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ABSTRACT 

lem ip which, projection measurements from several suc- 
cessive time frames are available. Two strategies for do- 
ing motion-corrected image reconstruction are compared. 
In the first strategy, separate images are reconstructed from 
the measurements at each time frame. They are then con- 
solidated by post-registration and averaging procedures. In 
the second strategy, parameters to describe the effects of 
motion'&e added to the statistical model of the projections. 
Joint miximum likelihood estimation of image and motion 
parameters is then canied out. 

We consider,an emission tomography reconstruction prob- 

'.I. INTRODUCTION 

To account for motion effects in Positron Emission Tomog- 
raphy (PET), one may. break the scanning period into time 
frames = 0,l; 2,.  . . , K in which separa& measured projec- 
tion vectors {y )K=o are acquired by the tomograph. We 
assume the durations of these time frames are sufficiently 
short so that the motion of the object over the length of each 
time frame can be neglected. These measurement vectors 
then provide "snapshots", in a sense, of the radio-tracer ac- 
tivity image at different points throughout the scan. In this 
work, we examine different strategiesfor reconstructing an 
image of the object based on the measured data {y }K=o. 
We model the measurements as Poisson with ensemble means 
(Y 1 givenby, 

.~ . 

yo( ) = P O  +ro (1) 
y ( ,  ) = P W (  ) + r ,  =1,  ..., K. (2) 

Here is the vector of unknown activity image pixel values 
in time-frame'. = 0. Also, for each time-frame k, P is 
a forward projection matrix, T is a known vector of mean 
background counts, and IY ( ) is an image transforma- 
tion that depends on an unknown deformation parameter 
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vector . The transformed image W ( ) gives the pixel 
values of the activity image in time-frame k, after nndergo- 
ing changes due to anatomical motion and other physical 
processes. Typically, each vector has far fewer compo- 
nents than . For example, could he the coefficients in a 
B-spline deformation model. 

We consider two main reconstruction strategies. The 
first, is to obtain estimates and , - 1, .  . . :K ac- 
cording to 

(3) 

where F(.)  is a penalized maximum likelihood estimator 
operating on measurements from all frames. We refer to this 
as the Joint Estimation with Deformation Modeling (JEDM) 
strategy. The second, which we call the Frame-Wise Post 
Registration (FWPR) strategy proceeds as follows, 

= 0, 1,. , , , K obtain an estimate 
" = f (y ) of W ( ) where the f (.) are pe- 
nalized maximum likelihood estimators. 

- 

-K K (" ,  - 1  ,..., ) = F ( y ' ,  ..., Y )> 

1 .  For each frame 

2. For frames = 1,. . . K obtain a least squares esti- 
mate 

= argmin/IW ( ) ^ o  - ~ 11' (4) 

for the deformation parheter  vectors. 

3. Consolidate the according to 

Here [ 
the inverse transformation to that of 

I-' denotes the parameter vector that induces 

In FWPR, the deformation parameters are not obtained from 
the Poisson model, but rather by post-reconstruction fitting 
using (4)'. 

. 

'As noted by a reviewer, the relationship between these two methods is 
similar to pre-detection w. post-detection integration in radar 
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2. COST FUNCTION MINlMIZATlON 

In statistical tomographic imaging, the application of max- 
imum (penalized) likelihood estimation involves minimiz- 
ing an (often non-convex) cost function ( ), one term of 
which is the negative of the Poisson loglikelihood function, 
L( ). Ignoring, irrelevant constants, the latter has the form 

L( = CIYA ) -YtlogYz( 11, (6) 

where y,( ) is the Poisson mean of the measurements yc and 
is a generic vector of unknown parameters. In the model 

described in (1) and (2 ) ,  we have = ( , ). 
A method for attacking such problems that has received 

considerable attention in recent years (e.g. [ l ,  2, 3, 41) 
is that of optimization transfer. This technique involves 
constructing a so-called surrogate function (., ) satisfy- 
ing ( , ) > ( ) for all ,with equality at . Henceforth, 
we abbreviate this relationship, by writing 

(.; ) * . (7) 

The EM algorithm can be viewed as a particular case of 
optimization transfer (as explained, for example, [ 5 ] ) .  The 
minimizer * of (.. )has the property that ( *) 5 ( ). 
Applying this iteratively, one obtains a sequence { ") that 
monotonically reduces and whose limit p i n t s  are station- 
ary under fairly weak conditions [61. In this section, we dis- 
cuss how to devise optimization transfer algorithms for the 
present problem. 

