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ABSTRACT

We consider an emission tomography reconstruction prob-
lem in which projection measurements from several suc-
cessive time frames are available. Two strategies for do-
ing motion-corrected image reconstruction are compared.
In the first strategy, separate images are reconstructed from
the measurements at each time frame. They are then con-
solidated by post-registration and averaging procedures. In
the second strategy, parameters to describe the effects of
motion are added to the statistical model of the projections.
Joint maximum likelihood estimation of image and motion
parameters is then carried out.

1. INTRODUCTION

To account for motion effects in Positron Emission Tomog-
raphy (PET), one may break the scanning period into time
frames= 0, 1, 2, . . . ,K in which separate measured projec-
tion vectors{yκ}Kκ=0 are acquired by the tomograph. We
assume the durations of these time frames are sufficiently
short so that the motion of the object over the length of each
time frame can be neglected. These measurement vectors
then provide “snapshots”, in a sense, of the radio-tracer ac-
tivity image at different points throughout the scan. In this
work, we examine different strategies for reconstructing an
image of the object based on the measured data{yκ}Kκ=0.
We model the measurements as Poisson with ensemble means
{ȳκ} given by,

ȳ0(λ) = P 0λ+ r0 (1)

ȳκ(λ, ακ) = P κWκ(ακ)λ+ rκ, κ = 1, . . . ,K. (2)

Hereλ is the vector of unknown activity image pixel values
in time-frameκ = 0. Also, for each time-framek, Pκ is
a forward projection matrix,rκ is a known vector of mean
background counts, andWκ(ακ) is an image transforma-
tion that depends on an unknown deformation parameter
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vectorακ. The transformed imageWκ(ακ)λ gives the pixel
values of the activity image in time-framek, after undergo-
ing changes due to anatomical motion and other physical
processes. Typically, each vectorακ has far fewer compo-
nents thanλ. For example,ακ could be the coefficients in a
B-spline deformation model.

We consider two main reconstruction strategies. The
first, is to obtain estimateŝλ and α̂κ, κ = 1, . . . ,K ac-
cording to

(λ̂, α̂1, . . . , α̂K) = F (y1, . . . , yK), (3)

whereF (·) is a penalized maximum likelihood estimator
operating on measurements from all frames. We refer to this
as the Joint Estimation with Deformation Modeling (JEDM)
strategy. The second, which we call the Frame-Wise Post
Registration (FWPR) strategy proceeds as follows,

1. For each frameκ = 0, 1, . . . ,K obtain an estimate
λ̂κ = fκ(yκ) of Wκ(ακ)λ where thefκ(·) are pe-
nalized maximum likelihood estimators.

2. For framesκ = 1, . . . ,K obtain a least squares esti-
mate

α̂κ = argmin
α
||Wκ(α)λ̂0 − λ̂κ||

2
(4)

for the deformation parameter vectors.

3. Consolidate thêλκ according to

λ̂ =
λ̂0 +

∑K
κ=1W

κ([α̂κ]−1)λ̂κ

K + 1
. (5)

Here[α̂κ]−1 denotes the parameter vector that induces
the inverse transformation to that ofα̂κ.

In FWPR, the deformation parameters are not obtained from
the Poisson model, but rather by post-reconstruction fitting
using (4)1.

1As noted by a reviewer, the relationship between these two methods is
similar to pre-detection vs. post-detection integration in radar.



2. COST FUNCTION MINIMIZATION

In statistical tomographic imaging, the application of max-
imum (penalized) likelihood estimation involves minimiz-
ing an (often non-convex) cost functionΦ(θ), one term of
which is the negative of the Poisson loglikelihood function,
L(θ). Ignoring, irrelevant constants, the latter has the form

L(θ) =
∑
i

[ȳi(θ)− yi log ȳi(θ)], (6)

whereȳi(θ) is the Poisson mean of the measurementsyi and
θ is a generic vector of unknown parameters. In the model
described in (1) and (2), we haveθ = (λ, α).

