guishable. The accuracy of NUFFT-based method is com-
parable with space-based method, while the computation
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Fig. 2. Simulation results for forward projectors
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Fig. 3. Simulation results for back-projectors

time (using matlab tic command) is about 10 times faster.
Fig. 3 shows the simulation results of back-projectors; these
are not conventional pixel driven back projectors but rather
the exact adjoint of forward projectors mentioned above.
We applied both space-based and NUFFT-based methods
on the sinogram obtained from the analytical projections.
Again, the results are visually indistinguishable and agree
with each other with high accuracy. We compared the re-
sults only within the field of view.

The computation efficiency of NUFFT-based method is
more advantageous with bigger image sizes.
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Fig. 4. QPWLS-CG reconstruction (20 iterations) for
Shepp-Logan phantom

3.2. Forward and back-projectors within iterative re-
construction

We ran 20 iterations of the conjugate gradient algorithm for
a data-weighted least-squares cost function with a quadratic
roughness penalty. We ran it with space-based and NUFFT-
based forward and back projectors respectively. We used
analytical method mentioned above to simulate noiseless
sinogram measurements from 384 × 384 Shepp-Logan ob-
ject. Sinogram size is of 750 radial bins by 576 views over
360o.

Fig. 4 shows the preliminary simulation results. The
reconstructed images with space-based and NUFFT-based
approaches were visually indistinguishable. The max per-
cent difference is less than 2% and normalized rms is about
0.004%, while the computation time significantly reduced
for NUFFT approach as compared to space-based method.

For further evaluation, our next step will be to compare
these methods within an iterative algorithm, using more re-
alistic phantom and real data, a different roughness penalty
such as edge-preserving penalty and a quarter detector off-
set to reduce aliasing.

4. DISCUSSION

Our results show that the min-max NUFFT approach pro-
vides an accurate and efficient method for fan-beam forward
and back- projection. The NUFFT-based forward and back-
projectors with optimized (in min-max sense) Kaiser-Bessel
interpolation kernel are computation efficient and reason-
ably accurate. The approximation error is low as compared
to analytical and space-based projectors.
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