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Abstract— We consider an emission tomography reconstruction
problem in which projection measurements from several time
frames are available. Two strategies for doing motion-corrected
image reconstruction are compared. In the first strategy, sepa-
rate images are reconstructed from the measurements at each
time frame. They are then consolidated by post-registration and
averaging procedures. In the second strategy, we incorporate
parameters to describe the effects of motion into the statistical
model of the projections. Joint maximum likelihood estimation
of image and motion parameters is then carried out. Each of
these strategies involves the minimization of non-convex cost
functions. Accordingly, we also propose some relevant optimization
algorithm design options.

I. INTRODUCTION

To account for motion effects in Positron Emission Tomogra-
phy (PET), a common practice is to gate the acquisition period
into intervals or collections of intervals (henceforth called time
frames) over which the object is considered to be motionless.
With the time frames enumerated κ = 0, 1, 2, . . . ,K − 1, one
acquires a separate measured projection vector yκ in each of
these time frames so as to get a “snapshot” of the radio-tracer
activity image. In this work, we examine different strategies for
reconstructing an image of the object based on the measured
data {yκ}K−1

κ=0 .
We model the measurements as Poisson with ensemble

means {ȳκ} given by,

ȳ0(λ) = P 0λ + r0 (1)

ȳκ(λ, ακ) = PκWκ(ακ)λ + rκ, κ = 1, . . . ,K − 1. (2)

Here λ is the vector of unknown activity image pixel values
in time-frame κ = 0. Also, for each time-frame κ, Pκ is
a forward projection matrix, rκ is a known vector of mean
background counts, and Wκ(ακ) is an image transformation
matrix that depends on an unknown deformation parameter
vector ακ. The transformed image Wκ(ακ)λ gives the pixel
values of the activity image in time frame κ, after undergoing
changes due to anatomical motion (and possibly other physical
processes). We shall denote α = (α1, α2, . . . , αK−1) as the
total array of unknown deformation parameters. Typically, each
vector ακ has far fewer components than λ. For example, ακ

could be the coefficients in a B-spline deformation model (see
also Section III-B).

We consider two main reconstruction strategies. The first,
which we call the Frame-Wise with Post Registration (FWPR)
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strategy is to obtain estimates λ̂ and α̂κ, κ = 1, . . . , K
according to the following steps:

1) Frame-Wise Reconstructions. For each κ ≥ 0, reconstruct
the deformed image zκ = W (ακ)λ using penalized
likelihood estimation,

ẑκ = argmin
z

{
Lk(z; yκ) + Rκ(z)

}
. (3)

Here

Lκ(zκ; yκ) =
∑

i

(([Pκzκ]i + rκ
i )− yκ

i log([Pκzκ]i + rκ
i ))

is the negative loglikelihood for a single time frame κ
in terms of the deformed image zκ and Rκ(zκ) is a
roughness penalty.

2) Post-Registration. Fit all {zκ}K−1
κ=1 to z0 by doing regu-

larized least squares post-registration

α̂ = argmin
α

{∑
κ

||Wκ(ακ)ẑ0 − ẑκ||2 + Ψ(α)

}
(4)

where Ψ(α) is a regularizing penalty function.
3) Undeform and Consolidate. Apply inverse deformations

to each frame-wise reconstruction and average to obtain
a final activity image estimate

λ̂ =
ẑ0 +

∑K−1
κ=1 Wκ([α̂κ]−1)ẑκ

K
. (5)

Here [α̂κ]−1 denotes the parameter vector that induces
the (approximate) inverse transformation to that of α̂κ.

The second strategy, which we call Joint Estimation with
Deformation Modeling (JEDM), is to do penalized likelihood
estimation of all the unknown parameters based on the entire
data set {yκ}K−1

κ=0 as follows,

(λ̂, α̂) = argmin
λ,α

{
L(λ,α; y0, . . . , yK−1) + R(λ) + Ψ(α)

}
.

(6)

In FWPR, the deformation parameters are not obtained from
the Poisson model, but rather by post-reconstruction fitting
using (4). Moreover, since each ẑκ is derived only from the
corresponding yκ, a relatively low count data set, then we can
expect considerable errors to propagate into the estimates of α̂
and λ̂ via (4) and (5).

