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Abstract— In emission tomography, conventional quadratic reg-
ularization methods lead to nonuniform and anisotropic spatial
resolution in penalized-likelihood (or MAP) reconstructed images,
even for idealized shift-invariant imaging systems. Previous meth-
ods for designing regularizers that improve resolution uniformity
have used matrix manipulations and discrete Fourier transforms.
This paper describes a simpler approach for designing data-
dependent, shift-variant regularizers. We replace the usual discrete
system models used in statistical image reconstruction with locally
shift-invariant, continuous-space approximations, and design the
regularizer using analytical Fourier transforms. We discretize the
final analytical solution to compute the regularizer coefficients.
This new approach requires even less computation than previous
approaches that used FFTs, and provides additional insight
into the problem of designing regularization methods to achieve
uniform, isotropic spatial resolution.

Index Terms— PET, SPECT, penalized-likelihood image recon-
struction, tomography, maximum a posteriori (MAP) estimation.

I. INTRODUCTION

When reconstructing PET and SPECT emission or transmis-
sion images by penalized-likelihood (or MAP) methods, inter-
actions between the log-likelihood for Poisson measurements
and conventional quadratic regularizers lead to nonuniform
and anisotropic spatial resolution. This undesirable property
holds even for idealized shift-invariant imaging systems [1].
As an illustration of the problematic effects of nonuniform
resolution, the “conventional” regularization results in Fig. 2
show nonuniform apparent intensity around the rings. Using
a quadratically-penalized, unweighted least-squares (QPULS)
estimation method could circumvent this problem, but QPULS
images have poor noise properties (akin to the filter-backproject
(FBP) method). Statistical weighting, which is explicit in PWLS
methods [2] and implicit in penalized-likelihood methods, is a
central advantage of statistical methods over FBP.

Methods for designing regularizers to try to improve the
uniformity and isotropy of the reconstructed images include [1],
[3]–[5]. Methods for providing uniform pixel contrast have also
been proposed [6]. Most of the more recent methods provide
reasonable regularization designs. All previous methods have
been based on the usual discrete system models associated
with statistical image reconstruction. So all of these meth-
ods involve various system matrix manipulations. The matrix
approach could be critiqued as lacking the type of insight
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that is associated with analytical formulations. (Consider the
importance of the concept of the 1/r response associated
with projection/backprojection, for example.) In this paper,
we use analytical Fourier transforms to develop a simplified
regularization design method, completing an idea first described
in [7]. In essence, we solve the design optimization problem
in continuous space, and then discretize the solution for imple-
mentation. The solution is a regularization method that is then
used for penalized-likelihood image reconstruction with any of
the available iterative algorithms.

II. THEORY

There are two possible formulations of new method. One
approach formulates the entire problem using continuous-space
operators (e.g., the Radon transform) and solves the problem in
that domain, discretizing only at the very end. This formulation
seems more “pure” but requires lengthier exposition. Instead,
here we start with a discrete formulation, convert to continuous-
space only at a critical step, solve that step in continuous space,
and again discretize at the end.

We use two key concepts from previous work. One concept
is local shift invariance [3], [8], [9]. Although emission tomog-
raphy systems are shift variant, locally to any given pixel, the
system and reconstruction method are often approximately shift
invariant, allowing a “local Fourier analysis.” The other concept
is that for any given pixel, the effect of (implicit or explicit)
ray-dependent weighting in a statistical reconstruction method
can be approximated by one weight per projection angle [3].

A. Local impulse response

Let y denote the projection measurement vector, A the
system matrix, and x the unknown object vector (pixel values),
where y ≈ Ax. For an estimator x̂(y), we define the local
impulse response for the jth pixel to be

lj = lim
δ→0

x̂(y + δAej)− x̂(y)
δ

.

This PSF describes how a small impulse in the jth pixel affects
other pixels, and is our tool for regularization design.

