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ABSTRACT

Our goal is to analyze regularized image reconstruction meth-
ods such as penalized likelihood with respect to the perfor-
mance of the Channelized Hotelling Observer (CHO) in the
task of detecting a small target signal in the reconstructed
images, in the presence of a correlated random background.
We derive here an approximation to the performance of the
CHO by working entirely with continuous-space formula-
tions and then discretizing the final result. This approach
leads to an extension and a refinement of approximations
that we previously derived in the discrete space.

1. INTRODUCTION

Several types of medical diagnosis involve the detection of
a small abnormality in an image reconstructed from noisy
tomographic data. Image reconstruction methods abound
and several of them involve user-specified parameters (such
as the regularization parameter in penalized-likelihood re-
construction or the filter cut-off in filtered back-projection).
Such parameters control the noise/resolution trade-off and
can have a dramatic effect on the appearance of the recon-
structed images. To avoid the subjectivity of judging by
appearances, it is useful to examine how the choice of re-
construction method and/or parameter affects some objec-
tive figure of merit, such as the performance of an observer
faced with the task of detecting a lesion in the reconstructed
image. As the performance of human observers does not
lend itself to optimization through analytical tools, we turn
to the various mathematical observers that exist in the lit-
erature [1, §14.3]. In particular, we focus on the Channel-
ized Hotelling Observer (CHO) [2], whose performance has
been found to be correlated with that of human observers
for some simple detection tasks (e.g., see [3]). In [4] we
analyzed the performance of this observer paired with reg-
ularized image reconstruction in the detection of a statisti-
cally varying signal at a known location on a deterministic
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background. Our analysis showed that regularization is not
essential for this simple detection task. However, the perfor-
mance of human and model observers alike is known to de-
teriorate in the presence of a correlated image background,
as the detection task becomes more complex [5]. In this
paper, we extend our analysis to accommodate statistically-
varying backgrounds. Furthermore, our approach here is
distinct from the one we followed in [4] and instead paral-
lels the one followed in [6] for roughness penalty design;
we now perform the analysis entirely in the continuous do-
main and discretize the final result. This approach leads to a
refinement of our approximations. Our new findings reduce
to the ones we derived in the discrete domain in [4] only
under certain assumptions on the statistics of the problem.

2. CONTINUOUS-SPACE SYSTEM MODEL

Let f ∈ L2(R
2) be the object of interest. The detection

task at hand is to determine between the following pair of
hypotheses:

H0 : f = b

H1 : f = b + x, (1)

where b ∈ L2(R
2) is the random object background with

covariance Kb, and x ∈ L2(R
2) is a spatially-localized tar-

get signal, which is deterministic and known. The decision
is based on the observed data y ∈ L2([0, π] × R), given by

y = Af + ε, (2)

where A : L2(R
2) → L2([0, π] × R) is a linear operator

modeling the imaging system, and ε ∈ L2([0, π] × R) is
zero-mean noise with covariance Kε.

In its most general form, the linear operator A will be
described by a superposition integral, possibly accounting
for position-dependent characteristics of the imaging sys-
tem:

p = Af ⇔ pϕ(r) =

∫ ∞

−∞

∫ ∞

−∞

a(r, ϕ;x, y) f(x, y) dxdy.



However, the analysis can be greatly simplified by assuming
the following separable form:

A = BP , (3)

where P : L2(R
2) → L2([0, π]×R) is the Radon transform

operator and B : L2([0, π] × R) → L2([0, π] × R) is the
system blur operator.

If the system blur is shift-invariant with respect to ra-
dial position r, and its impulse response at projection angle
ϕ is bϕ(r), then B = (I ⊗ U1)

−1D(Bϕ(ρ))(I ⊗ U1),
where ⊗ signifies the Kronecker product, I is the iden-
tity operator, Un is the n-D continuous-space Fourier trans-
form, D(·) performs point-by-point multiplication (thus it
is a continuous-space “diagonal” operator) and Bϕ(ρ) is the
1-D Fourier transform of bϕ(r). In that case, the separable
form of A in (3) is exact. Eventually we will be apply-
ing the operator to objects that are highly localized around
some pixel j, so we can also accommodate systems that are
shift-variant, as long as they can be considered locally shift-
invariant around pixel j. In that case, the separable form in
(3) can be used as an approximation with

B = (I ⊗ U1)
−1

D(Bj
ϕ(ρ))(I ⊗ U1), (4)

where Bj
ϕ(ρ) is the 1-D Fourier transform of bj

ϕ(r), which
is the blur that pixel j experiences when projected at angle
ϕ.

