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ABSTRACT

The expectation-maximization (EM) algorithm for maximum-
likelihood image recovery converges very slowly. Thus, the
ordered subsets EM (OS-EM) algorithm has been widely
used in image reconstruction for tomography due to an order-
of-magnitude acceleration over the EM algorithm. How-
ever, OS-EM is not guaranteed to converge. The recently
proposed ordered subsets, separable paraboloidal surrogates
(OS-SPS) algorithm with relaxation has been shown to con-
verge to the optimal point while providing fast convergence.
In this paper, we develop a relaxed OS-SPS algorithm for
image restoration. Because data acquisition is different in
image restoration than in tomography, we adapt a differ-
ent strategy for choosing subsets in image restoration which
uses pixel location rather than projection angles. Simulation
results show that the order-of-magnitude acceleration of the
relaxed OS-SPS algorithm can be achieved in restoration.
Thus the speed and the guarantee of the convergence of the
OS algorithm is advantageous for image restoration as well.

1. INTRODUCTION

Statistical techniques have been shown to improve image
quality in image restoration. Since closed form solutions
for these techniques are usually unobtainable, iterative algo-
rithms are needed. However, there are some drawbacks of
existing algorithms such as convergence, computation time,
and parallelizability.

The expectation-maximization (EM) algorithms [1, 2]
and their ordered subset (OS) version [3] are among the
most common used algorithms; however, they have some
limitation either on speed or convergence. The EM algo-
rithms are guaranteed to converge; however, they converge
very slowly. The OS-EM algorithm [3] has become very at-
tractive to image reconstruction in tomography due to its
fast convergence rate compared with the EM algorithms.
However, the OS-EM algorithm is not guaranteed to con-
verge. Therefore, many approaches have been proposed to
solve the convergence problem of the OS algorithm such as
the row-action maximum likelihood algorithm (RAMLA)

[4] and its regularized version, the block sequential regular-
ized EM (BSREM) algorithm [5]. Although the RAMLA
and BSREM algorithms were proved to converge, they re-
quire a strong assumption that the objective sequence is con-
vergent.

Recently, the relaxed ordered subsets separable parabo-
loidal surrogates (OS-SPS) algorithm [6] has been shown
to converge without the strong assumption. This algorithm
is derived from the separable paraboloidal surrogates (SPS)
algorithm [7, 8], which is closely related to the EM algo-
rithms. Like the EM algorithms, the OS version of the SPS
(OS-SPS) algorithm [9] was introduced for transmission to-
mography. Even though the OS-SPS algorithm converges
very fast, it is not guaranteed to converge. To fix the conver-
gence problem of the OS-SPS algorithm, the relaxed OS-
SPS algorithm [6] was proposed by introducing the relax-
ation parameter into the algorithm. This algorithm not only
retains the fast convergence rate of the OS-SPS algorithm
but is guaranteed to globally converge as well. Unlike the
relaxed OS-SPS algorithm, the relaxed version of the OS-
EM algorithm is not guaranteed to converge to the optimal
point. Therefore, in this paper we will focus on the relaxed
OS-SPS algorithm.

Most existing OS methods have been applied to image
reconstruction in tomography only, but not to image restora-
tion. In [10], the OS-EM method has been applied to the
restoration of the large binocular telescope (LBT) images.
However, the structure of the LBT imaging is similar to that
of the computed tomography (CT): multiple views of the
same object have been observed at different angles. Since
the measurement data are different in image restoration than
those obtained in image reconstruction, we develop here a
different strategy for choosing subsets.

2. MEASUREMENT MODEL

In image restoration problems, the measurements are usu-
ally degraded by blur and noise. To recover the original
image, one can use the statistical characteristics of the mea-
surement system to specify an objective function that is max-
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imized. Since image restoration is an ill-posed problem, we
focus on the penalized likelihood (PL) estimation. Thus the
objective function can be written in the following form:

Φ(x) = L(x)− βR(x) (1)

where L is the log-likelihood function of the measurement,
R(x) is the roughness penalty function, and β is a parameter
that controls the degree of smoothness in the restored image.

