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ABSTRACT

Magnetic field inhomogeneities cause distortions in the re-
constructed images for non-cartesian k-space MRI (using
spirals, for example). Several noniterative methods are cur-
rently used to compensate for the off-resonance during the
reconstruction, but these methods rely on the assumption of
a smoothly varying field map. Recently, iterative methods
have been proposed that do not rely on this assumption and
have the potential to estimate undistorted field maps, but
suffer from prohibitively long computation times. In this
abstract we present a min-max derived, time-segmented ap-
proximation to the signal equation for MRI that, when com-
bined with the nonuniform fast fourier transform, provides
a fast, accurate field-corrected image reconstruction.

1. INTRODUCTION
Differences in the magnetic susceptibility of adjacent re-
gions within an object, which occur for example near air/tissue
interfaces in the brain, lead to image distortions in non-
cartesian k-space MRI (using spirals, etc.). Many methods
have been proposed to correct for the field distortions dur-
ing the reconstruction of the images [1, 2, 3, 4, 5]. Most
of these methods rely on acquiring an accurate estimate of
the field map, but the standard field map estimation tech-
nique is to use two images acquired at different echo times
and assume that all of the off-resonance phase accrual oc-
curs at the echo time [6]. Also, both images used to esti-
mate the field map are distorted themselves. Once a field
map is obtained, one method of correction, the conjugate
phase method [1, 5], seeks to compensate for the phase ac-
crual at each time point due to the off-resonance, relying
on the assumption of a smooth field map. Time-segmented
and frequency-segmented approximations exist for this to
speed image reconstruction [1, 7]. For this method, since
the field map exists in distorted image space, we cannot
hope to recover a distortion-free image. Kadah, et al. [3]
tried to overcome this problem with a noniterative scheme,
SPHERE, by reconstructing distorted images and estimat-
ing distorted field maps and using those to synthesize cor-
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rected k-space data. This method also relies on the assump-
tion of a smoothly-varying field map.

Model-based iterative reconstruction methods have the
potential to account for field maps that violate the smoothly
varying assumption. The iterative reconstruction algorithm
proposed in [8] not only shows improvements in correc-
tions of the image over noniterative methods, but shows
that such a method can be used to estimate more accurate
field maps. Unlike standard reconstruction schemes which
perform an operation to take k-space data and reconstruct
an image (we will call this a back-projector), most iterative
reconstruction methods require a forward-projector (given
an estimate of the object and field map, form k-space data)
and its transpose. The problem to date with iterative recon-
struction methods is computation time, with reported values
of computation time per iteration ranging into tens of min-
utes [8]. Recently, some work has been done to develop
an accurate and fast Non-Uniform Fast Fourier Transform
(NUFFT) [9, 10] and this method has been applied to MRI
data with spiral k-space trajectories [11, 12]. However, this
method by itself does not allow for the modeling of field in-
homogeneity effects. In a manner similar to time-segmented
conjugate-phase reconstructions [1], we propose a fast time-
segmented forward projector, and its transpose, that takes
into account field effects and uses the NUFFT. We exam-
ined interpolation coefficients for the time segmentation in
a min-max framework to get a fast, accurate iterative recon-
struction algorithm for field-corrected imaging.

2. THEORY
For simplicity we present a 1D derivation, but the concepts
generalize easily to 2D and 3D. In MRI, the discretized sig-
nal equation is given by:

s(t) =
N−1∑

n=0

xne−iω0(rn)(t+TE)e−i2π(k(t)·rn), (1)

where s(t) is the signal at time t during the readout, TE is
the echo time, xn is a function of the object’s magnetization
at location rn, ω0(rn) is the field inhomogeneity present at
rn, and kr(t) is the k-space trajectory. We measure noisy
samples of this signal: yi = s(ti) + εi, or equivalently
y = Ax + ε, where ai,j = e−iω0(rj)(tj+TE)e−i2πk(ti)rj .
Since MRI noise is Gaussian, we want to estimate the im-
age x from the k-space data y by least squares, minx ‖y −
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Ax‖. We apply the iterative conjugate gradient algorithm
for minimization, each iteration of which requires comput-
ing A�(y − Ax) where � denotes the complex conjugate
transpose. Computing Ax is simply evaluating (1). We
propose to combine the NUFFT approach and a version of
time segmentation (with min-max temporal interpolation)
to compute (1) rapidly and accurately.

