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ABSTRACT

Statistical reconstruction algorithms in transmission to-
mography yield improved images relative to the conven-
tional FBP method. The most popular iterative algorithms
for this problem are the conjugate gradient (CG) method and
ordered subsets (OS) methods. Neither method is ideal. OS
methods “converge” quickly, but are suboptimal for prob-
lems with factored system matrices. Nonnegativity con-
straints are not imposed easily by the CG method. To speed
convergence, we propose to abandon the nonnegativity con-
straints (letting the regularization discourage the negative
values), and to use application-specific quadratic surrogates
to choose the step size rather than using an expensive general-
purpose line search. To ensure monotonicity, we develop
a modification of the transmission log-likelihood. The re-
sulting algorithm is suitable for large-scale problems with
factored system matrices such as X-ray CT image recon-
struction with afterglow models. Preliminary results show
that the regularization ensures minimal negative values, and
that the algorithm is indeed monotone.

1. INTRODUCTION

The dominant technique for X-ray computed tomography(CT)
image reconstruction has been the filtered backprojection
(FBP) algorithm. It is fast (FFT is used in its implementa-
tion), deterministic and its properties are well understood.
In transmission tomography, for scans with low counts or
those contaminated with significant background counts, the
FBP method leads to attenuation maps with systematic bi-
ases due to the nonlinearity of the logarithm [1]. Even sta-
tistical techniques that intrinsically assume Gaussian noise
lead to systematic biases. Thus, Poisson-like measruement
statistics cannot be ignored. Statistical methods using the
Poisson likelihood with suitable regularization have shown
good performance [1-3].

The importance of compute time of the algorithms in
commercial scanners cannot be over-emphasized. Incorpo-
ration of statistical methods became possible with the use
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of ordered subsets expectation maximization (OSEM) algo-
rithms in PET scanners starting from 1997. Since typical
clinical CT images are of sizes 512x512 or larger, statistical
algorithms require very long compute times. So, there is a
need to make algorithms faster for large image sizes.

Various methods have been proposed to accelarate it-
erative image reconstruction algorithms. One of the most
important ones is the ordered subsets method (also known
as the incremental gradient or the block iterative method)
[4-6]. In these methods only a subset of projection views
are used each “sub-iteration”. Using suitable ordered sub-
sets in the initial phases accelarates convergence by a factor
equal to the number of the subsets used. Without relaxation
these algorithms usually do not converge [7] and they are
not monotonic.

However, OS methods are poorly matched to problems
where system matrices are in a factored form, for example
in X-ray CT scanners where detector afterglow is signifi-
cant [8]. So, alternative accelaration methods are needed for
such problems. Pre-conditioned conjugate gradient (PCG)
algorithms have many desirable properties over OS algo-
rithms like monotonicity (with a suitable line search) and
capability of handling factored system matrices. They are
however slower than OS in the initial iterations but not as
slow as the older methods. Compared to coordinate descent
algorithms, imposition of the non-negativity constraint on
the attenuation constant in PCG algorithms is more diffi-
cult. Naive imposition of non-negativity constraint would
cause PCG algorithms to lose their monotonicity property.

In this paper, we describe a method that preserves the
monotonicity of the PCG algorithm while encouraging non-
negativity constraint on the attenuation coefficients to some
extent by suitably modifying the Transmission Penalized
Likelihood (TPL) cost function. For simplicity, we handle
the mono-enegetic case here; in the future this idea can be
extended to the poly-energetic case.

2. THEORY

In transmission tomography, the means of the data are re-
lated exponentially to the projections (or line integrals) of



the attenuation map through Beer’s Law [9]. In addition,
the measurements are contaminated by extra background
counts, due mostly to random coincidences and scatter in
PET and emission crosstalk in SPECT. Thus, we assume
the following model (using the notation of [2]):

yi ~ Poisson{bi e lAul 4 ri} ,yi=1,...,N, (1)

where N is the number of measurements, y; is the average
linear attenuation coefficient in voxel j for j = 1,...,p,

and p denotes the number of voxels. The notation [Ap]; 2
Z§:1 a;jp; represents ith line integral of the attenuation
map p and A = {a;;} is the N x p system matrix. We
assume b;, 7; and a,;; are known non-negative constants,
where r; is the mean number of background events, b; is
the blank scan factor and y; represents the number of trans-
mission events counted by the ith detector (or detector pair
in PET).

