
Abstract- A direct brain interface (DBI) based on the detection 
of event-related potentials (ERPs) in human electrocorticogram 
(ECoG) is under development.  Accurate detection has been 
demonstrated with this approach (near 100% on a few 
channels) using a single-channel cross-correlation template 
matching (CCTM) method.  Several opportunities for improved 
detection accuracy have been identified.  Detection using a 
multiple-channel CCTM method and a variety of  detection 
methods that take advantage of the simultaneous occurrence of 
ERPs and event-related desynchronization/synchronization 
(ERD/ERS) have been demonstrated to offer potential for 
improved detection accuracy. 
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I. INTRODUCTION 
 

A direct brain interface (DBI) is a human-computer 
interface that accepts commands directly from the brain 
without requiring physical movement.  The University of 
Michigan Direct Brain Interface (UM-DBI) project seeks to 
detect voluntarily produced patterns of electrocortical 
activity (ECoG) related to actual or imagined movements in 
humans as the basis for a DBI.  ECoG provides better 
temporal and spatial resolution than electroencephalogram 
(EEG) and is less vulnerable to movement or muscle artifact.  
Most research to date has utilized off-line processing, 
therefore movement-related activity (instead of preferred 
motor imagery) was chosen so that movement onset (the 
trigger point) could be determined from muscle activity or 
another similar indicator and used to determine detection 
accuracy. 

Research subjects were patients in one of two epilepsy 
surgery programs who had subdural macro electrodes 
implanted for clinical purposes unrelated to the research 
objectives.  The electrodes were 4 mm in diameter and 
arranged in grids or strips at distances of 1 cm center-to-
center.  Subjects had between 15 and 126 subdural electrodes 
implanted.   

Subjects performed simple voluntary movements in a 
self-paced (non-prompted) manner with at least 4 seconds 
separating each repetition of the movement.  Movements 
were performed without feedback or feedback training.  Each 
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dataset contains ECoG channels from multiple recording 
electrodes during approximately 50 repetitions of the same 
action. An ECoG database of 211 datasets from 34 subjects 
has been compiled.  For all experiments, the first half of each 
dataset was used as the training data while the second half 
was reserved for use as test data.    

The established detection method used by the UM-DBI 
project is a single-channel cross-correlation template 
matching (CCTM) method [1].  Triggered averaging of the 
ECoG from the first half of a dataset is used to create 
templates of the ECoG corresponding to the action.  
Templates are 6 seconds in length and start 3 seconds before 
the trigger.  A template showing a distinct event-related 
potential (ERP) is then selected and cross-correlation is 
performed with the ECoG from the second half of the dataset 
(the test data).  Detections are defined when the cross-
correlation value exceeds an experimentally determined 
threshold.  Valid detections (hits) are defined to be within 1 
second before and 0.25 seconds after a trigger point.  Any 
detections outside this time interval are considered false 
positives.  Detection accuracy is quantified by a hit 
percentage, which is the percentage of trigger points in the 
test data that were detected, and a false positive percentage, 
which is the percentage of the detections that are false 
positives.  The difference between the hit percentage and the 
false positive percentage (the HF-difference) is used to 
compare detection results.  Fig.  1 shows the distribution of 
channels with HF-differences greater than 50 using an 
offline single-channel CCTM approach.  Note that these 
results are for trials with no feedback training. 

Single-channel CCTM detection has been shown to be 
accurate for many subjects even when electrode location is 
not specifically chosen for purposes of a DBI.  There are, 
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Fig. 1.  ECoG channels above each HF-differences threshold for the 
single-channel CCTM method. 



however, many possibilities for improved detection accuracy 
offered by the ECoG data that may: increase the number of 
subjects for whom accurate detection is possible, improve 
the accuracy of detection for a particular subject, or increase 
the number of independent control channels available for a 
particular subject.  Methods to produce improved detection 
accuracy are the focus of this paper. 

 
II. METHODOLOGY 
 
A.  Multiple-Channel CCTM Detection 

Multiple electrodes may show evidence of an ERP 
related to a particular action that can potentially be integrated 
into the CCTM detection scheme for improved accuracy.  
This information is picked up either from the same region of 
the brain by adjacent electrodes or from various regions of 
the brain that are simultaneously involved in production or 
imagination of the movement.   

A simple multiple-channel CCTM method was designed 
to demonstrate the potential for improved accuracy.  In this 
method, cross-correlation between an ERP template and the 
test ECoG is performed for multiple electrode channels.  The 
channel correlograms are then averaged and an 
experimentally determined threshold applied to the result as 
if it was the correlogram from a single channel [2].  Fifty-
one datasets from 14 subjects contained at least 3 ECoG 
channels with HF-differences greater than 30 (a total of 399 
ECoG channels).  All possible 3 channel combinations 
within each dataset (a total of 13274 combinations) were 
analyzed.   

