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Abstract-In magnetic resonance force microscopy (MRFM), it is
hypothesized that it is possible to detect the presence of a single
electron spin in a sample volume by measuring spin-induced at-
tonewton forces using a micromachined cantilever. In the oscil-
lating cantilever driven adiabatic reversals (OSCAR) method for
single-spin MRFM, electron spins are manipulated by an external
radio-frequency (RF) magnetic field to produce small periodic de-
viations in the resonant frequency of the cantilever. These devi-
ations can be detected by frequency demodulation followed by a
filtered energy detector. In this paper, we present an alternative to
energy detection methods, based on optimal detection theory and
Gibbs sampling. Receiver operating characteristic (ROC) curves
and power curves from simulations are shown for realistic MRFM
operating conditions. Surprisingly, the proposed detector performs
almost identically to the filtered energy detector for the range of
conditions we studied.

1. INTRODUCTION

Applied physicists recently proposed that magnetic resonance
force microscopy (MRFM) can potentially be further extended
to the single electron spin level, with sub-angstrom spatial imag-
ing resolution [1–3]. There have been successful experimental
demonstrations of detecting micron-size ensembles of electron
spins [4] and forces as small as8×10−19 Newton [5]. However,
detection of an isolated single electron spin has not yet been ac-
complished. Progress towards this goal will require not only
advances in physical measurements, but also a good model of
the measurement signal, and a corresponding effective detection
algorithm.

In this paper we focus on the oscillating cantilever driven
adiabatic reversals (OSCAR) technique [6] in MRFM. OSCAR
uses a modulated external radio-frequency (RF) magnetic field
to manipulate the electron spins in order to produce periodic
forces on the oscillating cantilever, which can be detected as
small frequency shifts from its natural frequency. Detection of
these frequency shifts identifies the presence of electron spins
(more details in Section 2). This methodology could potentially
be extended to provide single electron spin sensitivity. Unfor-
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tunately, the spin-induced frequency shift signal becomes ex-
tremely weak as the resolution gets close to the single-spin level.
Also, the measurements are severely contaminated by thermal
noise from various sources. Therefore, signal detection has to
operate at extremely low SNRs. Secondly, random spin relax-
ation leads to random signal parameter changes during measure-
ment.

The basebandamplitude detector andenergy detector make
the spin presence decisions by thresholding the average abso-
lute amplitude and total energy of the frequency demodulated
cantilever position signal, respectively. The basebandfiltered
energy detector is identical to the energy detector except that
it low-pass filters the demodulated signal, according to its de-
coherence statistics. In this paper, we study a new approach
to baseband detection in OSCAR-based MRFM experiments,
based on optimal detection theory. The detector is based on a
random telegraph model for the baseband measurement signal
incorporating Poisson-distributed random spin relaxation times,
random initial spin polarity, and additive white Gaussian noise
(AWGN). We propose a hybrid detection scheme which com-
bines optimalBayes andgeneralized likelihood ratio (GLR) de-
tection principles, implemented with Gibbs sampling. We ex-
plore, by simulations, whether the hybrid detector can outper-
form the detectors listed above, especially the filtered energy
detector currently being used in MRFM experiments. In our
simulations, the hybrid detector outperformed the amplitude and
energy detectors, but surprisingly, performance of the hybrid de-
tector was almost identical to that of the filtered energy detector.

2. DESCRIPTION OF THE OSCAR EXPERIMENT

In OSCAR, a submicron ferromagnet is placed at the tip of a
cantilever which sits above a sample (Fig. 1). In the presence of
an applied RF field, an electron in the sample undergoes mag-
netic resonance if the RF field frequency matches the Larmor
frequency, which is proportional to the strength of field due to
the magnetic tip at the electron position. Only those spins that
are within a thin resonant slice at a determinate distance will
satisfy the condition for magnetic resonance. Oscillation of the
magnetic tip leads to oscillation of the tip field strength at the
original resonant slice locations. It induces periodic small shifts



in the Larmor frequency of the spins in that slice. As the RF field
frequency is fixed and the Larmor frequency in the slice oscil-
lates, the spins in the slice go through on- and off- resonance
states periodically.

