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Abstract— Our goal is to optimize regularized image reconstruc-
tion methods for emission tomography with respect to the task
of detecting small lesions in the reconstructed images. To reflect
medical practice realistically, we consider the location of the lesion
to be unknown. This location uncertainty significantly complicates
the mathematical analysis of model observer performance. We
consider model observers whose decisions are based on finding
the maximum value of a local test statistic over all possible
locations. Khurd and Gindi (SPIE 2004) and Qi and Huesman
(SPIE 2004) described analytical approximations of the moments
of the local test statistics and used Monte Carlo simulations
to evaluate the localization performance of such “maximum
observers”. We propose here an alternative approach, where
tail probability approximations developed by Adler (AAP 2000)
facilitate analytical evaluation of the detection performance of
these observers. We illustrate how these approximations can be
used to evaluate the probability of detection (for low probability
of false alarm operating points) for the Maximum Channelized
Hotelling Observer. Using our analyses, one can rank and optimize
image reconstruction methods without requiring time-consuming
Monte Carlo simulations.

I. INTRODUCTION

Statistical image reconstruction methods are often used in
emission tomography, as they are known to reduce noise
without severely compromising resolution in the reconstructed
images. These reconstruction methods typically involve one
or more parameters (such as the regularization parameter in
penalized-likelihood methods) that control the noise/resolution
trade-off. Rather than resorting to trial-and-error, one would
like to have a fast analytical method to determine reasonable
choices for these parameters.

Our goal is to examine how the choice of regularization
parameter in penalized-likelihood reconstruction affects the
performance of observers in the task of detecting a small
target signal in the reconstructed images. Human observer
performance does not lend itself to analytical optimization but
simple mathematical models have been developed [1, §14.3].
The detection performance of several of these model observers
has been analyzed extensively for the task of detecting a
signal at a known location in images produced by regularized
reconstruction methods [2]–[4]. However, in clinical practice
the potential location of the tumor is typically not known in

advance, and so efforts have shifted to the analysis of detection
tasks that involve location uncertainty [5], [6]. These efforts
have focused on observers that evaluate a test statistic locally
at each candidate location and compare the maximum value
over all locations to a threshold. These are the observers that
we will consider here as well.

In general, the exact distribution of the maximum value
of correlated random fields is not known. Thus, the “brute-
force” approach to evaluating the performance of the maximum
observer would be to perform time-consuming tomographic
reconstructions of Monte Carlo simulated projection data and
produce realizations of the maximum test statistic from the
reconstructed images. To avoid this, other researchers have
proposed analytical approximations of the moments of the local
test statistics and used these moments to directly produce Monte
Carlo simulated realizations of maximum test statistic [5], [6].
This resulted in significant time savings when compared to the
brute-force method.

Here we propose an alternative approach to evaluating the
performance of the maximum observer. Although the general
expression for the distribution of the maximum is complicated,
simple approximations of this distribution at high threshold
levels do exist for correlated Gaussian random fields [7]. These
approximations have been applied to the problem of detecting
activation in functional neuroimaging [8]. Here we apply these
approximations to tomographic reconstruction, allowing us to
evaluate the probability of detection of the maximum observer
at a given low probability of false alarm without performing
any Monte Carlo simulations.

II. THE DETECTION TASK

Let f be the true object being imaged (or an approximation
of the true object in R

np ). This object always contains a
(generally random) object background fb. Also, the object may
or may not contain a target signal, which we assume to be
highly localized in space (e.g., a lesion). When this signal is
contained in the object, it is centered at one of a set of locations
` = 1, . . . , n`. We denote the target signal centered at location
` by fs,`. The detection task at hand is thus to decide among



the n` + 1 hypotheses H0 and H1,`, ` = 1, . . . , n`:

H0 : f = fb (signal absent)
H1,` : f = fb + fs,` (signal present at location `).

The decision is based on the observed data y ∈ R
nd .

For a tomographic imaging system and a given realization
of the object f , the data are characterized by mean E[y|f ] =
Af + r and covariance Cov{y|f} = diag{Af + r}, where
A is a linear operator modeling the system and r the vector
of random coincidences/scattered counts. Both A and r are
considered known. This implies that

E[y] = A E[f ] +r

Cov{y} = diag{AE[f ] +r}+ACov{f}A
′. (1)

The tomographic data y are noisy projections of the object
f , and a reconstruction step is needed to map the data from
projection space back into object space. If Z is the operator
performing this mapping, then the reconstructed image is

f̂(y) = Zy. (2)

In the following, we will focus on observers that are applied
on reconstructed images, since this situation better corresponds
to common clinical practice.