For a time-segmented approximation of the signal equa-
tion, we break the acquisition window into L − 1 time seg-
ments of width τ and compute the signal equation, accord-
ing to (1), at the L endpoints. We then interpolate over these
endpoints to evaluate an approximation to the signal equa-
tion at intermediate time points,

ŝ(t) =
L−1∑

l=0

a�
l(t) ×

N−1∑

n=0

[
xne−iω0(rn)(τl+TE)

]
e−i2π(k(t)·rn), (2)

where al(t) is the interpolation coefficient for the lth end-
point for time t. Notice in (2) that this is just sums of
discrete fourier transforms (DFT) of the term in brackets
weighted by the coefficients a�

l(t). The DFT can be per-
formed quickly and accurately using an NUFFT [10]. Fol-
lowing a min-max derivation similar to [13, 10], one can
show that the min-max interpolation coefficients al(t) in (2)
satisfy:

a(t) = (G�G)−1G�b(t), (3)

where

[G�G]l,l′ =
N−1∑

n=0

e−iω0(rn)τ(l−l′),

[G�b(t)]l =
N−1∑

n=0

eiω0(rn)(t−τl), (4)

for l, l′ = 0, . . . , L − 1. Only G�b(t) depends on the spe-
cific time positions, so the L x L matrix (G�G)−1 needs
only be computed once for a field map and L. Notice that
spatial position is absent from this equation. This means
that rather than the spatial distribution of the field inhomo-
geneity, the histogram of the field map determines (4). We
approximated the computation of (4) by forming the his-
togram of the field map using NB equal-sized bins along
the range of the inhomogeneity. Let mp be the number of
pixels having an off-resonance frequency that falls into bin
p with a center off-resonant frequency of ωp, then we can
rewrite (4) as

[G�G]l,l′ ≈
NB∑

p=1

mpe
−iωpτ(l−l′),

[G�b(t)]l ≈
NB∑

p=1

mpe
iωp(t−τl). (5)

The equations in (5) can be efficiently computed via a Fourier
transform of mp. Besides using the histogram correspond-
ing to the true field map in (5), a general histogram was used
and the differences in interpolators and their errors were
compared.

3. METHODS
A simulation study was performed to evaluate the maximum
interpolation errorover a range of times, t. We compared a
linear interpolator based on the two nearest endpoints to the
time sample of interest, a Hanning window interpolator us-
ing only the two nearest endpoints (similar to that used in
[1] for the back-projector problem), the min-max interpo-
lator (3), an interpolator based on the min-max framework
using the histogram of the field map calculated according
to (5), and an interpolator using a flat histogram over the
range [-100,100] Hz (Generic Histogram) also calculated
using (5). Looking at the maximum error over number of
time segments, a suitable L was chosen and the effect of
iteration was examined by looking at the normalized root-
mean-squared error (NRMSE) in the reconstructed image
of the interpolated, time-segmented approach versus using
the full signal equation (1). The time-segmented, NUFFT
reconstruction scheme was then applied to a real data set
collected on a 3.0T GE Signa Scanner in accordance with
the Institutional Review Board of the University of Michi-
gan. In the simulation and brain studies, a single-shot spiral
k-space trajectory was used with a matrix size of 64, giving
4024 k-space points, and a TE of 20 ms.