2.1. Algorithm structure 

In this subsection, we propose an optimization transfer al- 
gorithm that alternately minimizes the (penalized) loglike- 
lihood ( , ) (corresponding to ( I )  and ( 2 ) )  with respect 
to and 
technique described in [7, S, 61. In what follows the func- 
tions I (  ; , ) and 2 (  ; , ) are surrogates for with 
respect to their first arguments, i.e., 

= ( I , . . . , K). This is the space alternating 

l (5  . ) +  (.> ) (8) 

d. ;  . ) * ( , . I .  (9) 

The algorithm has the following hasic structure 

1. Set n = 0 and select an initial point ( ', O) 

2. Update the image by letting "+' be any minimizer 
of I ( . ;  ". " ) .  

3. Update the deformation parameters by letting n+l  

he any minimizerof 2(.;  I"+', "). 

4. Set n := n + 1 and go to step 2. 

To implement the algorithm, we must be able to find fnnc- 
tions I ( . ;  .) and z ( . ;  .) satisfying (8) and (9)'and which 
are easy to minimize. Some tools for doing so are presented 
in the next subsection. 

2.2. Construction of surrogates for general Poisson log- 
likelihoods 

A generic penalized Poisson loglikelihood function has the 
form ( ) = L( ) +R( ),where L( ) is as in (6) and R( ) 
corresponds to penalty terms. We wish to find a surrogate 
function, i.e., a function (.: .) so that (7) holds. Prefer- 
ably, (.; ) will be convex to facilitate its minimization. To 
find a surrogate, it is sufficient to find convex surrogates for 
the separate terms L and R and add these two surrogates 
together. It is usually a simple matter to find a convex sur- 
rogate for common penalties R( ) (see, for example,[2]). 
The problem therefore reduces to one of finding a surrogate 
for the negative Poisson loglikelihood L( ). 

However, L( ) is often a difficult, non-convex function 
and finding a convex surrogate for it is a non-routine matter. 
For certain Poisson loglikelihoods arising in emission and 
transmission tomography (e.g. [ 1, 41). methods for con- 
structing quadratic surrogates have been presented. These 
methods do not extend in any obvious way to the loglikeli- 
hood associated with ( I )  and (2). We shall therefore pause 
to present some additional techniques. 

The first is encapsulated in the next proposition. Recall 
that the Kullhack-Leihler (KL) distance between two arrays 
a and b ulith non-negative components at,,, and b,, is, 

with the conventions OlogO = 0, O/O = 0, and log(l/O) = 
ca. The KL distance has the property that KL(a, b) 2 0 
with equality iff a = b. 

Proposition 2.1 (Separation of Additive Poisson Means) 
Suppose the nzeans of Poisson nieusurenients has an addi- 
tive form 

n I' 
Y J  1 = C Y Z m (  ) (11) 

m 

where ull Y,~,,( ) > 0 and define 
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Then Q(.; ) + L(.), i.e.. Q i sa  surmgutefor L. 

Proof The fact that Q(.; ) + L(.) is an easy consequence 
of (12) and the properties of the KL distance. The fact that 
Q( ; ) also has the form (13) can he verified by expanding 

0 

Remark 2.2 When yi( ) = ximpi, ,, then applying 
Proposition 2.1 with y;,( ) = pi, one obtains the sur- 
rogate used in the analyses of the EMML algorithm in[9, 

the term KL(yi,( ):yim( )) in (12). 

IO]. 

From (13), one can see that &( ; ) has the form of 
a Poisson loglikelihood function (ignoring irrelevant con- 
stants) with measured data ylnL( )and means y<,( ). How- 
ever, the terms yim( ) - yi, ( ) log yi, ( ) are often simpler 
than the original tams yi( ) - yi logyi( ). For example, 
when yi,( ) has an exponential form bi,exp((a,rn, )), 
asin [4],thenthetermsyi,,( )-ysm( )logyim( ) arecon- 
vex, uhereas the original terms in (6) are not. 

Even when the yi,,,( ) do not have such an exponential 
form, it may still be the case that logy,,( ) is concave. In 
this case, a convex surrogate can be obtained as indicated in 
the following Proposition. 