B. Regularized reconstruction

Penalized likelihood reconstruction methods have the form

x̂ = arg min
x

L(Ax,y) + R(x),



where L denotes the negative log-likelihood and R(x) denotes
a roughness penalty function that regularizes the problem. We
focus here on quadratic roughness penalties of the form R(x) =
1
2x′Rx, where R is the Hessian of the penalty function.

For such estimators, the local impulse response is [1], [5]:

lj =
[
A′∇20L(Ax̂,y)A + R

]−1
A′[−∇11L(Ax̂,y)]Aej .

For typical log-likelihoods, this simplifies as follows [5]:

lj = [A′WA + R]−1
A′WAej ,

where W is diagonal and depends on the log-likelihood and
y, e.g., for emission tomography W ≈ diag{1/yi}.

For simplicity, we focus on regularization methods using
first-order differences of the form

R(x) =
∑
n,m

L∑
l=1

rj
l ((cl ∗∗ x)[n,m])2 , (1)

where ∗∗ denotes 2D convolution and, with slight notation
recycling, x[n,m] denotes the 2D array corresponding to the
lexicographically ordered vector x, and

cl[n,m] =
1√

n2
l + m2

l

(δ2[n,m]− δ2[n− nl,m−ml]) , (2)

where {(nl,ml)} denote the offsets to the jth pixel’s neighbors,
and δ2[n,m] denotes the 2D Kronecker impulse. Above, j is the
lexicographic index corresponding to the pixel at [n,m]. The
methods generalize readily to higher-order differences and to
3D problems. We focus on the case using the nearest horizontal,
vertical, and diagonal neighbors1

c1[n,m] = δ2[n,m]− δ2[n− 1,m− 0]
c2[n,m] = δ2[n,m]− δ2[n− 0,m− 1]

c3[n,m] =
1√
2

(δ2[n,m]− δ2[n− 1,m− 1])

c4[n,m] =
1√
2

(δ2[n,m]− δ2[n− 1,m + 1]) . (3)

C. Regularization design

Our goal is to choose the penalty coefficients rj =
(r1, . . . , rL) (and hence R) so that the local impulse response
at each pixel j closely matches some target PSF l0. In prin-
ciple one could attempt to match any desired target PSF, but
experience has shown that reasonable target PSFs have the form

lj0 = [G′G + R0]
−1

G′Gej ,

where G denotes a shift-invariant system that approximates
the possibly shift-varying system model A, and R0 denotes

1Note that the diagonal differences are divided by
√

2, so the penalty includes

terms of the form
(

x[n,m]−x[n−1,m−1]√
2

)2
. This differs from the common

practice [2], [4] of dividing the square of the diagonal differences by
√

2, i.e.,
1√
2

(x[n, m] − x[n − 1, m − 1])2 . Our analysis suggests that the common
practice is suboptimal for producing isotropic spatial resolution.

a conventional shift-invariant regularizer. In other words, we
would like to choose R (by choosing

{
rj
}

) such that

[A′WA + R]−1
A′WAej ≈ [G′G + R0]

−1
G′Gej .

Achieving this goal should lead to nearly uniform and
anisotropic spatial resolution. (If some other resolution criterion
is desired, then one can choose alternative l0’s.)

Motivated by continuous-space analogs not shown, we “cross
multiply,” rearrange the matrices, and simplify, yielding

R0A
′WAej ≈ RG′Gej .

(Since all circulant matrices commute, matrices that are locally
shift invariant will commute approximately.) Roughly speaking
then, we would like to solve

min
{rj}

∑
j

‖R0A
′WAej −RG′Gej‖ , (4)

where R depends on
{
rj
}

, for some type of norm. Previous
methods have used matrices and FFTs at this point [3], [5].

D. Analytical formulation

We propose to replace each of the four matrices in (4)
with a corresponding continuous-space convolution operator,
expressed using its Fourier transform. For each operator we
consider the “local perspective” of the jth pixel.