Viewing the electron spins as magnetic dipoles, such res-
onance fluctuation causes the spins to reverse polarity syn-
chronously with the cantilever motion, and suchspin loading
changes the effective stiffness of the cantilever. Therefore,
spins-cantilever interaction can be detected by measuring small
shifts in the period of cantilever oscillation using laser interfero-
metric cantilever position sensing. Signal deconvolution of spin
ensemble measurements at different locations above the sample
can potentially provide single spin resolution [7]. For more de-
tails about OSCAR, see [8–10].
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Fig. 1. Schematic of the OSCAR experiment.

A classical mechanical analysis ofsingle-spin-cantilever in-
teraction was proposed by Berman et al. [11] and Rugar et al.
[12]. By assumption of linearity, the analysis could be extended
to interaction between multiple spins and cantilever.

Let the vertical position of the cantilever tip be denoted byz
wherez = 0 denotes its rest position. According to [11, 12],
under the influence of the external RF fieldB1(t), the electron-
spin force, and random thermal force noiseFn(t), the motion of
the cantilever tip can be approximated by the simple harmonic
oscillator equation:

mz̈(t) + Γż(t) + (k + ∆k)z(t) = Fn(t), (1)

wherem is the cantilever’s effective mass,k is the cantilever
spring constant,Γ is the friction coefficient characterizing can-
tilever energy dissipation, and∆k = −µG2/|B1| is the shift in
spring constant, withωo =

√
k/m being the natural mechani-

cal resonance frequency of the cantilever,G = ∂B0,z/∂z being
the z-direction field gradient at the spin location, andµ being
the amplitude of the spin magnetic moment. The spring con-
stant shift results in a shift of∆ωo in the cantilever resonant
frequency:

∆ωo ≈ −1
2
ωo

µG2

k|B1| . (2)

In OSCAR,B1(t) is turned off everyTskip seconds over a half
cycle duration (π/ωo) (Fig. 2) to cause periodic transitions be-
tween thespin-lock andanti-spin-lock spin states. Therefore,
∆ωo alternates between the two values± 1

2ωo|µ|G2/(k|B1|)
with periodTskip. By settingFn(t) = 0 in (1) and ignoring
decay, the solution to (1) can be approximated as the frequency
modulated signal:

z(t) = A cos
(
ωot+

∫ t

0

s̄(t′)dt′ + θ

)
. (3)

HereA is the cantilever oscillation magnitude,θ is a random
phase, and̄s equals a periodic square wave with period2Tskip

and amplitude|∆ωo| if spin coupling occurs, and 0 otherwise
(Fig. 2). Thus spin loading can be detected by frequency de-
modulation ofz(t) to baseband (incorporating subtraction of the
known center frequencyωo), followed by correlating the base-
band signal against the known square wave signal derived from
B1(t), and finally applying a detection algorithm (Fig. 3).

Unfortunately, in a non-ideal experiment, the interferometric
cantilever position signal is degraded by thermal noise, which
adds a noise floor to the demodulated signal. Another factor
is spin relaxation at random time instants during measurement.
We assume that spins maintain spin-lock or anti-spin-lock states
but spontaneously and asynchronously change polarity during
the course of measurement at rateλ reversals/second, leading
to random transitions of∆ωo between± 1

2ωo|µ|G2/(k|B1|). In
the following section we develop a detection algorithm using a
Poisson random process model for these polarity reversals.
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Fig. 2. Top: Sample ideal cantilever position signal from interferometer at
10 kHz. Frequency shifts are not detectable by eye. Middle: Amplitude of
sample RF magnetic field,B1(t). It has synchronous half-cycle skips at 1 ms,
2 ms, and 3 ms for creation of spin state transitions. Bottom: Ideal and noisy
outputs of the frequency demodulator under the spin presence hypothesis. It
has both deterministic transitions due to the RF skips at 1 ms, 2 ms and 3 ms,
and random ones due to spin relaxation. The random transitions,� , occur as a
Poisson process. The initial polarity isφ = 1 for this example.