We consider observers whose desicion rule relies on com-
puting some scalar local test statistic t` = t`(f̂) around each
of the candidate locations ` = 1, . . . , n` in the reconstructed
image. The maximum test statistic:

tmax , max
`=1,...,n`

t` (3)

is then compared to a threshold u, which is independent of
the data. If tmax > u, it is decided that the signal is present,
otherwise it is decided that the signal is absent.

Our goal is to optimize the reconstructor Z with respect to
the performance of such an observer in the detection of the
target signal. A common method of quantifying the detection
performance of any observer is by tracing its Receiver Oper-
ating Characteristic (ROC) curve. For a given location `, this
would be a plot of the probability of detection (deciding that
the signal is present when it is actually present at `),

PD(u) , Pr(tmax ≥ u|H1,`), (4)

versus the probability of false alarm (deciding that the signal
is present when it is actually absent),

PFA(u) , Pr(tmax ≥ u|H0). (5)

The curve is traced by varying the decision threshold u.
The probabilities in (4) and (5) are difficult to obtain when

the t`’s are correlated, even if their joint distribution is avail-
able, since the exact distribution of the maximum of correlated
random variables has the form of a multiple integral. However,
approximations of these probabilities for high values of u have
been developed and we will use them here to trace a portion
of the ROC curve.

III. ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM

By analyzing the Euler characteristic of excursion sets,
Adler has derived approximations for the distribution tails of
the maximum of a correlated Gaussian random field [7]. In
particular, if tmax is the maximum value of a 2D stationary
Gaussian random field T (x1, x2) with zero mean, variance
σ2

T , and autocorrelation function RT (x1, x2), then for high
thresholds u:

Pr(tmax ≥ u) ≈
|det ΛT |

1/2|S|

σ3
T (2π)3/2

u e−u2/2σ2
T , (6)

where ΛT is the matrix with ij-th element equal to {ΛT }ij =
−∂2RT (0, 0)/∂xi∂xj , i, j = 1, 2, and |S| is the size of the
search area. According to Worsley et al. [9], this approximation
has satisfactory accuracy for tail probabilities as high as 0.2.

The analysis leading to the approximation in (6) assumes a
continuous random field. However, when the field is defined
solely on a lattice, the results hold asymptotically as the lattice
becomes finer [7]. Thus, the expression above can be used to
approximate the tail distribution of the maximum test statistic
in (3) when the local test statistics t`, ` = 1, . . . , n` can be
considered stationary and their mean and autocorrelation is
known.

IV. MOMENTS OF THE LOCAL TEST STATISTIC

We consider observers utilizing a linear channelized local
test statistic [10]. Such observer models include a set of M
bandpass filters, attempting to mimic the human visual system,
and some template, which typically has the form of a matched
filter. The output of the bandpass filters is sampled at the
location of interest ` to give a new feature vector ĉ` ∈ R

M , to
which the corresponding template w` ∈ R

M is then applied:

t` = w′
`ĉ`,

ĉ` = C
′
`(f̂ − E

[

f̂b

]

) + εint,

where C` is an 1 × M collection of operators. The mth of
these operators applies the impulse response of the mth band-
pass filter and samples the output at location `. The internal
noise vector εint models inherent uncertainty in the observer’s
decisions and is typically modeled as zero-mean Gaussian
with covariance matrix Πint. The mean of the reconstructed
background f̂b , ZAfb is subtracted from the reconstruction
as in [5], [6] to signify that the observer determines the
most suspect location by comparing intensities relative to the
background rather than absolute intensities.

The mean of the local test statistic at location ` and the
covariance at locations `1, `2 are respectively

E[t`] = w′
`C

′
`(E

[

f̂
]

−E
[

f̂b

]

) (7)

Cov{t`1 , t`2} = w′
`1 [C

′
`1Kf̂C`2 + δ`1−`2Πint]w`2 , (8)

where Kf̂ is the covariance of the reconstructed image, δ is the
Kronecker delta, and we consider the internal observer noise
to be uncorrelated across different locations.