The simplest term is G′G. If we replaced G with the ideal
Radon transform, then G′G would be the combination of
forward and back-projection, corresponding to convolution with
1/r in continuous-space, or multiplication by 1/ρ in the Fourier
domain, where (ρ, ϕ) denote polar coordinates in frequency
space. A more reasonable model would account at least for
some “typical” detector response, so we use

G′G ≡ |B(ρ)|2
ρ

, (5)

where B(·) denotes some user-selected frequency response,
perhaps preferably corresponding to the “typical” radial blur
function, e.g., the blur at the center of a single projection
view. However, the details of B turn out not to be critical;
in fact, we require only that B(ρ) > 0. The idea here is
to replace the matrix G with the continuous-space operator
G = BP , where B denotes view-independent, radially shift-
invariance blur, and P denotes the usual Radon transform. Note
that G∗G = P∗B∗BP , where P∗ is the adjoint of P (i.e.,
backprojection). B appears twice, causing the “square” in (5).

For shift varying systems, let bj
ϕ(r) denote the detector

response at angle ϕ local to where the jth pixel projects onto
the detector at that angle. (For a shift-invariant system b(r)
would be independent of ϕ and j.) Let Bj

ϕ(ρ) denote the
corresponding (local) frequency response. Similarly, let wϕ(r)
denote the diagonal “element” of W corresponding to angle
ϕ and radial position r, and define the following effective
“certainty” at angle ϕ for the jth pixel (cf. [3, eq. (19)]):

wj(ϕ) =

∫∞
−∞

∣∣bj
ϕ(r)

∣∣2 wϕ(r) dr∫∞
−∞

∣∣∣bj
ϕ(r)

∣∣∣2 dr
. (6)



Using continuous-space analogies, one can show

A′WA ≡ wj(ϕ)
∣∣Bj

ϕ(ρ)
∣∣2

ρ
.

For continuous-space regularization of a 2D object f , the
usual roughness penalty would be R0(f) =

∫ ‖∇f‖2 . The
derivative property of the Fourier transform leads to

R0 ≡ |2πρ|2 .

Finally, analysis of the quadratic penalty function (1) leads to

R ≡
L∑

l=1

rj
l |2πρ|2 cos2(ϕ− ϕl),

where ϕl = tan−1 ml

nl
and (nl,ml) denote the offsets in (2).

Substituting these four continuous-space approximations into
(4) leads to the minimization problem

rj = arg min
r�0

∫ π

0

∫ ∞

−∞

v(ρ)
2π(

wj(ϕ)
∣∣Bj

ϕ(ρ)
∣∣2 − |B(ρ)|2

L∑
l=1

rl cos2(ϕ− ϕl)

)2

dρdϕ,

(7)
where v(ρ) is a user-selected weighting function. The non-
negativity constraint ensures that R is nonnegative definite.
Expanding the quadratic, integrating over ρ, and completing
the square leads to the following simplified expression:

r̂j = arg min
r�0

∫ π

0

(
w̄j(ϕ)−

L∑
l=1

rl cos2(ϕ− ϕl)

)2

dϕ, (8)

where

w̄j(ϕ) = wj(ϕ)

∫∞
−∞ v(ρ) |B(ρ)|2 ∣∣Bj

ϕ(ρ)
∣∣2 dρ∫∞

−∞ v(ρ) |B(ρ)|4 dρ
.

For the “convenient” choice v(ρ) = 1/ |B(ρ)|2, it follows
from Parseval’s theorem that w̄j(ϕ) is

wj(ϕ)

∫∞
−∞

∣∣Bj
ϕ(ρ)

∣∣2 dρ∫∞
−∞ |B(ρ)|2 dρ

= wj(ϕ)

∫∞
−∞

∣∣bj
ϕ(r)

∣∣2 dr∫∞
−∞ |b(r)|2 dr

. (9)

The denominator is a constant that can be absorbed into β.
Interestingly, for this choice of weighting v(ρ), the choice of
B(·) > 0 has no influence on the design of R.

