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ABSTRACT

We have investigated an intensity-based image registration
technique using a robust correlation coefficient as a similar-
ity measure. The proposed method has an advantage over
the ordinary correlation coefficient since it reduces the ef-
fect of “outlier” image intensity values. For the applica-
tion of image registration to radiotherapy or image-guided
surgery, there may be outlier samples due to the presence of
the objects such as surgical instruments. We have verified
the usefulness of the proposed method by simulation and
phantom experiment.

1. INTRODUCTION

Image registration is a useful technique for diagnosis, pa-
tient set-up estimation for radiation therapy[1], tracking for
image-guided surgery[2][3], etc. For set-up estimation and
tracking problem, a pre-operative image is geometrically
transformed to achieve the registration, and the patient set-
up is estimated as the geometrical transformation that ac-
complishes the registration. Intensity-based registration meth-
ods achieve registration by maximizing a similarity measure
based on the intensity values of the two images. There-
fore, designing an effective similarity measure is very im-
portant. The correlation coefficient between images is one
of the most widely used similarity measures, and is appro-
priate when two images are from the same modality imag-
ing devices [4][5]. The correlation coefficient is usually es-
timated by the sample correlation coefficient. Although the
sample correlation coefficient has many distribution free ad-
vantages such as unbiasedness and consistency, the sample
correlation coefficient is very sensitive to outliers[6]. A few
outlier values can effect the sample correlation coefficient
greatly. This can degrade performance in image registra-
tion. In fact, a significant number of “outliers” are present
in the image-guided surgery application due to the pres-
ence of the operational instrument. For radiotherapy, out-
liers may be present due to the effect of radiotherapy table.
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To remedy this problem, we have investigated a robust cor-
relation coefficient as a similarity measure for image reg-
istration. We have used an affinely invariant approach[6]
to calculate the robust correlation coefficient. To evaluate
the performance of the proposed registration method, we
conducted an experiment with an anthropomorphic chest
phantom. We evaluated the performance of the proposed
method by comparisons with the sample correlation coeffi-
cient method based on the “ground truth” determined by a
marker-based method.

2. ESTIMATING COVARIANCE MATRIX

This section reviews the ordinary sample correlation coef-
ficient and describes the proposed robust correlation coeffi-
cient.

2.1. MLE(Maximum Likelihood Estimator)

Suppose that corresponding image intensity value pairs {xi}
are the samples of two dimensional random vectorX whose
pdf is an elliptic density that is transformed by nondegener-
ate transformation x → V (x − t) from a spherically sym-
metric density f(‖x‖) in R2. Then, the elliptic density is
defined as following,

f(x; t, V ) = |detV | f(‖V (x− t)‖). (1)

Suppose that a random vector X0 = V (X − t) has a
pdf f(‖xo‖) and the covariance matrix K0 = σ2I , where
I is 2 by 2 identity matrix. Then, the mean and the covari-
ance matrix of the random variableX is t and σ2(V TV )−1.
Therefore, the MLE of the mean and the covariance of the
random variable X can be determined by maximizing the
likelihood function from eq. (1). By taking derivative with
respect to t and V , the MLE is obtained by satisfying the
following implicit equations[6],

ave{w(‖y‖)y} = 0 (2)

ave{w(‖y‖)yyT − I} = 0 (3)
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where, “ave” denotes sample averages, and

w(y)
�
= −

f
′
(y)

yf(y)
. (4)

We can rewrite above implicit equations as followings:

t =
ave{w(‖y‖)x}

ave{w(‖y‖)}
(5)

(V TV )−1 = ave{w(‖y‖)(x − t)(x− t)T }. (6)

If we solve above equations with assuming f(‖x0‖) as
the normal distribution with identity covariance matrix, then
w = 1 and the implicit equations is solved explicitly. The
MLE for the mean and the covariance are the sample mean
and the sample covariance matrix. As is well known, it
can be said that the sample correlation coefficient is the
maximum likelihood estimation of correlation coefficient
for normal density f(‖x0‖).

