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Abstract

Conventional numerical reconstruction for digital
holography using a filter applied in the spatial fre-
quency domain to extract the primary image may yield
suboptimal image quality because of the loss in high-
frequency components and interference from other un-
desirable terms of a hologram. In this paper, we pro-
pose a new numerical reconstruction approach using
a statistical technique. This approach reconstructs the
complex field of the object from the real-valued holo-
gram intensity data. Because holographic image re-
construction is an ill-posed problem, our statistical
technique is based on penalized-likelihood estimation.
We develop a Poisson statistical model for this prob-
lem and derive an optimization transfer algorithm that
monotonically decreases the cost function each itera-
tion. Simulation results show that our statistical tech-
nique has the potential to improve image quality in
digital holography relative to conventional reconstruc-
tion techniques.

1 Introduction
Digital recording of a hologram on a digital camera

and a numerical reconstruction of a complex wavefield
on a computer are attractive due to time-consuming
processes of optical recording on photographic film
and optical reconstruction preparation in conventional
holography. In digital off-axis holography [1], the
most common approach for extracting only the real
or virtual image using numerical reconstruction is to
perform a digital spatial filter on the hologram [2].
The main drawbacks of this approach are the loss of
high frequency components in the reconstructed holo-
graphic image and interference from other terms in
the hologram. Moreover, this approach is limited by a
plane wave assumption of the reference beam. Phase-
shifting [3, 4] and phase modulation [5] methods were
proposed to suppress the zero-order image and one
of the twin images, but they require at least three
holograms to reconstruct one holographic image. The
approach proposed in [6] retrieves the complex object

beam by solving a small system of equations; however,
no noise model was considered.

Because of the drawbacks of existing approaches,
we propose a new holographic reconstruction approach
using a statistical technique [7]. Statistical image re-
construction for holography can be formulated as an
inverse problem in which we try to obtain a complex
reconstructed holographic image from hologram inten-
sity data that are real. Çetin et al. [8] proposed a
statistical technique for digital holography and other
coherent imaging applications. However, their method
was based on a simple image model and used a least-
squares approach.

According to the recording process of a hologram,
our statistical model assumes a Poisson distribution
having the mean associated with a squared magni-
tude of the interference between the object and refer-
ence beams. Due to the ill-posed nature of image re-
construction, our statistical technique uses penalized
likelihood (PL) estimation. The likelihood function
in this optimization problem contains multiple global
minimizers. Therefore, regularization is necessary to
improve the problem conditioning and to reduce non-
uniqueness. Moreover, at least two measured holo-
grams are needed to avoid an under-determined prob-
lem when reconstructing a complex holographic image
with the same number of pixels as the recorded holo-
gram.

In PL estimation, the unknown parameter, which
is the complex object wavefield, is estimated by mini-
mizing a cost function. Since closed-form solutions are
unavailable, we need an iterative algorithm to solve
the problem. We approach this problem by using op-
timization transfer and convexity techniques. Instead
of minimizing the original cost function, we minimize
the surrogate function using an iterative algorithm,
such as the separable-paraboloidal-surrogate [9, 10] or
conjugate gradient algorithms. These methods mono-
tonically decrease the cost function.



2 Measurement and Statistical Models
Let Y = [Y1, . . . , YN ] denote the hologram mea-

surement data recorded on a digital camera, where N
is the number of measurement elements. Because the
measurement data are usually noisy, we consider the
measurement reported by the ith element of a digital
camera to be a random variable whose mean is mod-
eled as follows:

E[Yi] = |[Ax]i + ui|
2
+ bi, i = 1, . . . , N, (1)

where A is the known system matrix, x is the unknown
parameters to be estimated, ui is the known reference
beam, and bi is the known offset due to effects such
as dark current. The goal is to estimate x from the
measured Yi’s, since x parameterizes the unknown ob-
ject of interest. The argument [Ax]i belongs to the
object beam which relates to the object through the
system matrix. The system matrix A can represent an
imaging system matrix as well as Fresnel and Fourier
transforms.
In statistical techniques for inverse problems, one

uses the statistical characteristics of the measurement
system to design the noise model. Since Poisson dis-
tributed photon noise is the dominant source of noise,
we model the noisy measurement of the hologram
recorded on a digital camera as a Poisson distribution
with the mean described in (1):