Ideally, we seek to find a statistical estimate of the at-
tenuation map  that agrees with the data and is physically
reasonable, i.e. its elements are all non-negative. As in [2],
we form a penalized-likelihood cost function ®(u) and de-
note our estimate of the linear attenuation coefficients as

f = arg min @), @
where ®(p) = —L(p)+ BR(p)
N
~L(p) = > hi(lA 3)
=1
hi(0) = (bie “4r;) — y; log (be™ —|—ri)(4)
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where L(p) is the log of transmission Poisson likelihood,
R(p) is the regularizing roughness penalty function as de-
scribed in [10].

To help minimize this cost function, we form parabolo-
idal surrogates ¢(g; (™) at each iteration as described in
[2]. The coordinate descent method of [2] is monotonic but
unsuitable for large-scale problems like X-ray CT. Further-
more, the paraboloidal surrogates described in [2] rely on
the non-negativity of the projections but such a condition
can not be guaranteed to be true for gradient descent meth-
ods without a significant compute time overhead.

Our aim in this paper is to modify the cost function
®(p) to ®(p) and find a new minimum

) 2 arg m&n d(p) such that D) ~ P(f1). (6)
If the condition in (6) is satisfied then we can perform the
unconstrained minimization shown in (6) rather than the
constrained minimization shown in (2), enabling the use of
gradient based minimization methods.

2.1. Proposed Cost Function Modification

In (3) the negative of the log likelihood is a sum of func-
tions, h;, that depend on the values of b;, r; and the mea-
surements y;. The arguments of these functions are [Apu];.
If [Ap]; is negative then at least one of the ;s is nega-
tive since the elements of the matrix A are non-negative. To
state more concisely,

[Ap]; <0 = 3 jsuchthat p; <O0. @)

The condition ¢; < 0 indicates that ¢ under consideration
is not physically possible. Thus, we argue that the value of
h; for £ < 0 is somewhat arbitrary and it is not essential for
it to match the usual log-likelihood function since negative
values of ¢ are not physical.

We thus propose to replace the cost functions h;(¢) for
¢ < 0 with functions that are suited to our goal of preserva-
tion of monotonicity of the PCG algorithm. Now, consider
the representative plots of h; in Fig. 1 for the three possible
cases of detector value y; :

Casel y; <
Case2 r, <y, <r;+b
Case3 7, +b; <uy;

For ¢ < 0 these functions rise exponentially. Therefore,
it is impossible to find a true paraboloidal surrogate over R.
This is evident from the properties of hi (first derivative of
h;) explained in Appendix A of [2] and a representative plot
of hl on [2, p. 807]. In [2], the optimal paraboloidal surro-
gate functions are found such that the surrogate majorizes
h; for £ > 0 only.

We propose the following modification to h;. In cases 1
and 2, for £ < 0 we replace h; with a straight line such that
the continuity of the function is maintained and the slope of
the line is equal to h;(0). A straight line is chosen because
it permits the surrogate to have a low curvature. (Low cur-
vatures are advantageous as they increase the convergence
speed of the algorithm [2].) In case 3, it is not possible to re-
place h; for ¢ < 0 with a straight line having negative slope.
Having a line with negative slope would make <i>(u) non-
differentiable; we restrict our cost functions to be differen-
tiable so that conditions of (11) can be applied. For sake
of simplicity we choose a parabola to replace h; for £ < 0.
The parabola is chosen such that the continuity of h; and hy
are maintained. For reasons of computational simplicity, the
curvature of the parabola is computed using [2, eq. 29]. In
cases 1 and 2, replacing h; for £ < 0 with a parabola would
lead to higher curvatures in the surrogates when compared
to replacing it with a straight line.

For cases 1 and 2, we define :

hi(0) if >0

hi(t) = { hi(0) + hi(0) if € < 0. ®
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Fig. 1. Plots of h;(¢) (solid line) and h;(¢) (dashed line) for
the three cases. r; = 10, b; = 8, and y; = 4, 15 and 25
in (a), (b) and (c) above respectively. Note that h; = h;
for £ > 0 and differs only for non-physical values of the
attenuation coefficients.