3. SIGNAL MODELING AND DETECTION

The signal detectors we consider operate on the baseband output
signal of a frequency demodulator and a correlator with a square
wave referencep(t) ∈ {±1} of period2Tskip, whose transitions
are synchronous with the (known) RF turn-off times (Fig. 3).
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Fig. 3. Baseband detector frequency demodulates the interferometric signal,
correlates the output against a square wavep(t) whose transitions are syn-
chronous with the turn-off times of the RF fieldB1(t), and generates a test
statistic, for detecting presence of a spin.

We model the baseband outputy(t) of the frequency demod-
ulator and correlator as a random telegraph signal with AWGN.
Let [0, T ] be the measurement time period andτ = {τi}, i =
1..N , be the time instants within this period at which random
spin reversals occur. We assumeτ are the arrival times of a
Poisson process with intensityλ. ConsequentlyN is a Poisson
random variable with rateλT [13]. Thus,y(t) = s(t) + v(t)
wherev(t) is AWGN with varianceσ2

v , ands(t) is a random
telegraph signal containing only the random transitions:

s(t) = φ|∆ωo|
N∑

i=0

(−1)ig(
t− τi

τi+1 − τi
), (4)

whereφ is a random variable that takes on±1 with equal prob-
ability, representing a random initial spin polarity,τ0 = 0,
τN+1 = T , andg(t) is the rectangle function:g(t) = 1 for
t ∈ (0, 1] andg(t) = 0 otherwise. Also, defines(0) = φ|∆ωo|.
If there are no random spin reversals in the time period[0, T ],
thens(t) = φ|∆ωo| is constant over time, which we obtain in (4)
by using the convention that whenN = 0, τo = 0 andτ1 = T .

The baseband spin detection problem is to design a test be-
tween the two hypotheses:

H0 (spin absent): y(t) = v(t)
H1 (spin present): y(t) = s(t) + v(t) (5)

for t ∈ [0, T ].

3.1. The Amplitude, Energy, and Filtered Energy Detectors

One simple detection scheme for the above detection problem is
the amplitude detector:∣∣∣∣∣

1
T

∫ T

0

y(t′)dt′
∣∣∣∣∣

H1
>
<
H0

η (6)

whereη is a threshold set to satisfy a desired probability of false
alarm (PF ) constraint:PF ≤ α. In practice, a suitable thresh-
old value can beempirically determined by measurement of the
noise variance under the null hypothesis. That applies to the
other detectors as well. Other detector options include the en-
ergy detector and filtered energy detector:∫ T

0

[ζ(t′)]2dt′
H1
>
<
H0

η (7)

whereη is a threshold chosen to givePF ≤ α, ζ(t) = y(t)
for the energy detector, andζ(t) = y(t) ∗ h(t) for the filtered
energy detector, with∗ denoting convolution, andh(t) being the
impulse response of a low-pass filter. The bandwidth of the filter
should be dependent on the random reversal rateλ.

3.2. The Hybrid Bayes/GLR Detector

For detection of signal with random parameters, the minimum
average probability of decision error (minPE) detector is a
Bayes likelihood ratio test that averages the omniscient likeli-
hood ratio test statistic over all random parameters [14]:

log Λ(y)

= log
E� ,N [Eφ [f (y; τ , N, φ|H1)]]

f(y|H0)

H1
>
<
H0

η, (8)

where functionf is the joint probability density function of
{y(t)}t∈[0,T ] parametrized by the random parametersτ , N, φ,
andEx[·|A] denotes conditional expectation over random vari-
ablesx given eventA. For minPE, thresholdη should be set to
a ln[P (H0)/P (H1)] + b, wherea, b are known constants, and
(P (H0), P (H1)) are the a priori probabilities ofH0 andH1.
However, since the a priori probabilities are unknown, we setη
to satisfyPF ≤ α.