Yi ∼ Poisson{|[Ax]i + ui|
2 + bi}, i = 1, . . . , N. (2)

Because the unknown image vector x is complex, the
size of the data vector Y should be at least twice the
number of elements of x, otherwise the problem will
be under-determined.
To reconstruct a holographic image, we specify a

cost function to be minimized. Since image recon-
struction is an ill-posed problem, we focus on PL esti-
mation having the cost function in the following form:

Φ(x) = L(x) + V (x) (3)

where L denotes the negative log-likelihood function
of the measurement, and V denotes the roughness
penalty function.
The negative log-likelihood function corresponding

to the model (2) is given by:

L(x) =

N∑
i=1

hi([Ax]i) (4)

where the argument l = lR + ılI for hi(l) is complex,
and

hi(l) = hi(l
R, lI) = −yi log(|l + ui|

2 + bi) +

(|l + ui|
2 + bi) (5)

ignoring irrelevant constants independent of x. The
superscripts R and I indicate the real and imaginary
parts, respectively. The measured values yi’s that are
real-valued are samples of independent Poisson ran-
dom variables Yi’s.

We consider penalty functions that penalize the dif-
ferences between neighboring object pixels using the
following form [10]:

V (x) = β
r∑
i=1

ψ([Cx]i) (6)

where ψ is a potential function, C is a penalty matrix,
β is a regularization parameter that controls the de-
gree of smoothness in the reconstructed image, and r
is the number of pairs of neighboring object pixels.

Our goal is to estimate x by finding the minimizer
of the cost function:

x̂
4
= argmin

x
Φ(x). (7)

Since closed-form solutions for the minimizer are
unavailable, iterative algorithms are needed.

3 The Algorithm
Directly minimizing the cost function in (3) is diffi-

cult when hi’s are nonquadratic. To simplify the opti-
mization problem and to assure monotonic decreases
in the cost function at each iteration, one can apply
an optimization transfer approach by finding a “sur-
rogate” function φ that lies above the cost function
[11, 9, 10]. Therefore, we obtain the next estimate by
minimizing the surrogate function instead:

xn+1
4
= argmin

x
φ(x;xn) (8)

where xn denotes the estimate at the nth iteration.

We first focus on the likelihood part. Since
quadratic choices for the surrogate φ are particularly
easy to minimize, our goal now is to find a parabola
that lies above the negative log-likelihood function.
Figure 1 illustrates the one-dimensional plot of the
marginal cost function hi(l

R, 0). In this plot, the
marginal cost function has two optimal minima. How-
ever, a 2-D plot of hi(l

R, lI) has multiple minimizers
like a circle.

Because the negative log function is convex, we can
apply De Pierro’s multiplicative trick [12] to separate
the real and imaginary parts of hi(l

R, lI). Thus we
obtain the following surrogate function:

hi(l
R, lI) ≤ hRi (l

R; ln) + hIi (l
I ; ln) (9)
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Figure 1: Illustration of the marginal cost, hi(l
R, 0),

and surrogate functions as a function of lR. The func-
tion with the dashed line is called the paraboloidal
surrogate function which has the same first derivative
and the same point as the original cost function at
l = ln.

where

hoi (l
o; ln)

4
= −yiα

o,n
i log

(
(lo + uoi )

2 + bi/2

αo,ni

)
+(lo + uoi )

2 + bi/2,

αo,ni =
(lo,n+uoi )

2+bi/2
kni

, kni = |l
n+ui|2+bi, ln = [Axn]i,

and o represents the real or imaginary part.