Conversely, in the JEDM approach, all parameters are es-
timated based on the penalized Poisson loglikelihood in (6),
a more statistically principled approach. In addition, both the



deformation parameters and the image parameters are jointly
derived from the total data set. We therefore expect the JEDM
strategy to better estimate both λ and α, provided that suitable
algorithms for the minimization (6) can be developed.

II. PRELIMINARY EXPERIMENT

We made a preliminary test of each strategy using simulated
acquisitions of a 64 × 64 torso phantom with a circular
hot lesion, 2 pixels in diameter. The projection space was
discretized into 180 angles by 64 radial bins. We used 2
time frames. In the second time frame, the phantom was
stretched by a factor of α1 = 10% in one direction. Tests were
based on 50 independent realizations of the acquisition at a
count level of 3 average counts per bin per time-frame. In all
cases, we used a discretized line integral forward projector and
10% mean background count rates. Presently, all cost function
minimizations were unregularized. We discretized the space
of α1 values into 22 values from 5% to 15%. Loglikelihood
maximization with respect to λ was done for each fixed α1

value using ML-EM. Optimization of all cost functions with
respect to α1 was done by exhaustive search. In principal,
this approach ensures that all cost functions can be minimized
globally.

To test performance, we computed the empirical bias and
standard deviation of the estimates of α1, as well as the
percent root mean squared error, given by %RMS(θ̂) =√

MSE(θ̂)/ |θtrue|. The same was done for the estimated tracer

uptake in the hot lesion, i.e., Û =
∑

j∈J λ̂j where J are
the lesion pixels. The true uptake was 24.7. These results are
reported in Table I. For comparison, we have also reported the
performance of ML-EM as applied to the total acquired data∑K

κ=1 yκ, i.e., when no gating is used.
As predicted in Section I, the post-registration operation

(4) in the FWPR reconstructions resulted in less accurate
estimates of α1 than JEDM. Also, as one might expect, both
FWPR and JEDM exhibited better accuracy in estimating the
lesion uptake than non-gated ML-EM. What is surprising is
that FWPR’s poorer estimate of α1 did not translate into a
significantly poorer estimate of the uptake than JEDM. At this
time, our best conjecture is that errors in the approximation
of the inverse transformations in (5) somehow countered the
registration errors in (4).

More sophisticated experiments will clearly be necessary
to see which of these algorithms has more practical benefit.
Whatever we find, it will be necessary to develop iterative
algorithms to handle the cost function minimizations in these
algorithms. This is discussed next.

III. OPTIMIZATION TRANSFER ALGORITHM
DESIGN

In this section, we discuss optimization transfer algorithms
for doing the non-convex cost function minimizations1 in

1The cost functions in (3) are convex for typical penalties Rκ(·) and their
minimization is now standard in statistical image reconstruction.

(4) and (6). It will suffice to discuss the unregularized cost
functions

ΦFWPR(ακ) = ||Wκ(α)ẑ0 − ẑκ||2 (7)

ΦJEDM(λ,α) =
∑
jkκ

[sκ
j Wκ

jk(ακ)λk

− yκ
i log[PiW

κ
jk(ακ)α + rκ

i ]] (8)

Here, sκ
j =

∑
i Pκ

ij are the pixel values of the sensitivity images
of frame κ. Extension to the regularized case is a routine matter
(see, for example [1], [2]).

A. Background

Optimization transfer is a method for addressing cost func-
tion minimization problems that has received considerable
attention in recent statistical imaging literature (e.g. [1], [2],
[3], [4]). Given a cost function Φ(θ), the method involves con-
structing a function φ(·; ·) satisfying φ(θ, θ̄) ≥ Φ(θ) for all θ,
with equality at θ̄. Henceforth, we abbreviate this relationship,
by writing

φ(·; θ̄)
θ̄� Φ(·). (9)

We then call φ(·; ·) a surrogate generator for Φ and the function
φ(·; θ̄) a surrogate for Φ with expansion point θ̄. Any minimizer
θ∗ of φ(·, θ̄) has the property that Φ(θ∗) ≤ Φ(θ̄). Applying the
iterative algorithm,

θn+1 ∈ argmin
θ
{φ(θ; θn)} (10)

one therefore obtains a sequence {θn} that monotonically
reduces Φ (see Fig. 1) and whose limit points are stationary
under fairly weak conditions [5].