For any distribution, after solving the implicit equations
for t and V , one can compute the functionw with estimated
t and V . Since, it weighs each sample according to its loca-
tion, it may be called weighting function.

2.2. Robust Estimator

The sample mean and the sample covariance estimation are
sensitive to outliers. Roughly speaking, this can be ex-
plained because the sample mean and the covariance are the
MLE for the normal distribution. Since normal distribution
has “lighter tails” and the MLE considers outliers as true
samples, the effect of outlier is large. Conversely, if an esti-
mator is the MLE for a distribution which has “heavy tails”,
the outlier may be considered to belong tail area and result
in smaller change in likelihood function. Therefore, we may
design more robust estimator by assuming a distribution that
has heavier tails such as Laplacian. For this paper, we have
picked a distribution whose pdf is

f(‖x‖) = ce−
√
1+‖x‖2/δ2−1, (7)

where, c is an appropriate constant.
For this distribution, w(y) is defined as following;

w(y) =
1

δ2
√
1 + y

2

δ2

. (8)

We solve the implicit equations (5),(6) for estimating t
and V iteratively by following the algorithm described in
[6].

One can show that estimating the correlation coefficient
is independent from the choice of δ, although estimating t

and V depends on δ. This is convenient property since we
can reduce one design parameter. Therefore, the only design
parameter for robust estimator using our approach is the se-
lection of the pdf shape in (7). The optimal shape will pre-
sumably depend on the nature of the “outliers”, but any pdf
with heavier-tails than a normal distribution will improve
robustness relative to the sample correlation coefficient.

3. SIMULATION RESULTS

To evaluate the statistical properties of the proposed method,
we have implemented a simulation. We simulated mixture
of two two-dimensional normal distributions that have true
distribution with zero mean, unity variances, correlation co-
efficient 0.93 and the outlier distribution with mean -1.3,
1.5 variances 1, 0.001 and correlation coefficient 0.01. The
number of samples from the true distribution is 100000 and
from the outlier distribution is 5000. We repeated the simu-
lation for 1000 realizations. Fig.1 shows the 2D histogram
of the samples and the weighting function after solving the
implicit equations.

0

0.5

1

1.5

2

2.5

x 10
−3

(a) Joint histogram

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Weighting function

Fig. 1. Distribution and weighting function.

Fig.2 shows the histograms of the estimated sample cor-
relation coefficient, robust correlation coefficient and sam-
ple correlation coefficient without outlier samples. As we
expected, the sample correlation coefficient is largely biased
due to the outlier samples as well as the standard deviation
is large. The robust estimator has reduced the bias and the
variance greatly.

4. EXPERIMENTAL RESULTS

In our previous research[1], we conducted an anthropomor-
phic phantom experiment to evaluate the performance of the
set-up estimators by 3D/2D image registration. The estima-
tion problem was estimating six parameters that are rota-
tions and translations along the X,Y,Z axis using two or-
thogonal images. We used the same data set for this re-
search but used only one lateral image and tried to esti-
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Fig. 2. Histograms of the estimators:sample correlation, ro-
bust correlation, sample correlation w/o outliers

mate one rotation parameter and two translation parame-
ters that can be estimated using one image. The reason
why we used only one image is that the lateral image only
has outliers that are generated by the effect of the radio-
therapy table. For this research, the other three parameters
were kept fixed at the “ground truth” position that are es-
tablished by the most accurate marker-based method. To
establish “ground truth”, we attached eleven 1mm diam-
eter lead markers to the exterior surface of an anthropo-
morphic phantom. A 512×512×398 voxel CT image with
0.9375×0.9375×1 mm spacing was acquired on a GE CT/i
scanner with a 140 kV x-ray source. Tattoos were drawn on
the phantom where three alignment laser planes crossed the
phantom to facilitate consistent set-up in a treatment room.
Next, the phantom was moved to the treatment room and
it was set up at the isocenter by manually aligning tattoos
to three laser planes in the treatment room. Four radio-
graphs were obtained from different angles by rotating the
x-ray source and Varian Portal Vision amorphous silicon ac-
tive matrix flat panel image detector in 30o increments. For
90o view, we acquired 10 repeated radiographs without re-
alignment for evaluating the effect of noise on the estima-
tor. The x-ray source voltage was 6 MV and the detector
size was 512×384 pixels with 0.78mm×0.78mm spacing.
We used only radiograph from 90o (i.e, lateral image) for
the correlation-based methods. However, to enhance the ac-
curacy of the “ground truth”, we used all four radiographs
for the fiducial marker-based method. For the correlation-
based methods, the planning CT image was down-sampled
by four along each axis to reduce computation time and
memory usage. For image registration, while geometrically
transforming the CT image, we computed DRR(Digitally
Reconstructed Radiograph) of the transformed CT from the
same angle as the radiograph acquired. Then, the registra-
tion is achieved by maximizing the similarity measure be-
tween such DRR and radiograph. We used only the central