The surrogates hRi and h
I
i each have two minima

and are symmetric about the line l = −ui. To facil-
itate the minimization in (8), we want to construct
the following parabolic surrogate that lies above these
curves:

qoi (l
o; ln) = hoi (l

o,n; ln) + ḣoi (l
o,n; ln)(lo − lo,n) +

1

2
coi (l

o − lo,n)2 (10)

where ḣoi is the first derivative of h
o
i and c

o
i is the

curvature of the parabola qoi . This parabola has the
same value as hoi at the current estimate l

o = lo,n and
the same first derivatives at that point. To ensure
that the parabolic surrogate lies above the original
cost function [7], we have chosen the curvatures using
the following general expression:

coi = max
l∈R

{
ḣoi (l; l

n)− ḣoi (l
o,n; ln)

l − lo,n

}
. (11)

Thus the likelihood surrogate function is

Q(x;xn)
4
=

N∑
i=1

qRi ([Ax]
R
i ; [Ax

n]i) + q
I
i ([Ax]

I
i ; [Ax

n]i).

Since this Q function is quadratic, many algorithms
could be applied to obtain the minimizer. In this
paper, we use the separable-paraboloidal-surrogate
(SPS) algorithm [9, 10] for this problem. The con-
jugate gradient (CG) method could also be applied
easily because nonnegativity constraint is not enforced
in this problem.
To apply the SPS approach, we separate pixels by

using the additive convexity technique developed by
De Pierro [12] so that simultaneous updating can be
performed. The resulting function is called the sep-
arable paraboloidal surrogate function Qj. Since Qj
is a quadratic function of two variables: xRj and x

I
j ,

minimizing Qj using Newton’s method includes a 2×2
matrix-vector multiplication for each pixel as follows:

xn+1j

4
= argmin

xj
Qj(x

R
j , x

I
j ;x

n)

= xnj −H
−1
j ∇Qj(x

n
j ;x

n), j = 1, . . . , P

where the gradient of Qj and the jth 2×2 Hessian
matrix, Hj , are in (12) and (13).
Without regularization, a noisy image might be ob-

tained after several iterations. Therefore, we derive
the surrogate function for the penalty term in PL es-
timation. To be flexible, we separately penalize the
real and imaginary parts. Thus, the penalty function
can be expressed in the following form:

V (x) = βR
r∑
i=1

ψ([CRxR]i) + β
I
r∑
i=1

ψ([CIxI ]i), (14)

where the superscripts R and I represent the real and
imaginary parts. To preserve edges, we use a non-
quadratic potential function ψ of the following form
[13]:

ψ(t) = δ2
[∣∣∣∣ tδ

∣∣∣∣− log
(
1 +

∣∣∣∣ tδ
∣∣∣∣
)]

(15)

where δ is a user-specified parameter that controls the
degree of edge preservation.
Similar to the nonquadratic likelihood function, we

derive the surrogate functions, and the update of the
SPS algorithm with regularization becomes

(
xR,n+1j

xI,n+1j

)
=


 xR,nj −

(dIIj +p
R
j )(L̇

R
j +V̇

R
j )−d

RI
j (L̇

I
j+V̇

I
j )

det H̃j

xI,nj −
−dRIj (L̇

R
j +V̇

R
j )+(d

RR
j +pRj )(L̇

I
j+V̇

I
j )

det H̃j






∇Qj(x
n
j ;x

n) =

( ∑N
i=1 a

R
ij ḣ
R
i ([Ax

n]Ri ; [Ax
n]i) + a

I
ij ḣ
I
i ([Ax

n]Ii ; [Ax
n]i)∑N

i=1−a
I
ij ḣ
R
i ([Ax

n]Ri ; [Ax
n]i) + a

R
ij ḣ
I
i ([Ax

n]Ii ; [Ax
n]i)

)
=


 ∂L(x)

∂xRj
∂L(x)

∂xIj



x=xn

4
=

(
L̇Rj
L̇Ij

)
(12)

Hj
4
=

[
dRRj dRIj
dIRj dIIj

]
=


 ∑Ni=1 1

πij
[(aRij)

2cRi + (a
I
ij)
2cIi ]

∑N
i=1

aRija
I
ij

πij
(−cRi + c

I
i )∑N

i=1

aRija
I
ij

πij
(−cRi + c

I
i )

∑N
i=1

1
πij
[(aIij)

2cRi + (a
R
ij)
2cIi ]