4. RESULTS
A simulation study was performed to examine the error of
the five interpolators described in Section 3 over various
numbers of time segments. The simulation object was de-
rived from a reconstructed image and estimated field map
from an actual brain scan and is shown in Figure 1. The
maximum error over a range of time points is shown for 3
through 19 time segments (L − 1) in Figure 2. The min-
max interpolators (ideal min-max, histogram min-max, and
generic histogram min-max) have been plotted until the con-
dition number of the (G�G) matrix becomes too large for
inversion. Notice that at L = 9 the max error for the min-
max and histogram interpolator is nearly 4 orders of mag-
nitude lower than that of the linear and Hanning. When a
histogram of the field map is used that doesn’t correspond
to the actual field map (generic histogram), the max error
shows this level of reduced error, but only when using a
larger number of time segments.

The profiles of the interpolators are given in Figure 3
using L = 6 for the Hanning and min-max interpolators.
The histogram interpolators looked very similar to the ideal
min-max interpolator, even though the generic histogram
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had a very different range of off-resonance and different
histogram shape (flat). Even though it was not explicitly
required, the min-max interpolators appear to sum to 1 at
every time point.

Looking at the max error in Figure 2, we select L = 9
to give a low error for the min-max interpolator, and look at
the error of time segmentation versus using the full signal
equation (1) over iteration to see how the error propagates
through the iterative process. As shown in Figure 4, the
error is fairly stable over iteration for all of the interpolators.

For a comparison of computation time, Figure 5 shows
the NRMSE vs computation time for L = 4, . . . , 10. The
time is given normalized to the time to evaluate the full
signal equation. On a 700 MHz Pentium Workstation us-
ing Matlab (The Mathworks), the full signal equation took
15 sec. to evaluate. The min-max interpolation method, us-
ing various values of L, took around 10% of this time, with
a normalized error on th order of 10−5.

As a final comparison, we look at real data collected
from a slice of the brain and reconstructed with both the pro-
posed iterative method and a full conjugate phase method.
Although the proposed iterative method can be used in an
extended form to estimate an undistorted field map, in this
case we were just comparing computation time, so both re-
constructions used a field map obtained in the standard way.
The iterative method used the generic histogram min-max
interpolator since it does not depend on the field map and
can be computed in advance for a given trajectory (depends
only on number of time points and a chosen range of off-
resonance frequencies). The NUFFT used an oversampling
factor of 2 and a neighborhood size of 6 and the min-max
interpolator used L = 10. The reconstruction time for the
full conjugate phase was 6.96 s and the reconstruction time
for five iterations of the proposed method was 5.45 s. The
resulting reconstructions are shown in Figure 6. In practice,
the iterative method can be used to simultaneously estimate
an undistorted field map and provide a better field-corrected
image, as evidenced in [8].

5. DISCUSSION
We have presented a method that allows fast, iterative re-
construction of field-corrected MRI images. By combining
the NUFFT with time segmentation using a min-max tem-
poral interpolator, a computation speed up of a factor of 10
is achievable with NRMSE on the order of 10−5 when com-
pared to using the full signal equation. This method should
easily be adaptable to other forms of iterative reconstruc-
tion in MRI, including multiple coil sensitivity encoding
(SENSE).
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Fig. 1. Simulation object (magnitude) and field map in
rad/s.
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Fig. 2. Maximum NRMSE over a range of time points for
each interpolator for various numbers of time segments. Er-
ror is measured relative to full evaluation of the signal equa-
tion (1)

Fig. 3. Real (solid lines) and imaginary (dashed lines) parts
of interpolators using L = 6 for the Hanning and min-max
interpolators.

Fig. 4. NRMSE vs iteration for L = 9.

Fig. 5. NRMSE after 20 iterations vs. computation time for
L = 4, . . . , 10 for the ideal min-max interpolator. Time is
given as a percentage of the computation time to evaluate
the full signal equation (1).

Fig. 6. Conjugate phase and iterative image reconstructions.
The time for the full conjugate phase was 6.96 s and the time
for five iterations of the iterative reconstruction was 5.45 s
using L = 10.
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