We can apply the Singular Value Decomposition (SVD)
of the 2-D Radon transform operator, as presented in [1,
p. 1174], to write P = VD(|ρ|−1/2)U2, where V = I ⊗
(U−1

1 D(|ρ|1/2)). One can show that V is a unitary operator.
This SVD form can be used to easily confirm that

P
∗
P = U

−1
2 D(|ρ|−1)U2

PP
∗ = VD(|ρ|−1)V∗ = I ⊗ (U−1

1 D(|ρ|−1)U1).

3. CHO PERFORMANCE

In clinical practice a human observer would typically at-
tempt to detect a lesion by examining an image reconstructed
from the raw data, rather than examining the raw data itself.
Therefore we focus on mathematical observers that are ap-
plied to reconstructed images.

To facilitate analysis, we consider here linear reconstruc-
tors. Common tomographic reconstruction techniques can
be approximated as linear, except maybe when enforcing
a non-negativity constraint. Here we will assume that the
target signal appears on a background that is sufficiently
high to render the non-negativity constraint inactive. Thus
we proceed to define a linear reconstruction operator S :
L2([0, π]×R) → L2(R

2). The reconstructed image is then
given by f̂(y) = Sy.

Channelized observer models attempt to mimic the hu-
man visual system by filtering their input through a set of

M frequency-selective channels and keeping only the out-
put of each filter at the spatial position j of the target sig-
nal. Let C : C

M → L2(R
2) be the operator describing

this filtering, so that the output of the channels is given by
ĉ(y) = C

∗f̂(y) = C
∗
Sy . One can view C as a collection

of operators arranged in a 1 × M row vector. The m-th el-
ement of this vector is an operator Cm : C → L2(R

2) such
that

C
∗
m = ∆jU

−1
2 D(C∗

m(ρ,Φ))U2,

where Cm(ρ,Φ) is the frequency response of the m-th chan-
nel and ∆j : L2(R

2) → R is an operator sampling a single
point from a continuous-space function. This operator and
its adjoint can be defined in terms of the Dirac δ function:

α = ∆jf ⇔ α = f(x − xj , y − yj)

f = ∆
∗
jα ⇔ f(x, y) = αδ(x − xj , y − yj).

A general linear channelized observer applies a template
w ∈ R

M to the channel output and evaluates a test statistic
of the form

t(y) = 〈w, ĉ(y)〉 = 〈w, C
∗
Sy〉. (5)

The observer then decides that H1 is true (i.e., the signal is
present) only if this test statistic exceeds a certain threshold.
In particular, the template applied by the CHO is

wCHO = (Cov{ĉ})†(E[ĉ|H1] − E[ĉ|H0]). (6)

A useful detection performance metric is the area un-
der the Receiver Operating Characteristic (ROC) curve. The
area under the ROC curve is difficult to compute in general,
but in the case of Gaussian-distributed test statistics it is di-
rectly related to the Signal-to Noise Ratio (SNR), which is
considerably easier to compute:

SNR2 =
(E[t|H1] − E[t|H0])

2

Var{t}
. (7)

Even if the observed data is not Gaussian, the test statis-
tic may be assumed to be Gaussian due to the central limit
theorem. Therefore we consider the SNR as a performance
metric hereafter.

Combining (1), (2), and (5) – (7) leads to

SNR2
CHO = 〈W †z, z〉, (8)

where we define W ∈ C
M×M and z ∈ C

M such that

W , C
∗
SKS

∗
C

z , C
∗
SAx (9)

and where K = Kε + A Kb A
∗ is the covariance of the data

y. The covariance operator Kb is defined by a superposition
integral as follows:

g = Kbf ⇔ g(~r) =

∫

∞

Cov{b(~r), b(~r′)}f(~r′)d~r′

and the other covariance operators are defined similarly.