Combining (9) with (6) yields

w̄j(ϕ) =

∫ ∣∣bj
ϕ(r)

∣∣2 wϕ(r) dr∫ |b(r)|2 dr
. (10)

For implementation, we ignore the denominator since it is
independent of ϕ and j, and compute

w̄j(ϕ) =
∑
i∈Iϕ

a2
ijwi, (11)

where A = {aij} and Iϕ denotes the set of rays that correspond
to the projection at angle ϕ. This expression is remarkably
similar to the weighting proposed in [4, eqn. (33)] using a quite
different derivation.

E. Analytical solution

Now to solve the minimization (8). Expanding the cosines
in terms of a 3-term basis that is orthonormal with respect to
the inner product 〈f, g〉 = 1

π

∫ π

0
f(ϕ)g(ϕ) dϕ yields

cos2(ϕ− ϕl) =
1
2
· 1 +

cos(2ϕl)
2
√

2

[√
2 cos(2ϕ)

]

+
sin(2ϕl)

2
√

2

[√
2 sin(2ϕ)

]
.

Using the second-order neighborhood (3), we find ϕ1 =
0, ϕ2 = π/2, ϕ3 = π/4, ϕ4 = −π/4, so the minimization
problem (8) simplifies to

r̂j = arg min
r�0

Ψ(r), Ψ(r) =
1
2
‖Tr − b‖2 , (12)

for each j, where T is the 3× 4 matrix (for L = 4):

T = 1
2




1 1 1 1

1/
√

2 −1/
√

2 0 0

0 0 1/
√

2 −1/
√

2




b =


 d1√

2d2√
2d3


 , d =




1
π

∫ π

0
w̄j(ϕ) dϕ

1
π

∫ π

0
w̄j(ϕ) cos(2ϕ) dϕ

1
π

∫ π

0
w̄j(ϕ) sin(2ϕ) dϕ


 .

(13)

When wϕ(r) is the inverse of the variance of the projection data
at (r, ϕ), one can think of d1 as quantifying the overall “cer-
tainty,” d2 is related to the horizontal and vertical directions,
and d3 is related to the diagonal directions.

This is an under-determined system, which is somewhat in-
tuitive since one can obtain approximately isotropic smoothing
using only the horizontal and vertical neighbors, or only the
diagonal neighbors. For the purposes of regularization design,
an under-determined situation is desirable since it allows us
to use the “extra” degrees of freedom to ensure nonnegativity
even when anisotropic regularization is needed.

We could solve the minimization (13) using the iterative
NNLS algorithm [10, p. 158]. However, using the properties
of T and d, we can avoid iterations entirely by solving (12)
analytically using the KKT conditions.

It follows from (13) that
√

d2
2 + d2

3 ≤ d1. The structure of T
leads to eight-fold symmetry that simplifies analysis. If d2 < 0
we can solve for r using |d2| and then swap r1 with r2. If
d3 < 0 we can solve for r using |d3| and then swap r3 with
r4. If d3 > d2 we can solve for r with d2 and d3 interchanged,
and then swap r1 with r3 and r2 with r4. Therefore, hereafter
we focus on cases where 0 ≤ d3 ≤ d2 ≤ d1. Fig. 1 shows
these first octant cases, numbered according to the number of
nonzero elements of r.

1 If d2 ≥ 1
2d1 and d3 ≤ 2

3d2 − 1
3d1, then

r1 = 4
3 (d1 + d2) , r2 = r3 = r4 = 0.

2 If d3 ≥ 2
3d2 − 1

3d1 and d3 + d2 ≥ 1
2d1, then

r1 = 8
5

[
1
2d1 + 3

2d2 − d3

]
, r2 = r4 = 0,

r3 = 12
5

[
d3 −

(
2
3d2 − 1

3d1

)]
.

3 If d3 + d2 ≤ 1
2d1 and d2 ≥ 1

4d1, then there are
multiple nonnegative r that exactly solve ∇Ψ(r) = 0.
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Fig. 1. First octant of quadratic penalty design space showing the four regions
where different constraints are active.

The minimum-norm solution is r1 = 4d2, r2 = 0,
r3 = d1 − 2d2 + 2d3, r4 = 2

[
1
2d1 − (d2 + d3)

]
.