A method for attacking such problems that has received
considerable attention in recent years (e.g. [1, 2, 3, 4])
is that of optimization transfer. This technique involves
constructing a so-called surrogate functionφ(·, θ̄) satisfy-
ingφ(θ, θ̄) ≥ Φ(θ) for all θ, with equality at̄θ. Henceforth,
we abbreviate this relationship, by writing

φ(·; θ̄)
θ̄
� Φ. (7)

The EM algorithm can be viewed as a particular case of
optimization transfer (as explained, for example, [5]). The
minimizerθ∗ of φ(·, θ̄) has the property thatΦ(θ∗) ≤ Φ(θ̄).
Applying this iteratively, one obtains a sequence{θn} that
monotonically reducesΦ and whose limit points are station-
ary under fairly weak conditions [6]. In this section, we dis-
cuss how to devise optimization transfer algorithms for the
present problem.

2.1. Algorithm structure

In this subsection, we propose an optimization transfer al-
gorithm that alternately minimizes the (penalized) loglike-
lihoodΦ(λ,α) (corresponding to (1) and (2)) with respect
to λ andα = (α1, . . . , αK). This is the space alternating
technique described in [7, 8, 6]. In what follows the func-
tionsφ1(λ; λ̄, ᾱ) andφ2(α; λ̄, ᾱ) are surrogates forΦ with
respect to their first arguments, i.e.,

φ1(·; λ̄, ᾱ)
λ̄
� Φ(·, ᾱ) (8)

φ2(·; λ̄, ᾱ)
ᾱ
� Φ(λ̄, ·). (9)

The algorithm has the following basic structure

1. Setn = 0 and select an initial point(λ0,α0)

2. Update the image by lettingλn+1 be any minimizer
of φ1(·;λn,αn) .

3. Update the deformation parameters by lettingαn+1

be any minimizer ofφ2(·;λn+1,αn).

4. Setn := n+ 1 and go to step 2.

To implement the algorithm, we must be able to find func-
tionsφ1(·; ·) andφ2(·; ·) satisfying (8) and (9) and which
are easy to minimize. Some tools for doing so are presented
in the next subsection.

2.2. Construction of surrogates for general Poisson log-
likelihoods

A generic penalized Poisson loglikelihood function has the
formΦ(θ) = L(θ)+R(θ), whereL(θ) is as in (6) andR(θ)
corresponds to penalty terms. We wish to find a surrogate
function, i.e., a functionφ(·; ·) so that (7) holds. Prefer-
ably,φ(·; θ̄) will be convex to facilitate its minimization. To
find a surrogate, it is sufficient to find convex surrogates for
the separate termsL andR and add these two surrogates
together. It is usually a simple matter to find a convex sur-
rogate for common penaltiesR(θ) (see, for example,[2]).
The problem therefore reduces to one of finding a surrogate
for the negative Poisson loglikelihoodL(θ).

However,L(θ) is often a difficult, non-convex function
and finding a convex surrogate for it is a non-routine matter.
For certain Poisson loglikelihoods arising in emission and
transmission tomography (e.g. [1, 4]), methods for con-
structing quadratic surrogates have been presented. These
methods do not extend in any obvious way to the loglikeli-
hood associated with (1) and (2). We shall therefore pause
to present some additional techniques.

The first is encapsulated in the next proposition. Recall
that the Kullback-Leibler (KL) distance between two arrays
a andb with non-negative componentsaim andbim is,

KL(a, b) =
∑
i,m

[
aim log

aim

bim
+ bim − aim

]
(10)

with the conventions0 log 0 = 0, 0/0 = 0, andlog(1/0) =
∞. The KL distance has the property that KL(a, b) ≥ 0
with equality iff a = b.