 (13)

where V̇ oj is the gradient of the penalty surrogate func-
tion, po,nj is the curvature of the penalty surrogate

function, and H̃j is the new Hessian matrix

H̃j = Hj +

[
pRj 0
0 pIj

]
. (16)

4 Simulation Results
A 128×128 original image (Fig. 2a) that is complex

was degraded by the PSF, interference pattern, and
Poisson noise (Fig. 2b) as in (2). We used a 7×7 jinc

function, J1(2πr)
πr

where J1 is a Bessel function of the
first kind and r is a polar-coordinate parameter, with
full width at half maximum (FWHM) of 3.5 pixels as
the PSF of the system, and the following reference
beams:

ur1(n1, n2) = 200 exp

(
−ı
2π

3
n1

)
, n1, n2 = 0, . . . , 127

ur2(n1, n2) = 150 exp

(
−ı
2π

4
n1

)
, n1, n2 = 0, . . . , 127.

The offset bi is assigned to be 5 and 10 for the first
and second data, respectively. The Poisson noise has
the peak signal-to-noise ratio (PSNR) of 29 dB and
24 dB in the first and second hologram data (Fig. 2b),
respectively. The PSNR in the data is defined as fol-
lows:

PSNR
4
= 10 log10

[
maxi(yi − bi)2

1
N

∑N
i=1(yi − E[yi])

2

]
. (17)

Each simulated real-valued hologram data has the
same size (128×128 pixels) as the original complex-
valued image.
Figure 2c shows the conventional reconstruction us-

ing an apodizing Gaussian mask. The 41×41 Gaussian
mask with FWHM of 27.2 pixels is performed on the
selected region in the frequency domain of the holo-
gram. The magnitude and phase of the reconstructed
image appear to be blurry while noise still remains.

Owing to the effect of the filtering method, noise can-
not be removed completely without oversmoothing
edges. Figures 2d shows our statistical holographic
reconstruction. We used the image from the conven-
tional approach as the initial image and included the
nonquadratic penalty function with the regularization
parameters βR = βI = 10 and the edge-preserving
parameters δR = δI = 1. The SPS algorithm was
run for 200 iterations. Unlike the conventional tech-
nique, the statistical technique with the nonquadratic
penalty can greatly reduce noise while still preserv-
ing edges. The normalized root mean-squared error
(NRMSE) in percentage is defined as follows:

NRMSE =
‖x̂− xtrue‖

‖xtrue‖
× 100% (18)

where x̂ is the reconstructed image, xtrue is the true
image, and ‖ · ‖ represents the Euclidean norm.
Our statistical technique has a monotonic decreas-

ing cost function. The unique global solution is not
guaranteed in this problem because the original neg-
ative log-likelihood function does not have a unique
minimizer. Nevertheless, the penalty function can
greatly reduce this non-uniqueness.

5 Conclusions
We have demonstrated the potential for recon-

structing a digital holographic image using the pro-
posed statistical technique. Because the method uses
all the information in the recorded hologram rather
than just one term, this approach can improve the
quality of the image relative to the conventional nu-
merical reconstruction technique that uses a spatial
filter applied in the spatial frequency domain. More-
over, unlike the conventional approach, our statistical
technique is not limited by the plane wave assumption
of the reference beam. Because of the ill condition-
ing and non-uniqueness of the problem, our statistical
holographic reconstruction is based on PL estimation.
We constructed a statistical model for this system and
developed a monotonic algorithm. Although a unique
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Figure 2: Holographic reconstruction of a complex ob-
ject. The top image of each pair represents the mag-
nitude and the bottom image represents the phase,
except for the hologram data. (a) Original im-
age. (b) Two different hologram data. (c) Conven-
tional reconstruction using an apodizing Gaussian fil-
ter (NRMSE=40.0%). (d) Statistical reconstruction
using two data sets (NRMSE=14.1%).

global minimum is not guaranteed due to the non-
uniqueness nature of the negative log-likelihood func-
tion in this problem, we mostly overcome the problem
of multiple minima through the help of the penalty
function and by increasing the number of measure-

ments.
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