When the space Θ of unknowns θ is decomposable into
a Cartesian product, one can modify (10) and alternatingly
minimize with respect to a subset of the unknown variables
[6], [7], [5]. A natural application of this approach to the
minimization of ΦJEDM(λ,α) is to find surrogates φ1(λ; λ̄, ᾱ)
and φ2(α; λ̄, ᾱ) with respect to λ and α respectively, i.e.,

φ1(·; λ̄, ᾱ)
λ̄� ΦJEDM(·, ᾱ)

φ2(·; λ̄, ᾱ)
ᾱ� ΦJEDM(λ̄, ·),

and to iterate as follows

1) Set n = 0 and select an initial point (λ0,α0) .
2) Update the image by letting λn+1 be any minimizer of

φ1(·;λn,αn) .
3) Update the deformation parameters by letting αn+1 be

any minimizer of φ2(·;λn+1,αn).
4) Set n := n + 1 and go to step 2.

Finding surrogate generators is the art of the optimization
transfer method. To facilitate minimizations like (10), one hopes
to find φ(·; ·) such that, for every θ̄, φ(·; θ̄) is convex. Some
tools for doing so for the problems at hand are presented in
subsequent sections.



TABLE I

PERFORMANCE DATA FOR RECONSTRUCTIONS.

Estimated Method Bias Std. Std. Error Std. Error %RMS
Quantity Dev. (of Mean) (of Std. Dev.) Error

Uptake, U FWPR -1.35 3.23 0.46 0.32 14.05
JEDM -0.72 3.28 0.46 0.33 13.45
ML-EM -6.56 3.22 0.46 0.32 29.51

Stretch, α1 FWPR 0.31 2.45 0.35 0.32 24.46
JEDM -0.35 0.85 0.12 0.33 9.08

0

0.5

1

1.5

Φ(θ) φ(θ;θn)

φ(θ;θn+1)

θnθn+1θn+2

Fig. 1. A 1D illustration of the optimization transfer principal.

B. Modeling image deformation and related optimization trans-
fer considerations

Here we discuss a typical form for the deformation matrix
elements Wκ

jk(ακ), one which also proves convenient from
the point of view of algorithm design. In conventional image
registration, a common way of deforming a discrete image λ
is by way of the following steps.

1) Interpolate the discrete image into continuous space,

λ(�r) =
∑

k

λkhk(�r)

where the hk(�r) are interpolation functions.
2) Warp the continuous image using a spatially dependent,

additive perturbation

�r ← �r +
∑

�

b�(�r)ακ
�

Wκλ(�r) =
∑

k

λkhk

(∑
�

b�(�r)ακ
� + �r

)
.

Here the b�(�r) are deformation basis functions (B-splines
are a typical choice) and ακ

� are scalar coefficients.
3) Resample the warped image at locations �rj

Wκλ(�rj) =
∑

k

λk hk(Bjα
κ + �rj)︸ ︷︷ ︸

Wκ
jk(ακ)

where

Bj = [b1(�rj) b2(�rj) b3(�rj) · · · ]
is a matrix whose columns are the basis functions sam-
pled at �rj .

In this family of deformations, therefore, we have

Wκ
jk(ακ) = hk(Bjα

κ + �rj). (11)

That is, the deformation matrix elements are compositions
of the interpolation functions hk(�r) with affine expressions
(Bjα

κ + �rj) in ακ.
Normally, one would choose interpolators hk(�r) that are

continuous and whose supports are of small extent. Therefore,
from (11), any function of the matrix entries Wκ

jk(ακ) having
the form

f(Wκ(ακ)) =
∑

j

fj(Wκ
j (ακ)), (12)

where Wκ
j (ακ) is the j-th row of Wκ(ακ) and fj(·) is

a polynomial function of the elements of this row, can be
expressed

f(Wκ(ακ)) =
∑

j

∑
n

cnj h̃n(�r)
∣∣
�r=Bjακ+�rj

, (13)

where the h̃n(�r) are again continuous and have small supports.
It is useful to find convex quadratic surrogate generators

q+
n (�r;�r0) to h̃n(�r) and q−n (�r;�r0) to −h̃n(�r), i.e.,

q−n (·;�r0)
�r0≺ h̃n(·) �r0≺ q+

n (·;�r0). (14)

This is illustrated for a hypothetical 1D h̃(�r) in Fig. 2. Upon
doing so, one can then construct convex quadratic surrogate
generators Q+(ακ; ᾱκ) to f(Wκ(ακ)) and Q−(ακ; ᾱκ) to
−f(Wκ(ακ)), i.e.,

Q−(·; ᾱκ)
ᾱκ

≺ f(Wκ(·)) ᾱκ

≺ Q+(·; ᾱκ), (15)

by considering (13) and defining

Q+(ακ; ᾱκ) =
∑

cnj≥0

cnjq
+
n (Bjα

κ + �rj ;Bjᾱ
κ + �rj)

+
∑

cnj<0

|cnj |q−n (Bjα
κ + �rj ;Bjᾱ

κ + �rj)

and similarly for Q−(ακ; ᾱκ).