 
B. ERD/ERS Concurrence 

ERPs and event-related desynchronization/synchronization 
(ERD/ERS) are ECoG features that may be produced by the 
same voluntary action or motor imagery, but are assumed to 
be different responses of cortical neural-networks to the 
action.  An ERP is a phase- and time-locked response, while 
ERD/ERS is time- but not phase-locked [3].  The CCTM 
detection method relies solely on ERPs, while other 
detection methods, developed using EEG have relied solely 

on the ERD/ERS [4].   
ERP localization can be visualized using topographically 

arranged plots of trigger averaged templates (Fig. 2).  
ERD/ERS can similarly be visualized using ERD maps [5] 
(Fig. 3).  Visual comparison of ERPs and ERD/ERS in 26 
datasets from 7 subjects was performed. Of the 17 datasets 
that showed obvious ERD/ERS patterns, all had visible ERPs 
on the same electrodes and 12 had ERPs that could be 
detected with HF-differences greater than 50.  Prominent 
ERD/ERS patterns were not found for 7 datasets with ERPs 
that could be detected with HF-differences above 50, 
although 4 of those datasets did show minimal ERD/ERS 
patterns overlapping the location of the ERPs.  Two datasets 
showed neither ERPs nor ERD/ERS.  

These numbers demonstrate that the ERP and ERD/ERS 
commonly occur together, although as seen in Fig. 2 and 
Fig. 3, prominent ERD/ERS is often more widespread than 
prominent ERP averages.  Both the ERP and the ERD/ERS 
effects can be produced from real or imagined movement [3] 
and thus a detection method sensitive to both these effects is 
hypothesized to produce improved detection.  Three methods 
based on a combined detection of these two ECoG features 
were investigated for improved detection accuracy. 

 
C. Quadratic Model 

With a quadratic model the task of detection is viewed as 
the general binary problem of detecting one of two signals in 
additive noise. 
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Where x is the observed ECoG, s1 and s0 are the signal means 
when the action is and is not occurring and n1 and n0 are the 
additive noise when the event is and is not occurring.  In this 
case, we assume that n is Gaussian with zero mean and 
covariance K and that there is no signal when the event is 
not occurring, i.e. s0 = 0.  The most powerful test, using the 
Neyman Pearson Lemma [6], is then  
 

Fig. 2.  Averaged ECoG templates over sensorimotor cortex for a subject 
performing finger extension showing ERPs on the right side of the electrode 
grid.  Each template is labeled with the HF-difference and electrode name. 

 Fig. 3.  Averaged ERD/ERS maps for the electrodes shown in Fig. 2. 
showing ERD/ERS on the right side of the electrode grid. 
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where the threshold η is set to achieve the maximum HF-
difference.  This test has a benefit over the CCTM linear 
detector in that it assumes a model that can account for both 
the presence of an ERP, represented here by s1, as well as a 
change in the background activity such as ERD and ERS.  
Detection based on the quadratic model was performed on 
9869 channels in 177 datasets from 25 subjects. 
 
D. Adaptive Autoregressive Analysis 

Adaptive autoregressive (AAR) modeling has been 
successfully applied to identifying ERD/ERS in EEG [7] and 
ECoG [8].  Further modifications are necessary to apply 
AAR modeling to ERP data, however. The classic AAR 
model assumes a constant (zero) mean, an assumption that 
does not hold for ERP data.   

An ARR-model with non-zero mean, µ, can be written as 
  
 yk = m  + a1 yk-1 +  a2 yk-2 + … +  ap yk-p +   xk (3) 
 
where [a1(t), … , ap(t)] are the AAR parameters, y is the 
observed ECoG signal and xk is a white noise process with 
variance σx² and  
 

  m = ( 1 - Σ ai ) µ (4) 
 

This m-term can be adaptively estimated along with the 
traditional AAR parameters [a1(t), … , ap(t)], to form the 
AAR+M parameters [m(t), a1(t), … , ap(t)] used for further 
processing.  The additional m-term is intended to take into 
account the ERP phenomenon of the ECoG data.  

Next, the AAR features are reduced into one component 
using MDA and LDA with the action and no-action brain 
states defined by time segments with a maximum 
Mahalanobis distance [9].  From this method, we can derive 
the sample-based accuracy, ACC% (i.e. percentage of 
correctly classified samples). 
 