Proposition 2.1 (Separation of Additive Poisson Means)
Suppose the means of Poisson measurements has an addi-
tive form

ȳi(θ) =

Mi∑
m

ȳim(θ) (11)

where allȳim(θ) ≥ 0 and define

yim(θ) = yi
ȳim(θ)

ȳi(θ)

Q(θ; θ̄) = L(θ) + KL(yim(θ̄), yim(θ)) (12)

=
∑
i,m

[ȳim(θ)− yim(θ̄) log ȳim(θ)] + const.

(13)



ThenQ(·; θ̄)
θ̄
� L(·), i.e.,Q is a surrogate forL.

Proof. The fact thatQ(·; θ̄)
θ̄
� L(·) is an easy consequence

of (12) and the properties of the KL distance. The fact that
Q(θ; θ̄) also has the form (13) can be verified by expanding
the term KL(yim(θ̄), yim(θ)) in (12). 2

Remark 2.2 When ȳi(θ) =
∑
im pimθm, then applying

Proposition 2.1 with̄yim(θ) = pimθm one obtains the sur-
rogate used in the analyses of the EMML algorithm in[9,
10].

From (13), one can see thatQ(θ; θ̄) has the form of
a Poisson loglikelihood function (ignoring irrelevant con-
stants) with measured datayim(θ̄)and means̄yim(θ). How-
ever, the terms̄yim(θ)−yim(θ̄) log ȳim(θ) are often simpler
than the original terms̄yi(θ) − yi log ȳi(θ). For example,
when ȳim(θ) has an exponential formbim exp(〈aim, θ〉),
as in [4], then the terms̄yim(θ)−yim(θ̄) log ȳim(θ) are con-
vex, whereas the original terms in (6) are not.

Even when thēyim(θ) do not have such an exponential
form, it may still be the case thatlog ȳim(θ) is concave. In
this case, a convex surrogate can be obtained as indicated in
the following Proposition.

Proposition 2.3 Suppose the assumptions of Proposition 2.1
are satisfied and, in addition, all of the functionslog ȳim(θ)
are concave. Then, apart from irrelevant constants,

φ(θ; θ̄) =
∑
i,m

[ȳim(θ̄) exp

(〈
∇ȳim(θ̄)

ȳim(θ̄)
, (θ − θ̄)

〉)

− yim(θ̄) log ȳim(θ)] (14)

is a convex surrogate forL(θ).
Proof. As established in Proposition 2.1, the expression on
the right hand side of (13) is, ignoring irrelevant constants,
a surrogate forL(θ). It is therefore sufficient to show that

ȳim(θ̄) exp

(〈
∇ȳim(θ̄)

ȳim(θ̄)
, (θ − θ̄)

〉)
θ̄
� ȳim(θ). (15)

Using the assumed concavity oflog ȳim(θ) and the mono-
tonicity of exp(·),

ȳim(θ) = exp(log ȳim(θ))

≤ exp(log ȳim(θ̄) +
〈
∇ log ȳim(θ̄), (θ − θ̄)

〉
)

= ȳim(θ̄) exp

(〈
∇ȳim(θ̄)

ȳim(θ̄)
, (θ − θ̄)

〉)

and equality holds at̄θ, verifying (15). 2

In the next subsection, we apply these results to the loglike-
lihoods associated with (1) and (2).

2.3. A surrogate for the deformed emission loglikelihood

We use the results of the previous section to develop sur-
rogates to the loglikelihood corresponding to (1) and (2).
These may be used in the algorithm of Subsection 2.1 once
a penalty surrogate is added.