While the expectation overφ in (8) is simple to evaluate, the
expectation over{τ , N} is very difficult since the integration
region is of very high (infinite) dimension. An alternative to
performing this second expectation is to invoke the GLR princi-
ple. The GLR consists of replacing the unknown parameters in
(8) by maximum likelihood (ML) estimates:

log Λ(y)

= log
max� ,N {Eφ [f (y; τ , N, φ|H1)]}

f(y|H0)

H1
>
<
H0

η,

(9)

whereη is set to satisfyPF ≤ α. As y(t) is a conditionally
Gaussian random process givenτ andN , the log-likelihood
function in (9) can be simplified by invoking the Cameron-
Martin formula [15]:

log Λ(y) = max
� ,N

{
log cosh

[
1
σ2

v

∫ T

0

y(t)s+(t; τ , N)dt
]}

− 1
2σ2

v

∫ T

0

(s+(t; τ , N))2dt (10)



wheres+(t; τ , N) is the synthesized telegraph signal (4) having
initial polarityφ = 1 (sinceEφ[·] is taken) and parametrized by
τ andN . In (9) we have averaged overφ while we have maxi-
mized over{τ , N}, leading to what we call ahybrid Bayes/GLR
test. Notice that the second term in formula (10) is a constant
dependent only on SNR, and thelog cosh(·) function acts as an
absolute-value function. Indeed, the hybrid Bayes/GLR detec-
tor simply searches for a synthesized sample telegraph signal
which has highest absolute correlation with the measurement,
and then makes a decision via thresholding the statistic given by
the search result.

3.2.1. Solution via Gibbs Sampling

The maximization in (10) by exhaustive search over the un-
countably infinite-dimensional space of possible parameter val-
ues,{τ , N}, is impractical. An alternative is to more efficiently
search over the space by Gibbs sampling [16, 17]. Given Pois-
son intensityλ, we can generate samples{τ (j), N (j)} from the
prior Poisson distribution in order to find the maximizer of (10).

The general description of the Gibbs sampler is as fol-
lows. Suppose there is a random vector variableX =
[x1, x2, . . . , xp]T having density functionfX from which we
want to sample. Suppose also that we can simulate thei-th el-
ement ofX given samples (already simulated) of the other ele-
ments:

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp) for i = 1..p
(11)

Then a Markov sequence,x(j) = [x(j)
1 , . . . , x

(j)
p ]T , can be sim-

ulated by the recursion

X
(j+1)
1 ∼ f1(x1|x(j)

2 , . . . , x(j)
p ),

X
(j+1)
2 ∼ f2(x2|x(j+1)

1 , x
(j)
3 , . . . , x(j)

p ),
...

X(j+1)
p ∼ fp(xp|x(j+1)

1 , x
(j+1)
2 , . . . , x

(j+1)
p−1 ). (12)

The distribution ofx(j) will converge tofX after a certain
amount ofburn-in time [16]. Since the arrival times are dis-
tributed as a Poisson process, the univariate conditional distribu-
tions (12) are easy to sample from because they are conditionally
uniform.

4. SIMULATION METHODS AND RESULTS

All of our detection algorithm evaluation were based on sim-
ulated receiver operating characteristic (ROC) curves, which
were obtained by empirically generating the pairs(PF, PD) for
each detector. All simulations was performed in the Matlab
6.5 environment based on the Monte Carlo methodology [16].

For the simulation of one ROC curve point, we generated sam-
ples{y(j)

d (n)}, yd(n) = y(nTs), under both Hypothesis 0 and
1, whereTs was the sampling period. The samples were in-
put to the detector being evaluated, andPD andPF were sta-
tistically calculated. 500 detection trials were performed un-
der each hypothesis. For each ROC curve, the above process
was repeated with a range of decision threshold valuesη. This
range was heuristically chosen to adequately sample the domain
PF ∈ [0, 1].