Since h̃n(�r) is a function of only spatial coordinates – a small
number of variables – finding q+

n (�r;�r0) and q−n (�r;�r0) satisfying
(14) would not be an overly difficult task. For example, one
could exhaustively test different curvature parameters and pre-
tabulate them for a suitable range of �r0.
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Fig. 2. Quadratic majorizers and minorizers for a 1D finite support function.

C. Construction of surrogates for the FWPR fitting function

By inspection of (7), one can see that ΦFWPR(ακ) has the
form (12) with

fj(Wκ
j (ακ)) =

∑
κ

(Wκ
j (ακ)ẑ0 − ẑκ

j )2.

Therefore, one can apply the methodology of Section III-
B directly to obtain a convex quadratic surrogate generator

Q+(·; ᾱκ)
ᾱκ

� ΦFWPR(·).

D. Construction of surrogates for the JEDM Loglikelihood

In the JEDM strategy, the relevant cost function ΦJEDM is
a Poisson negative loglikelihood function. In statistical to-
mographic imaging, a now classical way to derive surrogate
generators for negative loglikelihoods (e.g. [8], [9]) is via the
Expectation Maximization (EM) methodology [10]. The next
proposition describes EM-based surrogates for general Poisson
negative loglikelihoods,

L(θ; y) =
∑

i

[ȳi(θ)− yi log(ȳi(θ))] . (16)

First, recall that the Kullback-Leibler (KL) distance between
two arrays a and b with non-negative components aim and bim

is,

KL(a, b) =
∑
i,m

[
aim log

aim

bim
+ bim − aim

]
(17)

with the conventions 0 log 0 = 0, 0/0 = 0, and log(1/0) =
∞. The KL distance has the property that KL(a, b) ≥ 0 with
equality iff a = b.

Proposition 3.1 (Poisson Model EM-based Surrogates):
Suppose we are given Poisson measurements yi with ensemble
means

ȳi(θ) =
Mi∑
m

ȳim(θ), (18)

where all ȳim(θ) ≥ 0, and define

yim(θ) = yi
ȳim(θ)
ȳi(θ)

Q(θ; θ̄) = L(θ) + KL(y(θ̄), y(θ)) (19)

=
∑
im

[ȳim(θ)− yim(θ̄) log ȳim(θ)] + const. (20)

Then Q(·; θ̄)
θ̄� L(·; y), i.e., Q is a surrogate generator for

L(·; y).

Proof. The fact that Q(·; θ̄)
θ̄� L(·) is an easy consequence

of (19) and the properties of the KL distance. The fact that
Q(θ; θ̄) also has the form (20) can be verified by expanding
the term KL(y(θ̄), y(θ)) in (19). �

Remark 3.2: The surrogate generator given by Proposi-
tion 3.1 can also be derived using the classical EM method-
ology. To do so, one expresses each yi as the sum of complete
data {Yim}, which are chosen to be i.i.d. Poisson random
variables with means {ȳim(θ)}.

With α = ᾱ held fixed and applying Proposition 3.1 to the
additive form ȳκ

i (λ) =
∑

jk Pκ
ijW

κ
jk(ᾱκ)λk, one obtains the

surrogate

φ1(λ; λ̄, ᾱ) =∑
iκ ȳκ

i (λ)−∑k

(∑
ijκ

P κ
ijW κ

jk(ᾱκ)

ȳκ
i (λ̄,ᾱκ)

)
λ̄k log(λk) (21)

This is the standard ML-EM surrogate of [8]. Similarly, with
λ = λ̄ held fixed and applying Proposition 3.1 to the additive
form ȳκ

i (α) =
∑

jk Pκ
ijW

κ
jk(ακ)λ̄k one obtains,

φ2(α; λ̄, ᾱ) =
∑
jkκ

sκ
j λ̄kWκ

jk(ακ)

+
∑
jkκ

λ̄k

(∑
i

yiP
κ
ij

ȳκ
i (λ̄, ᾱκ)

)
Wκ

jk(ᾱκ)(− log Wκ
jk(ακ)) (22)

The surrogate generators φ1(·; ·) and φ2(·; ·) are candidates for
the block alternating procedure described in Section III-A.