Let f̄b, Kb be the mean and covariance of the background
respectively. In the following, we will assume that the signal



intensity is weak with respect to the background intensity, so we
can approximate diag{AE[f ] +r} ≈ diag

{

Af̄b + r
}

, Π.
We will also assume for simplicity that the target signal is
variable in its location only and not in its shape. The reconstruc-
tors Z that we will consider are linear, as holds approximately
with common tomographic reconstruction methods when the
background is sufficiently high to render the non-negativity
constraint inactive. From (1) and (2), these assumptions lead
to

Kf̂ = Z(Π + AKbA
′)Z ′ (9)

under any of the n` + 1 hypotheses.
Regardless of the exact distribution of the data, the local

test statistics can be considered approximately Gaussian due
to their linear form and the central limit theorem. Assuming
that the t`’s form a correlated Gaussian random field, we will
use the approximation in (6) to evaluate the probabilities of
detection and false alarm in (4), (5). For a typical shift-variant
tomographic system, the t`’s are not stationary. However, if we
consider the system and the object background to be locally
stationary over a small area around each of the locations ` =
1, . . . , n`, and the target signal to be well-localized in space,
we can use Fourier-space approximations for the moments of
interest. Our Fourier-space approximations follow the ones that
have been used in various related problems [2]–[6], [11]–[16].
Here we combine them with (6) to evaluate the probabilities
in (4), (5). We illustrate the use of this approach on a specific
pair of observer and reconstruction method.

A. Maximum Channelized Hotelling Observer

We focus here on the case where the local test statistic is that
of the Channelized Hotelling Observer (CHO) model, whose
performance has been shown to be closely correlated to that of
humans in certain simple detection tasks (e.g., see [17]). The
template of the CHO for a given location ` is

wCHO,` = Cov{ĉ`}
†
(E[ĉ`|H1,`]−E[ĉ`|H0])

= [C′
`Kf̂C` + Πint]

†
C
′
`ZAfs,`, (10)

with Kf̂ as defined in (9) and “†” denoting a pseudo-inverse.
Thus, our observer here is the Maximum CHO (MaCHO),
which applies the above template at each candidate location
within a search area of interest and then compares the maximum
value to a threshold.

B. Penalized Weighted Least Squares Reconstructor

We would like to evaluate the performance of the MaCHO
when it is applied to images produced by regularized recon-
struction methods. For simplicity we focus here on uncon-
strained Penalized Weighted Least Squares (PWLS) reconstruc-
tion. It is straightforward to extend such analysis to general
penalized likelihood [18]. Unconstrained PWLS with the usual
Π

−1 weighting reduces to

f̂(y) = arg min
f

{1

2
||y − Af ||2

Π−1/2 +
1

2
βf ′

Rf
}

= (F + R)−1
A

′
Π

−1y = Zy (11)

where F , A
′
Π

−1A is a Fisher information operator and R

is a roughness penalty operator.

C. Moments of the Local Test Statistic for MaCHO/PWLS
Substituting (9), (10) and (11) in (7) and (8) yields:

E[t`|H0] = 0

E[t`1 |H1,`2 ] = f ′
s,`1F(F + R)−1

C`1

· [C′
`1Kf̂C`1 + Πint]

†

· C
′
`1(F + R)−1

Ffs,`2

Cov{t`1 , t`2} = f ′
s,`1F(F + R)−1

C`1

· [C′
`1Kf̂C`1 + Πint]

†

· [C′
`1Kf̂C`2 + δ`1−`2Πint]

· [C′
`2Kf̂C`2 + Πint]

†

· C
′
`2(F + R)−1

Ffs,`2 ,

where Kf̂ = (F + R)−1(F + FKbF)(F + R)−1 for PWLS
reconstruction.

To get computationally tractable expressions for the moments
above, we will use local shift-invariance approximations [11]
to write

E[t`1 |H1,`2 ] ≈ X ′GT [T ′HT + npΠint]
†T ′GX (12)

Cov{t`1 , t`2} ≈ X ′GT [T ′HT + npΠint]
†

· [T ′HET + npΠint]

· [T ′HT + npΠint]
†T ′GX, (13)

where E is a diagonal matrix containing the complex exponen-
tial that corresponds to the shift between locations `2, `1,

G , diag

{

λk

λk + ωk

}

,

H , diag

{

λk(1 + λkµk)

(λk + ωk)2

}

,

and {λk}, {ωk}, {µk} are the frequency responses of F , R, Kb

respectively (locally around the location of interest). Finally,
X is the frequency response of the target signal fs,` and the
columns of T contain the frequency responses of the channels
C` (calculated as if the signal and channels were centered at
the (0,0) point of the Fourier transform).