For case 3, we define :
= oA | ha(€)
hz(g) - { hi(O)

The new cost function can be thus written as follows :

it0>0
+hi(0)¢+ sy <o,
©)

| >

)+ BR(p). (10)

2.2. Construction of Paraboloidal Surrogates and their
Minimization

The following conditions are sufficient for a function
o(p; 1) to be a surrogate of ®(p) [2, eq. 7] :

ousp™) = o(ut)
oy p™) > D(p), Y € RP. (11)

It can be proved that the following surrogate function
satisfies all the above conditions :

Zqz 1) + Bor(ps ™), (12)

where [; = [Aul;, ll(") = [Ap™);

S Rt + Rt 0~ 1) + 2 (1~ 1)

13)

i (Ls; lE"))

i)y _ g
w if ™) > 0, cases 1 and 2
i = hz(o)
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where h;(¢) = d?h;(¢)/d?,

if lgn) < 0,cases 1 and 2

case 3

We use the Huber function as the potential function v in
(5). ¢r(p; ™) is obtained using the surrogate of Huber
function described in [11, p. 184].

3. SIMULATIONS

Size of the attenuation map of the phantom used in the simu-
lations was 128x128, the number of angles was 80 and num-
ber of bins per angle was 136. Poisson noise was added to
the sinogram. Initial estimate of the attenuation map, i,
for all the algorithms was obtained by first doing the FBP
reconstruction and then setting the negative pixels to zero.
The simulations were done in MATLAB.

We use the pre-conditioned steepest descent method to
minimize the paraboloidal (quadratic) surrogate function (12)
of the modified cost function ® (), which is named as QS-
PSD-MOD. This is compared against unconstrained mini-
mization of the pre-computed curvature [2] based parabolo-
idal (quadratic) surrogate function of the original cost func-
tion ® () using the pre-conditioned steepest descent method
called QS-PSD-PC here. We set the negative pixels to zero
only after the last iteration and hope the solution is close to
the one achieved when negative pixels are set to zero ev-
ery iteration; this is done because the implementation in the
latter case takes more CPU time as setting negative pixels
to zero requires Ap to be recomputed (an extra forward
projection operation). We use the diagonal pre-conditioner
mentioned in [12] in both the above algorithms. These algo-
rithms are compared against the ordered subsets (with 5 sub-
sets) separable paraboloidal surrogate with pre-computed
curvatures (called, OS-SPS-PC [2]) minimization of the orig-
inal cost function ®(p). Without much loss of compute
time, the non-negativity constraint can be applied easily each
iteration of the OS-SPS-PC algorithm.

4. RESULTS AND DISCUSSION

Fig. 2 shows that the OS-SPS-PC algorithm stagnates early
whereas the gradient based algorithms are decreasing. Tho-
ugh the OS-SPS-PC algorithm converges faster initially with
respect to the number of iterations, it is actually slower as
each iteration takes more CPU time than the gradient based
algorithms. The gradient based algorithms achieve a lower
cost than OS-SPS-PC. The condition of (6) has been found
to be satisfied, thus validating the modification of the cost
function ® () to ®(p). This modification helps us achieve
a lower cost than OS-SPS-PC without losing on the image
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Fig. 2. Plots showing the variation of the original cost func-
tion ® () with number of iterations and CPU time.
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Fig. 3. Images showing the true phantom and its reconstruc-
tions by various algorithms.

quality. This is evident in Fig. 3. The ratio of magnitude
of average of negative pixels in QS-PSD-PC and QS-PSD-
MOD to the maximum value of the pixels in the true image
of the phantom is approximately 5%. The sum of squared
differences of corresponding pixels in the reconstructed im-
ages (with negative pixels set to zero) and the true image of
the phantom divided by the sum total of the squared value
of pixels in the true image of the phantom i.e. the quan-
tit}’ ||/J/reeonstructed - Htrue”/”“true” is 027507 01931»

0.1996 and 0.1976 in FBP, OS-SPS-PC, QS-PSD-PC and
QS-PSD-MOD respectively.

5. FUTURE WORK

It is straight-forward to extend QS-PSD-PC and QS-PSD-
MOD to their PCG versions i.e. QS-PCG-PC and QS-PCG-
MOD respectively. Surrogates for QS-PSD-MOD with lower
curvatures than those used in this paper can be derived. Per-
formance of these algorithms with factored system matrices
can be investigated.
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