A drawback of φ2(α; λ̄, ᾱ) is that it may not be convex.
However, the first sum on the RHS of (22) has the form (12)
with

fj(Wκ
j (ακ)) = sκ

j

∑
k

λ̄kWκ
jk(ακ). (23)

One can therefore find a convex quadratic surrogate for it as in
(15). Furthermore, if one chooses hk(�r) = h(�r − �rk) where

h(x1, x2, x3) =
3∏

�=1

0.5(1 + cos(πx�))rect(x�/2). (24)

is the separable product of windowed raised cosines then,
noting (11), the expressions − log Wκ

jk(ακ), and hence also the
second sum on the RHS of (22), will be convex. It follows that

a convex surrogate φ′
2(α; λ̄, ᾱ)

ᾱ� φ2(α; λ̄, ᾱ) can be obtained,
which is also a surrogate for ΦJEDM(λ̄, ·).

Another potential difficulty is that, when surrogate generators
φ(θ; θ̄) are used that have singularities as functions of (θ, θ̄),
the iterates {θn} may have non-stationary limit points. It is
for this reason that most optimization transfer literature (e.g.
[11], [7], [12]) forbids such discontinuity. In the case of (21)
and (22), both surrogate generators have singularities of this
kind. The limiting behavior of the corresponding optimization
transfer algorithm is consequently unpredictable.

One remedy in these kinds of situations is to generate

further surrogates φ′(·, θ̄)
θ̄� φ(·; θ̄) which do not suffer from

these discontinuities. Another option is given by the following
proposition.

Proposition 3.3 (Majorization/Minorization Technique):
Given Poisson measurements yi with ensemble means ȳi(θ),
suppose one can find functions Q+

i (θ; θ̄) and Q−
i (θ; θ̄) such

that

Q−
i (·; θ̄)

θ̄≺ ȳi(·)
θ̄≺ Q+

i (·; θ̄). (25)

Suppose further that for every θ̄, the functions Q+
i (·; θ̄) are

convex and the functions Q−
i (·; θ̄) are concave. Then

φ(·; θ̄) =
∑

i

[Q+
i (·; θ̄)− yi log Q−

i (·; θ̄)] (26)

is a convex surrogate for L(·; y) for every θ̄.

Proof. The fact that φ(·; θ̄)
θ̄� L(·; y) is immediate from

(25). It remains to establish convexity. It is easily shown that
substituting a concave function into a convex, nonincreasing
function such as − log(·) produces a convex function. Hence,
the RHS of (26) is a sum of convex terms. �

An advantage of Proposition 3.3 is that if Q+
i (θ; θ̄) and

Q−
i (θ; θ̄) are continuous in (θ, θ̄), then φ(θ; θ̄), as given by

(26), is always continuous at all pairs (θ, θ̄) in some level set
of L(θ; y). So the aforementioned difficulty with EM-based
surrogates is avoided.

Furthermore, it is often simple to find the majorizing and
minorizing functions required in (25). In particular, holding λ =
λ̄ fixed in (2) yields

ȳκ
i (ακ) =

∑
jk

Pκ
ij λ̄kWκ

jk(ακ).

which has the form (12) with

fj(Wκ
j (ακ)) = Pκ

ij

∑
k

λ̄kWκ
jk(ακ). (27)

Suitable quadratic majorizing and minorizing functions for
ȳκ

i (ακ) are then obtainable as in (15).

IV. CONCLUSIONS

We have considered a statistical model for PET which
includes deformation parameters to describe the motion of the
activity image throughout the scan. Preliminary experimental
results suggested that JEDM performs better than FWPR for es-
timating motion, but were inconclusive as to which is better for
quantifying lesion uptake. Future experiments with more elab-
orate deformation models may show more conclusive trends.
These more elaborate models will entail more complicated cost
function minimizations. To this end, several options for the
design of optimization transfer algorithms have been discussed
and await testing.
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