For confocal microscopy, the noisy measurement Y can
be modeled as follows:

Yi ∼ Poisson{[Ax]i + bi}, i = 1, . . . , N

whereA is the system matrix which is assumed to be known,
x is the unknown image that we must estimate, bi is the
background noise and dark current, andN is the number of
pixels. The corresponding log-likelihood function is given
by

L(x) =

N∑
i=1

hi(li) (2)

where li =
∑p
j=1 aijxj and hi(l) = yi log(l+bi)−(l+bi),

ignoring irrelevant constants independent of x.
To reduce noise, we penalize the differences between

neighboring pixels using a roughness penalty function of
the form

R(x) =

r∑
i=1

ψ([Cx]i)

where ψ is the potential function and C is the penalty ma-
trix. For the first-order neighborhood, the matrix C consists
of horizontal and vertical cliques.

With proper regularization, the objective function has a
unique global maximum. Thus our goal is to estimate x

by finding the maximizer of the objective function: x̂
�
=

argmaxx≥0Φ(x). Since closed form solutions are unavail-
able for the maximizer, iterative algorithms are needed.

3. THE ALGORITHMS

3.1. OS-SPS Algorithm

In this section, we review the idea of the OS technique and
the OS-SPS algorithm.

The objective function in (1) can be decomposed into
subobjective function fm as follows:

Φ(x) =

M∑
m=1

fm

where M is the total number of subsets and fm’s are ob-
tained by replacing a sum over all pixel indices in the like-
lihood function of (2) with a sum over a subset of data Sm
as follows:

fm
�
=
∑
i∈Sm

hi(li)−
β

M
R(x).

Suppose the “subset-balance”-like conditions [3] hold for
the gradient of each sub-objective function, i.e. ∇f1(x) ∼=
∇f2(x) ∼= . . . ∼= ∇fM (x). Then the gradient of the objec-
tive function Φ(x) can be approximated as follows:

∇Φ(x) ∼=M∇fm(x), ∀m. (3)

From (3), M∇fm(x) is replaced with ∇Φ(x) in the algo-
rithm to construct the OS algorithm.

The SPS algorithm is based on the paraboloidal surro-
gate function and the concavity technique developed by De
Pierro [2]. The OS version of the SPS algorithm was intro-
duced in [9] for transmission tomography. Using (3), the
pixel update xj for the OS-SPS algorithm is

x
(n,m)
j =

[
x
(n,m−1)
j +M

∇jfm
dj + βpj

]
+

, m = 1, . . . ,M (4)

where, in the PL estimation,

∇jfm =
∑
i∈Sm

aij ḣi(l
(n,m−1)
i )−

β

M

r∑
i=1

cijψ̇([Cx
(n,m−1)]i).

The curvature of the likelihood dj and the curvature of the
penalty pj are precomputed as follows:

dj =

N∑
i=1

aijγici

pj =

r∑
i=1

cijνiω(0)

where γi =
∑p
j=1 aij , ci = −ḧi(yi − bi), νi =

∑p
j=1 cij ,

and ω(t) = ψ̇(t)
t . Although the OS-SPS algorithm con-

verges faster than SPS in early iterations, it is not guaran-
teed to converge.

3.2. Relaxed OS-SPS Algorithm

To guarantee the convergence of the OS-SPS algorithm, Ahn
and Fessler [6] modified the OS-SPS algorithm to include
the relaxation parameter. From (4), the pixel update of the
relaxed OS-SPS algorithm becomes

x
(n,m)
j =

[
x
(n,m−1)
j + αnM

∇jfm
dj + βpj

]
+

, m = 1, . . . ,M

where a positive relaxation parameterαn is chosen such that∑
n αn =∞ and

∑
n α
2
n <∞.
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3.3. Choosing Subsets

Since most OS algorithms have been used for image recon-
struction to date, a different strategy for choosing subsets in
image restoration needs to be considered because of differ-
ence in data acquisition. A good choice of subsets should
satisfy the “subset-balance” condition stated in (3). In to-
mography, the subsets are chosen from downsampling the
projection angles. One approach to obtain the subsets in
restoration problem is to downsample the pixels in the im-
age. Possible choices of four subsets for a 2D image are
shown in Fig. 1. How the possible choices of subsets may
effect the convergence rate still has to be investigated.
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Fig. 1. Possible Choices for 4 subsets

3.4. FFT Trick

To increase the efficiency of computing the following ex-
pressions which produce most of the computation cost, we
developed an FFT trick.