4 If d2 ≤ 1
4d1, then there are multiple nonnegative r that

are exact solutions. The natural choice is the minimum-
norm r given by the pseudo-inverse solution r = T †b,
where r1 = 2

(
1
4d1 + d2

)
, r2 = 2

(
1
4d1 − d2

)
,

r3 = 2
(

1
4d1 + d3

)
, r4 = 2

(
1
4d1 − d3

)
.

The analytical solution presented above is for the usual first-
order differences with the second-order neighborhood (3). For
higher-order differences or neighborhoods, it would appear to
become increasingly cumbersome to solve (7) analytically, so
the iterative NNLS approach may be more appealing. This can
still be practical since T is quite small.

The analytical solution above is a continuous function of d,
which in turn is a continuous function of w̄(ϕ). This continuity
property would seem to be desirable for avoiding artifacts in the
reconstructed images. For practical implementation, we simply
discretize the integrals in (9) and (13) and use (11).

Matlab software for this design method is available in the
tomography toolbox from:
http://www.eecs.umich.edu/∼fessler/code.

III. SIMULATION RESULTS

We have implemented the method both for the case L = 2
(only horizontal and vertical neighbors) and the case L = 4.
We focus here on L = 4 which gave better results. For sim-
plicity we used quadratically-penalized weighted least squares
(QPWLS) reconstruction rather than penalized likelihood, mini-
mized by a preconditioned conjugate gradient (PCG) algorithm.
The true image shown in Fig. 2, from [4], is 100 × 100 with
4mm pixels. The sinogram was 102 bins by 80 views based on
a shift-invariant system model with 4mm ray spacing and strip
width. To focus on resolution effects, no noise was added.

Fig. 2 shows the FBP result, which has uniform spatial reso-
lution, and QPWLS with four different regularization methods:
1) conventional regularization, which has quite non-uniform
and anisotropic resolution, 2) the “certainty-based” regular-
ization from [1], which only corrects for average resolution

Fig. 2. True image and various noiseless reconstructions.

and not anisotropy, 3) the method proposed in [4], which
works well except for some artifacts around the edges, and
4) the proposed analytical design method. Fig. 3 shows the
calculated penalty coefficients

{
rj
l

}
for the method of [4]

and the proposed method. Qualitatively they are fairly similar,
although the differences do affect resolution properties.

Fig. 4 shows profiles around the rings verifying that the
proposed design indeed improves uniformity relative to con-
ventional regularization.

Using the methods of [1] we evaluated the local impulse
response (PSF) at various spatial locations. The results for
all methods do depend somewhat on spatial location. As an
illustrative example, Fig. 5 shows the PSFs and their contours
at one pixel. The proposed approach leads to more isotropic
PSFs.

we simply
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IV. DISCUSSION

We have described a simple method for designing regu-
larizers that lead to uniform and isotropic spatial resolution.
No FFTs are required for implementation. The integrals in
(13) are essentially three backprojections, but these can be
simple backprojectors, perhaps even nearest-neighbor. Probably
substantial angular down-sampling would be reasonable [5].
The method in [1] requires only one such backprojection, but
does not correct for anisotropy. The other two backprojections
give the necessary orientation information. The method of [4]
uses four partial backprojections, each over 45◦ of angles.

For L = 4 we have a complete analytical solution. For L > 4,
we can use the efficient NNLS algorithm described in [3]. This
extends the method to 3D systems and shift-variant problems.

The proposed solution provides new insight from recognizing
that the least-squares problem (8) corresponds simply to fitting
the angular weighting w̄j(ϕ) using a small set of raised sinu-
soids with nonnegative coefficients. For example, for horizontal
neighbors, the corresponding term is cos2(ϕ) = 1

2 + 1
2 cos 2ϕ.

This function peaks at 0◦, which is logical since the horizontal
penalty should be most affected by the 0◦ projections (vertical
rays). Likewise for the other neighboring pixel pairs.

The approach may also be useful for analysis of variance and
covariance properties of regularized reconstruction methods.
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Fig. 5. PSF at (20,0) for various regularization methods.