Proposition 2.3 Suippose the ussuniptions ofPmpoposition 2 . 1  
are satisfied and, i ~ i  addition. U N  q f  thejinictions log vi,,, ( ) 
are concoi'e. nlerl, apon,fron~ irrelevant c~inmnts, 

- yzm( ) b Y w n (  11 (14) 

is a convex .siirmqate.fiw L( ). 
Pro<$ As established in Proposition 2.1, the expression on 
the right hand side of (13) is, ignoring irrelevant constants, 
a surrogate for L( ). It is therefore sufficient to show that 

and equality holds at , verifying (15). 0 

In the next subsection, we apply these results to the loglike- 
lihoods associated with (1) and (2). 

2.3. A surrogate for the deformed emission loglikelihood 

We use the results of the previous section to develop sur- 
rogates to the loglikelihood corresponding to ( I )  and (2). 
These may be used in the algorithm of Subsection 2.1 once 
a penalty surrogate is added. 

With = held fixed and applying Proposition 2.1 
to the additive form yL ( ) = xJk P,,W,,( ) l ; ,  one ob- 
tains the surrogate 

I ( :  1 ) =  

As noted in Remark 2.2, using this in step 2 in the algorithm 
of Subsection 2.1 is the EMML surrogate with respect to 

. Similarly, with = held fixed and applying Proposi- 
tion 2.1 to the additive form y, ( j = E,,, P,,I?i,,( ) I; 

one obtains, 

Since the matrices IY ( 
sion for 2 is of moderate complexity. 

ever 2( ; , ) may not be. One can apply Lemma 2.3 to 
obtain a convex surrogate if log Wj,( ) is convex. This 
is a situation that is encountered when the defomiations are 
modeled using log concave interpolators,e.g. raised cosine 
interpolators. 

) are typically sparse, this expres- 

The surrogate 1 ( ; , ) obtained above is convex, how- 

3. PRELIMINARY EXPERIMENTS 

We tested each strategy using simulated acquisitions of a 
64 x 64 torso phantom with a circular hot lesion, 2 pixels 
in diameter. The projection space was discretized into 180 
angles by 64 radial bins. We used K = 2 time frames. In 
time frame = 2, the phantom was stretched by a factor 
of = 10% in one direction. Tests were based on 50 
independent realizations of the acquisition at count levels 
of 0.3 and 3 average counts per bin per time-frame. In all 
cases, we used a discretized line integral forward projector 
and 10% mean background count rates. Presently, maxi- 
mum likelihood estimation was carried out without a rough- 
ness penalty. To better setve the purpose of these prelim- 
inary experiments, likelihood maximizations were not at- 
tempted using the optimization transfer technique approach 
proposed in Section 2.1 the previous section. Instead, we 
discretized the space of values into 22 values from 5% 
to 15%. Maximization over was done for each fixed 
value using EMML and subsequently over by exhaus- 
tive search. Since the negative loglikelihood is convex as a 
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Average Counts Per I Bin Per Time-Frame 

Uptake,U 

Stretch, 

Table 1. Performance data for reconstructions. 
Estimated I Method I Bias I Std. I %RMS 11 Std. Error I Std. Error 

JEDM -6.46 5.42 83.98 0.77 0.83 
FWPR -1.35 3.23 14.05 0.46 0.32 
JEDM -0.72 3.28 13.45 0.46 0.33 
EMML -6.56 3.22 29.51 0.46 0.32 
FWPR 0.31 2.45 24.46 0.35 0.32 
JEDM -0.35 0.85 9.08 0.12 0.33 

I JEDM I -6.50 1 8.32 I 42.42 11 1.18 I 0.83 
I EMML I -7.83 I 7.85 I 44.60 )I 1 . 1 1  I 0.78 

Stretch, I FWPR I 1.33 I 3.52 I 37.34 I1 0.50 I 0.65 

function of , this approach ensured that the iterates could 
not be trapped at a sub-optimal local minima. 

To test performance, we computed the empirical bias 
and standard deviation of the estimates of as we! as 
the percent root mean squared error, given by %RMS( ) = 

JMsE()/ I t r u e l .  The same was done for the estimated 
tracer uptake in the hot lesion, i.e., 0 = CjEJ  “ j  where 
J are the lesion pixels. The true uptake was 24.7. These 
results are reported in Table I .  For comparison, we have 
also reported the performance of EMML as applied to the 
total acquired data E“=, y , i.e., when object motion is not 
accounted for. We see that FWPR is the most robust to very 
low count levels. As the count level increases, however, 
JEDM seems to overtake FWPR, while plain EMML falls 
distinctly behind. 

In future work, we shall explore these trends for more 
elaborate deformation models and, additionally, evaluate the 
practical performance of the optimization techniques dis- 
cussed in this article. 
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