li =

p∑
j=1

aijxj , ∀i ∈ Sm (5)

L̇j =
∑
i∈Sm

aij ḣi(li), ∀j (6)

Due to simultaneously updating all pixels, the fast Fourier
transform (FFT) can be employed to reduce the computation
time, especially for a large image in 3D. Since some values
of li in (5) are used in (6), computing all values of li using
ordinary FFT routines would be inefficient. Therefore, we
introduced a trick for computing (5) and (6) efficiently with
FFT. First, we rewrite (5) as follows:

li =

M∑
m=1

∑
j∈Sm

aijxj , ∀i ∈ Sm.

Then
∑
j∈Sm

aijxj can be computed by downsampling the
image and the point spread function (PSF) according to sub-
set Sm and then summing all the subsets. The size of the
FFT matrix, then, is approximately reduced by the respec-
tive number of subsets. Similarly, in (6), for each j ∈ Sm,
L̇j can be computed by using ḣi and the downsampled PSF.
A differentSm in L̇j requires a different downsampled PSF,
but uses the same ḣi.

4. SIMULATION RESULTS

A 256×256 cell image (Fig. 2a) was degraded by a 15×15
PSF, created from the XCOSM package1 (only xz) [11], and
Poisson noise with PSNR2 of 40 dB, as shown in Fig. 2b.
We assigned the relaxation parameterαn = 11/(10+n) and
for edge-preserving [12], we used the nonquadratic rough-
ness penalty functionψ(t) = δ2

[∣∣ t
δ

∣∣− log (1 + ∣∣ t
δ

∣∣)] ,where
δ controls the degree of edge preservation. Fig. 2c shows the
restoration with the relaxed OS-SPS algorithm (8 subsets)
performed for 50 iterations.

Table 1 compares the elapsed time per iteration of dif-
ferent algorithms: De Pierro’s modified EM (DPEM) [2],
SPS (with optimal curvature), and relaxed OS-SPS (with
precomputed curvature) algorithms. Theoretically, different
subsets of the relaxed OS-SPS algorithm should yield ap-
proximately the same computation time per iteration as the
non OS version. Although, we were not able to achieve that
due to MATLAB overhead, the computation time per itera-
tion does not increase by the number of subsets.

DPEM SPS OS-SPS-2 OS-SPS-4 OS-SPS-8
time/iter (s) 1.09 1.28 1.62 2.50 4.27

Table 1. Comparison of elapsed times per iteration for
DPEM, SPS, and OS-SPS algorithms.

Fig. 3 shows the objective increase, Φ(xn) − Φ(x0), at
each iteration of DPEM, SPS, ordinary OS-SPS (8 subsets),
and relaxed OS-SPS (8 subsets). In this figure, the ordi-
nary OS-SPS and relaxed OS-SPS algorithms increase the
objective function faster than the DPEM algorithm roughly
by the number of subsets. However, the ordinary OS-SPS
algorithm does not eventually converge to the same point as
the relaxed OS-SPS algorithm.

5. CONCLUSION

We demonstrated that the relaxed OS-SPS algorithm, con-
ventionally used for tomography, can be adapted to use in
image restoration by choosing appropriate subsets. Essen-
tially, we based this choice on the pixel location. Similarly
to tomography, we are able to achieve order-of-magnitude
acceleration over the nonrelaxed version algorithm. Although
this preliminary study focused on 2D, our relaxed OS-SPS
algorithm can be modified to include 3D confocal microscopy.
The real benefit of the FFT trick is for 3D restoration. More-
over, the parallel version of FFT is also available which can
further increase the convergence rate.

1pixel sizes�x = �y = �z = 0.15µm, 40× /1.0 NA oil-immersion
objective, and a fluorescent wavelength of 0.63 µm.

2The peak signal-to-noise ratio is defined as follows:

PSNR = 10 log10

(
maxi(yi−bi)

2

1
N

∑
i(yi−E[yi])

2

)
.
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(a) Original image (b) Noisy image (c) Restored image

Fig. 2. Simulated images and restoration using the relaxed OS-SPS algorithm.
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Fig. 3. Comparison of objective function increase of
DPEM, SPS, OS-SPS, and relaxed OS-SPS algorithms.
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