The expressions above require only the inversion of an
M × M matrix, which is typically a significant reduction in
dimensionality. In the special case where the channels of the
MaCHO have non-overlapping passpands, the columns of T

are orthogonal and the expressions above are particularly fast
to compute, with no matrix inversion required.

V. MACHO DETECTION PERFORMANCE

We use the approximation in (6) to calculate the probabilities
of detection (4) and false alarm (5) of the MaCHO at high
detection thresholds u. We write respectively:

PD(u) ≈
|det ΛT |

1/2|S|

σ3
T (2π)3/2

(u − µT ) e−(u−µT )2/2σ2
T (14)

PFA(u) ≈
|det ΛT |

1/2|S|

σ3
T (2π)3/2

u e−u2/2σ2
T , (15)
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Fig. 1. Mean background and search area (left) and profile through the mean
background with the target signal superimposed (right).

where we obtain σT and ΛT from (13), and µT from (12).
In particular, we use µT ≈ E[t`|H1,`], where ` the center of
the search area, although µT in fact is not constant throughout
the search area. This assumes that the maximum most likely
occurs in the search area center, and thus is an approximation
that needs to be validated.

VI. PRELIMINARY RESULTS

We provide an example of using the above approximations
to choose the regularization parameter β for PWLS reconstruc-
tion. We consider the case where A corresponds to a 2-D
SPECT system model with depth-dependent system blur and
the target signal fs,` has a known Gaussian shape but unknown
location `. We assume that the background fb has a Gaussian
autocorrelation function (ACF) and the mean background f̄b

is the anthropomorphic phantom shown in figure 1. Also
shown in figure 1 is the square search area considered by the
observer. Any pixel in this area is a candidate location for
the target signal. The CHO in this example has 4 channels
with ideal non-overlapping radially symmetric passbands and,
for now, no internal noise. We consider PWLS with first-order
quadratic regularization and various values of the regularization
parameter β.

We use our analytical approximations (14) and (15) to cal-
culate PD(u) and PFA(u) for different values of the threshold
u. We repeat this for each value of β. In figure 2 we plot PD

vs. β for a fixed PFA = 0.02 and we show reconstructions of
a noisy Poisson data set with log2 β = 0 (which achieves peak
PD) and with a lower and a higher β.

Next, we use our analytical approximations to trace the high-
threshold segment of the ROC curve for different values of β.
The left plot in figure 3 shows the resulting ROC curves for
log2 β = 0 as well as for two extreme values of β. To evaluate
the accuracy of our approximations, we also obtain empirical
ROC curves by generating samples from the exact Gaussian
distribution of the t`’s. The right plot in figure 3 compares
the analytical and empirical curves for log2 β = 0. Finally, we
provide separate plots of the analytical and empirical PFA(u)
and PD(u) vs. the threshold u for log2 β = 0 in figure 4.

Plots like the one in figure 2 can be used to choose the
regularization parameter β for each pixel in the image so as to
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Fig. 2. Plot of PD vs. β for a fixed PFA = 0.02 and PWLS reconstructions
of a noisy Poisson data set with log2 β = 0 (which achieves peak PD) and
with a lower and a higher β.
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analytical approximations and empirical simulations for log2 β = 0 (right).

optimize the probability of detection for a given low probability
of false alarm in a small region around that pixel. By increasing
the probability of detection at some probability of false alarm,
we increase the area under the entire ROC curve. This is
significantly faster than performing Monte Carlo simulations
to directly optimize the area under the ROC or LROC curve.

VII. FUTURE WORK

To refine the approximations in (14) and (15), we intend to
examine the effect of additional terms of lower order in the
approximations that have been derived by Adler.

In the example of the previous section, we have not included
internal noise in the observer model. The reason is that internal
noise manifests itself as an impulse at the point (0, 0) of the
autocorrelation function RT and thus issues arise with taking
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its derivative. We intend to investigate further the inclusion of
internal noise in our approximations.

As mentioned previously, in analyzing the probability of
detection we have crudely approximated the mean signal as
constant throughout the search area. This approximation is
acceptable when the maximum value of the test statistic under
the signal-present hypothesis is most often observed at the
true location of the signal peak. We are currently investigating
alternative approximations of the probability of detection that
may weaken this assumption.

Finally, as empirical simulations can show, there is increased
probability that the maximum of the correlated t`’s occurs at the
search area corners. This gives rise to the question whether the
current form of the maximum observer is a good representation
of a human observer or whether it needs to be adjusted.
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