4. CHO WITH PWLS RECONSTRUCTION

We would like to investigate the performance of the CHO
when the observer is applied to images produced by regular-
ized reconstruction methods. For simplicity we focus here
on unconstrained PWLS reconstruction. However, such anal-
ysis can be extended to penalized likelihood [7]. Uncon-
strained PWLS with the usual K

−1 weighting reduces to

f̂(y) = arg min
f

{1

2
||y − Af ||2

K−1/2 +
1

2
β〈f , Rf〉

}

= (F + R)−1
A

∗
K

−1y = Sy (10)

where F : L2(R
2) → L2(R

2) is a Fisher information op-
erator defined by F , A

∗
K

−1
A and R : L2(R

2) →
L2(R

2) is a roughness penalty operator.
By substituting the PWLS reconstructor (10) into the ex-

pressions (9) we end up with

W = C
∗(F + R)−1

F(F + R)−1
C

z = C
∗(F + R)−1

Fx. (11)

These exact expressions involve rather intensive computa-
tion. However, by assuming that the target signal x is highly
localized around some pixel j and that the operators in (11)
can be assumed locally shift-invariant around j, we can de-
velop a Fourier-space approximation of the SNR.

The Fisher information operator Fε for the case of no
object variability (Fε , A

∗
K

−1
ε A) is analyzed in [6] using

the local shift invariance assumption in (4). The resulting
approximation is

Fε ≈ U
−1
2 D(Fε(ρ,Φ))U2

Fε(ρ,Φ) ,
wj(Φ) |Bj

Φ(ρ) |2

|ρ|
, (12)

where we define

wj(ϕ) ,

∫ ∞

−∞
|a(r, ϕ;xj , yj)|

2 1
σ2

ε
(r,ϕ) dr

∫ ∞

−∞
|a(r, ϕ;xj , yj)|

2
dr

to be the local angle-dependent uncertainties correspond-
ing to the spatial position (xj , yj). This is the position of
the pixel j around which we know our target signal to be
concentrated. The σ2

ε(r, ϕ) factors are the variances of the
independent noise random variables ε(r, ϕ). For a practi-
cal implementation, one would need to discretize the inte-
grals above. Even so, these discretized local uncertainties
would provide a more refined approximation than the angle-
independent local uncertainties derived directly in the dis-
crete domain and used in [4].

We now generalize (12) to include background variabil-
ity. One can show that:

F ≈ U
−1
2 D(F (ρ,Φ))U2

F (ρ,Φ) ,
Fε(ρ,Φ)

1 + Fε(ρ,Φ)Kb(ρ,Φ)
,

where Kb(ρ,Φ) is the power spectrum of b (assuming that
Kb is locally shift-invariant). For Kb(·, ·) = 0, the expres-
sion above reduces to the one in [6].

Assuming that X(ρ,Φ) is the spectrum of the target sig-
nal x and R(ρ,Φ) the frequency response of the regularizer
R (locally around the position j of the target signal), then
we can approximate (11) as

W ≈ C
∗
U

−1
2 D

( F (ρ,Φ)

[F (ρ,Φ) + R(ρ,Φ)]2

)

U2C

z ≈ C
∗
U

−1
2

( X(ρ,Φ)F (ρ,Φ)

F (ρ,Φ) + R(ρ,Φ)

)

. (13)

Also, consider any locally shift-invariant system H with
local impulse response and frequency response hj(x, y) and
Hj(ρ,Φ) respectively. One can show that applying the op-
erator ∆jH on an object highly localized around j is ap-
proximately equivalent to scaling the object by a factor of
hj(0, 0) =

∫∫

Hj(ρ,Φ)ρdρdΦ. By applying this property
to the definition of C, we can approximate the (m,n) ele-
ment of W as

[W ]mn ≈

∫ ∫

Cm(ρ,Φ)C∗
n(ρ,Φ)F (ρ,Φ)

[F (ρ,Φ) + R(ρ,Φ)]2
ρdρdΦ (14)

and the m-th element of z as

[z]m ≈

∫ ∫

Cm(ρ,Φ)X(ρ,Φ)F (ρ,Φ)

F (ρ,Φ) + R(ρ,Φ)
ρdρdΦ. (15)

The inversion in (8) leads to a particularly simple ex-
pression in the special case of CHO channels with non-
overlapping passbands, as W becomes diagonal. Then by
substituting (14) and (15) into (8) we get

SNR2
CHO,PWLS ≈

M
∑

m=1

|
∫∫

Cm(ρ,Φ) X(ρ,Φ)F (ρ,Φ)
F (ρ,Φ)+R(ρ,Φ)ρdρdΦ|2

∫∫

|Cm(ρ,Φ)|2 F (ρ,Φ)
[F (ρ,Φ)+R(ρ,Φ)]2 ρdρdΦ

.