E. Wavelet and Genetic Algorithm Analysis 

Wavelet packet analysis can be used to decompose the 
ECoG signal into wavelet components of specific frequency 
bands. These components have optimal resolution in the time 
and frequency domain and are therefore suitable to describe 
both ERD/ERS and ERP activity.  Fifteen components 
occurring in frequency ranges where ERD/ERS and ERP are 
expected as well as 3 additional components from a lower 
frequency range where ERP activity existed were extracted 
to form a subset of 18 components.  Genetic algorithms were 
employed to find the best linear transformation to reduce the 
dimensionality to one and to simultaneously maximize the 
HF-difference.  Analysis was performed on 209 channels in 
22 datasets from 7 subjects [10]. 

III. RESULTS 
 
A. Multiple-Channel Detection 
The multiple-channel CCTM method produced a dramatic 
increase in the best detection accuracy for many datasets.  Of 
the 51 datasets, the multiple-channel CCTM produced 
improved detection in 44, unchanged detection in 1 and 
reduced detection in 6, when compared to the best single-
channel detection for that dataset.  The average increase in 
the HF-difference was 11 ± 9 and the average decrease was 9  
± 5.  Fig. 4 shows results from the best 3-channel 
combination for the top (based on single-channel CCTM) 40 
datasets.   

 
B. Quadratic Model  

HF-differences greater than 90% for 12 of 177 
subject/task combinations were achieved using detection 
based on the quadratic model.  Perfect detection (i.e. HF-
difference = 100%) was achieved for 2 datasets.  Of the 9869 
channels studied, 17 exhibited HF-differences of 90% and 
higher (Fig. 5). 

 
C. Adaptive Autoregressive Analysis 
HF-differences for a comprehensive comparison between the 
AAR analysis and the CCTM method are not yet available; 
however, AAC%'s as high as 99.6 have been found [8].   
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Fig. 5:  ECoG channels above each HF-differences threshold for the 
CCTM (dark) and quadratic (light) methods.
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Fig. 4.  Best HF-difference for each dataset using multiple-channel CCTM 
detection method.  The 40 best datasets by original HF-difference are 

shown. 



D. Wavelet and Genetic Algorithm Analysis 
The wavelet based analysis produced HF-differences 

greater than 90% for 9 of 22 datasets.  Perfect detection (i.e. 
HF-difference = 100%) was achieved for 6 datasets.  Of the 
209 channels studied, 23 exhibited HF-differences of 90% 
and higher [10] (Fig. 6). 

 
IV. DISCUSSION 
 

Multiple-channel CCTM, quadratic, and wavelet based 
detection have all been shown to improve detection over the 
established single-channel CCTM detection method while 
the AAR method also shows promise.  Selection of the 
optimal channel combination is the biggest challenge for 
multiple-channel CCTM detection.  To be practical for on-
line experimental use, a method of rapidly selecting channels 
combinations is required.  The exhaustive search of all 
possible combinations used here is impractical due to the 
large number of electrodes present for some subjects.   

The quadratic, AAR, and wavelet based detection methods 
utilize the ERP and ERD/ERS effects as part of their 
detection model.  The incorporation of the ERD/ERS 
detection is assumed as the cause for the improved detection 
over the CCTM method that has been demonstrated.  At 
present, quadratic detection has been tested on more data 
than wavelet detection.  Despite this, wavelet detection has 
produced a larger number of channels with HF-difference 
greater than 90% as well as more instances of perfect 
detection.  Optimization of the quadratic detector is still 
underway, however, so further improvements may be 
possible.  Results from the AAR method are still incomplete. 

Many issues must be considered in the development of a 
practical direct brain interface.  In actual use, false positives 
will be far more undesirable than missed hits because of the 
effort required to fix the error.  Further, response time must 
be minimized, so for the CCTM methods, it will be 
necessary to shorten template duration after the trigger.  As 
increased detection accuracy becomes possible, it will also 
be important to evaluate the ability of each method to not 
only detect when an action is performed, but also to 
differentiate between different actions that are performed.   

V. CONCLUSION 
 

While the single-channel CCTM method for detection of 
ERPs in ECoG has demonstrated sufficient detection 
accuracy for purposes of a DBI in a few channels, it is far 
from the goal of 100% accuracy for multiple channels.  The 
results shown here make it clear that detection accuracy can 
be improved by a variety of approaches.  In addition to 
improved detection accuracy from new signal processing 
approaches, there is also great potential for improved 
accuracy from feedback training [3,11].  Combination of 
advances from both of these areas suggests a strong potential 
for the development of a DBI based on detection of cognitive 
activity within ECoG.  
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Fig. 6.  ECoG channels above each HF-differences threshold for the 
CCTM (dark) and wavelet (light) methods. 
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