The signal durationT was 3 seconds and the sampling
period Ts was 0.5 milliseconds. The signal amplitude was
fixed at 1, and the variance of the detector noise (AWGN)
was adjusted to give a particular value of SNR, defined as
10 log10[(1/(Tσ2

v))
∫ T

0 |s(t)|2dt]. In all simulations we used
5,000 Gibbs samples for the hybrid Bayes/GLR detector, and
the following single-pole low-pass filter for the filtered energy
detector:

H(z) =
c(1 + z−1)
1 − az−1

, (13)

wherec = (1 − a)/2, a = (1 − sin(ω))/ cos(ω), andω =
2πλTs.
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Fig. 4. Simulated ROC curves for the matched filter, energy detector, amplitude
detector, filtered energy detector, and hybrid Bayes/GLR detector, at SNR = -25
dB andλ = 1 per-second.

The objective of our simulations was to compare the detec-
tion performance of the unimplementable, optimalomniscient
matched filter (with knowledge of all the parameter values), am-
plitude detector, energy detector, filtered energy detector, and
the proposed hybrid Bayes/GLR detector. ROC curves for SNR
= -25 dB, withλ = 1 per-second, are shown in Fig. 4. Our
hybrid Bayes/GLR detector outperformed the amplitude and en-
ergy detectors, and was outperformed by the unimplementable
matched filter as expected. Surprisingly, it had almost identical
performance as the filtered energy detector.

To study how detection performance depends on SNR, we did



ROC simulations for a range of SNR values withλ = 1 per-
second. We did least-square data fitting on ROC data points in
the neighborhood ofPF = 0.1 to find thePD values correspond-
ing to PF = 0.1. Power curves for all detectors as a function
of SNR are shown in Fig. 5. We realized that the hybrid de-
tector and filtered energy detector performed almost identically
at all the SNR values we investigated. They outperformed the
amplitude and energy detectors by almost the same margin: to
attain detection performance atPD = 0.8, say, the energy de-
tector and amplitude detector required SNRs of at least -14 dB
and -17.5 dB, respectively, while the hybrid Bayes/GLR detector
and filtered energy detector only required -26 dB. As compared
to the amplitude detector, this represented an improvement of
almost 9 dB in SNR performance. Furthermore, both the hy-
brid Bayes/GLR and filtered energy detectors were only 4 dB
worse than the performance bound of -30 dB established by the
matched filter for this level ofPF andPD.
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Fig. 5. Power curves (PD vs. SNR) for the five detectors considered in this
paper forPF = 0.1 andλ = 1 per-second. AtPD = 0.8 both the hybrid
Bayes/GLR and filtered energy detector performed within 4 dB of the bound
established by the matched filter.

5. CONCLUSION

In this paper we described a simple single-spin signal model
that physicists have postulated for the OSCAR experiment, and
a corresponding hybrid Bayes/GLR approach to detecting the
presence of single spin. Assumptions in the model derivation,
and even the classical mechanical framework of the single-spin-
cantilever interaction, need to be validated. Nevertheless, it is
an important first step to aid MRFM physicists in improving
MRFM resolution, and to stimulate more sophisficated physical
analysis, signal modeling and detector design.

As expected, with increased computational time, the hybrid
Bayes/GLR detector performed significantly better than the am-
plitude and energy detectors in our simulations, but we were

surprised to see that it performed almost identically as the fil-
tered energy detector along the entire power curve. Indeed, it
may not be a coincidence. Optimality of the hybrid detector and
filtered energy detector are currently under investigation.

While applied physicists are acquiring insights about MRFM
theories and experiments, more sophisticated signal models of
the cantilever measurements are being postulated, and research
in the development of associated detection schemes continues.
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