We now discretize this result and produce the following
SNR approximation for CHO/PWLS with non-overlapping
passbands:

SNR2
CHO,PWLS ≈

M
∑

m=1

∣

∣

∣

∑

k CkXk
Fk

Fk+Rk

∣

∣

∣

2

∑

k |Ck|2
Fk

(Fk+Rk)2

, (16)

where all variables are in discrete space, k indexes DFT vec-
tors, {Ck} is the frequency response of the m-th channel,
{Xk} is the spectrum of the target signal, {Rk} the spec-
trum of the regularizer, and {Fk} is the frequency response
of the Fisher information matrix. All DFT’s above are taken
locally at pixel j. It turns out that the approximation we
proposed in [4] can be derived as a special case of (16) with
certain assumptions about the object statistics.



5. RESULTS

As an example of using the approximate SNR expression in
(16) to choose the regularization parameter β for PWLS re-
construction, we consider the case of a 2-D SPECT system
model with depth-dependent system blur, an image size of
64 × 64 pixels, and an impulse as the target signal. We as-
sume that the background b has a Gaussian autocorrelation
function (ACF). For the measurement noise ε, we use co-
variances equal to σ2

ε(k) = [Ax0]k, where A is the system
matrix and x0 an anthropomorphic phantom.

We evaluate the SNR of the CHO using the approxi-
mation in (16) for PWLS with first-order quadratic regu-
larization and various values of the regularization param-
eter β, as well as various degrees of background correla-
tion. Figure 1 shows the SNR (normalized with respect to
the SNR of the ideal observer) vs. the regularization pa-
rameter β for two distinct cases: no background variability
and a highly correlated background whose ACF is a Gaus-
sian with a FWHM of ∼12 pixels. Plots are shown for two
different CHO’s; one has 6 channels with non-overlapping
radially-symmetric dyadic passbands, and one has a single
all-pass channel.
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Fig. 1. Approximate SNR of the CHO vs. regulariza-
tion parameter β, assuming no background variability (left
plot) and a Gaussian background ACF with a FWHM of
∼12 pixels (right plot). Plots are shown for two different
CHO’s; one has 6 channels with non-overlapping radially-
symmetric dyadic passbands (CHO-6), and one has a single
all-pass channel (CHO-1).

6. DISCUSSION

Our preliminary results show a degradation of CHO per-
formance in the presence of correlated random noise. The
degradation is of course not as dramatic in the (more realis-
tic) case of the CHO with 6 channels when compared to the
CHO with a single all-pass channel, as the latter imposes
a rather drastic loss of information on the data. However,
even in the case of the CHO with 6 channels, the SNR plot
departs from the flatness that characterized it without back-
ground variability.

Our approximations can be used for a fast computation
of CHO performance in a wide variety of cases. We in-
tend to further investigate these approximations and their
accuracy. In particular, it is of interest to examine the ef-
fect of more realistic channels (with non-flat and potentially
overlapping passbands), internal observer noise, and signal
location variability.

7. REFERENCES

[1] H. H. Barrett and K. J. Meyers, Foundations of image
science, Wiley, New York, 2003.

[2] K. J. Myers and H. H. Barrett, “Addition of a channel
mechanism to the ideal-observer model,” J. Opt. Soc.
Am. A, vol. 4, no. 12, pp. 2447–57, Dec. 1987.

[3] C. K. Abbey and H. H. Barrett, “Human- and model-
observer performance in ramp-spectrum noise: effects
of regularization and object variability,” J. Opt. Soc.
Am. A, vol. 18, no. 3, pp. 473–88, Mar. 2001.

[4] J. A. Fessler and A. Yendiki, “Channelized Hotelling
observer performance for penalized-likelihood image
reconstruction,” in Proc. IEEE Nuc. Sci. Symp. Med.
Im. Conf., 2002, vol. 2, pp. 1040–4.

[5] J. P. Rolland and H. H. Barrett, “Effect of random
background inhomogeneity on observer detection per-
formance,” J. Opt. Soc. Am. A, vol. 9, no. 5, pp. 649–58,
May 1992.

[6] J. A. Fessler, “Analytical approach to regularization
design for isotropic spatial resolution,” in Proc. IEEE
Nuc. Sci. Symp. Med. Im. Conf., 2003, To appear. 1343,
M5-5.

[7] J. A. Fessler, “Mean and variance of implicitly de-
fined biased estimators (such as penalized maximum
likelihood): Applications to tomography,” IEEE Tr. Im.
Proc., vol. 5, no. 3, pp. 493–506, Mar. 1996.