400×300 sub-image of the DRR and the radiograph to avoid
the effect of the markers which are not usually used in clini-
cal practice. We have established the geometry of the EPID
imaging systems by determining radiation field edges using
simple thresholding method[7]. Fig.3 shows the radiograph
and the DRR at the registered position. We can see the effect
of the radiotherapy table around the rightmost parts of the
radiograph. Pixels around the right most parts of the radio-
graph are brighter than those from the DRR. This is because
the radiotherapy table increased the attenuation coefficient.

(a) Radiograph (b) DRR

Fig. 3. Radiograph and DRR.

Fig. 4 (a) shows the estimated joint histogram from the
registered radiograph and the DRR. We can see some outlier
distribution from mostly linear distribution. This is due to
the presence of the radiotherapy table, as explained. The
weighting function presented in Fig. 4 (b) reduces the effect
of the outlier samples.
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Fig. 4. Estimated pdf and weighting factors

By applying the proposed robust correlation coefficient
based method, we estimate one rotation and two translation
parameter. Table 1 summarizes the experimental results.
We repeated 10 estimations using 10 acquisitions of the ra-
diograph.
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Table 1. Estimated set-up parameters

φx ty tz
Error (sample) 1.39 -2.06 2.11
Error (robust) 1.07 -0.99 1.33

STD (sample) 0.02 0.02 0.03
STD (robust) 0.10 0.06 0.13

(*The units for rotation parameter is degree and for
translation parameters are mm. STD is the standard

deviation from 10 repetitions)

5. DISCUSSION

We have been able to reduce the errors of the sample corre-
lation coefficient-based image registration using robust cor-
relation coefficient as a similarity measure. We suspected
that the error of the sample correlation coefficient-based
registration was due to the outlier samples. By reducing
the errors using robust method, we suspect that the fact was
proved indirectly. However, for more rigorous arguments,
we need to investigate that those errors are caused by the
outliers in both mathematical way and experimental way.
We also found that the STD of robust correlation coefficient
based estimator was relatively larger than that of sample
correlation coefficient based estimator in the phantom ex-
periment. We have no knowledge whether it is for this par-
ticular experiment only or general. Addressing this problem
is one of our future research goals. The other interesting re-
search topic is the evaluation of the performance of the ro-
bust correlation coefficient to the other similarity measure
such as MI(Mutual Information). We think that every esti-
mator has trade-off between efficiency and robustness. In-
vestigating that property among useful similarity measures
can be valuable research topic. Finally, we can design many
different robust correlation coefficient estimators by design-
ing different pdf other than that used in this research. For
example, Huber function type pdf can be an interesting es-
timator. Designing better estimator using some information
such as the histogram of images may be valuable for the ap-
plications where the presence of the outliers are inevitable.

6. CONCLUSION

We have proposed a robust correlation coefficient as a sim-
ilarity measure for the intensity-based image registration
task. We have been able to reduce the bias of the sam-
ple correlation coefficient-based image registration by using
the proposed method in a phantom experiment. We believed
that the relatively large error of the sample correlation-based

method was caused by the presence of outlier samples. We
think that the robust correlation coefficient may be an effec-
tive similarity measure for the image registration task where
the presence of the outlier is inevitable such as set-up esti-
mation for radiotherapy and image-guided surgery.
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