With α = ᾱ held fixed and applying Proposition 2.1
to the additive form̄yκi (λ) =

∑
jk P

κ
ijW

κ
jk(ᾱ

κ)λk, one ob-
tains the surrogate

φ1(λ; λ̄, ᾱ) =∑
iκ ȳ

κ
i (λ) −

∑
k

(∑
ijκ

PκijW
κ
jk(ᾱ

κ)

ȳκi (λ̄,ᾱ
κ)

)
λ̄k log(λk)

As noted in Remark 2.2, using this in step 2 in the algorithm
of Subsection 2.1 is the EMML surrogate with respect to
λ. Similarly, with λ = λ̄ held fixed and applying Proposi-
tion 2.1 to the additive form̄yκi (α) =

∑
jk P

κ
ijW

κ
jk(α

κ)λ̄k
one obtains,

φ2(α; λ̄, ᾱ) =
∑
iκ

ȳκi (λ)

−
∑
jk

(∑
iκ

Pκij
ȳκi (λ̄,ᾱ

κ)

)
λ̄kW

κ
jk(ᾱ

κ) logWκjk(α
κ)

Since the matricesWκ(ακ) are typically sparse, this expres-
sion forφ2 is of moderate complexity.

The surrogateφ1(λ; λ̄, ᾱ) obtained above is convex, how-
everφ2(α; λ̄, ᾱ) may not be. One can apply Lemma 2.3 to
obtain a convex surrogate iflogWκjk(α

κ) is convex. This
is a situation that is encountered when the deformations are
modeled using log concave interpolators, e.g., raised cosine
interpolators.

3. PRELIMINARY EXPERIMENTS

We tested each strategy using simulated acquisitions of a
64 × 64 torso phantom with a circular hot lesion, 2 pixels
in diameter. The projection space was discretized into180
angles by64 radial bins. We usedK = 2 time frames. In
time frameκ = 2, the phantom was stretched by a factor
of α1 = 10% in one direction. Tests were based on 50
independent realizations of the acquisition at count levels
of 0.3 and 3 average counts per bin per time-frame. In all
cases, we used a discretized line integral forward projector
and 10% mean background count rates. Presently, maxi-
mum likelihood estimation was carried out without a rough-
ness penalty. To better serve the purpose of these prelim-
inary experiments, likelihood maximizations were not at-
tempted using the optimization transfer technique approach
proposed in Section 2.1 the previous section. Instead, we
discretized the space ofα1 values into22 values from5%
to 15%. Maximization overλ was done for each fixedα1

value using EMML and subsequently overα1 by exhaus-
tive search. Since the negative loglikelihood is convex as a



Table 1. Performance data for reconstructions.
Average Counts Per Estimated Method Bias Std. %RMS Std. Error Std. Error
Bin Per Time-Frame Quantity Dev. Error (of Mean) (of Std. Dev.)

0.3 Uptake,U FWPR -3.88 6.46 30.27 0.91 0.65
JEDM -6.50 8.32 42.42 1.18 0.83
EMML -7.83 7.85 44.60 1.11 0.78

Stretch,α1 FWPR 1.33 3.52 37.34 0.50 0.65
JEDM -6.46 5.42 83.98 0.77 0.83

3 Uptake,U FWPR -1.35 3.23 14.05 0.46 0.32
JEDM -0.72 3.28 13.45 0.46 0.33
EMML -6.56 3.22 29.51 0.46 0.32

Stretch,α1 FWPR 0.31 2.45 24.46 0.35 0.32
JEDM -0.35 0.85 9.08 0.12 0.33

function ofλ, this approach ensured that the iterates could
not be trapped at a sub-optimal local minima.

To test performance, we computed the empirical bias
and standard deviation of the estimates ofα1, as well as
the percent root mean squared error, given by %RMS(θ̂) =√

MSE(θ̂)/ |θtrue|. The same was done for the estimated

tracer uptake in the hot lesion, i.e.,Û =
∑
j∈J λ̂j where

J are the lesion pixels. The true uptake was24.7. These
results are reported in Table 1. For comparison, we have
also reported the performance of EMML as applied to the
total acquired data

∑K
κ=1 y

κ, i.e., when object motion is not
accounted for. We see that FWPR is the most robust to very
low count levels. As the count level increases, however,
JEDM seems to overtake FWPR, while plain EMML falls
distinctly behind.

In future work, we shall explore these trends for more
elaborate deformation models and, additionally, evaluate the
practical performance of the optimization techniques dis-
cussed in this article.
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