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Abstract— Resolution and covariance predictors have been de-
rived previously for penalized-likelihood estimators. These predic-
tors can provide accurate approximations to the local resolution
properties and covariance functions for tomographic systems given
a good estimate of the mean measurements. However, when
numerous evaluations are made repeatedly (as in penalty design
or calculation of variance images), these predictors still require
large amounts of computing time. In [1], we discussed methods for
precomputing a large portion of the predictor for shift-invariant
system geometries. In this paper, we generalize the efficient
procedure discussed in [1] to shift-variant single photon emission
computed tomography (SPECT) systems. This generalization relies
on a new attenuation approximation and several observations on
the symmetries in SPECT systems. These new general procedures
apply to both 2D and fully-3D SPECT models, that may be either
precomputed and stored, or written in procedural form.

Index Terms— Tomography, local impulse response, noise, vari-
ance, image quality.

I. I NTRODUCTION

EQUATIONS for predicting the mean and variance have
been derived in [2] and for predicting resolution prop-

erties in [3]. These predictions have been applied to several
applications including penalty design for uniform resolution [1],
[4], and contrast optimization [5], and with computer observer
models [6]. While resolution and noise prediction has potential
uses across a range of applications, the evaluation of these pre-
dictions is computationally expensive. This paper investigates
a number of approximations that make these evaluations more
practical.

Approximations for noise and resolution prediction have
been used in [7] that yield practical computation times. How-
ever, when very many evaluations are required (e.g.: when
resolution predictions are made for every pixel position, or
noise predictions are made repeatedly for different reconstruc-
tion parameters or objects), the computational burden is still
high. Generally, the dominant computation is the calculation
of repeated weighted backprojections of projection data. In
some cases, as in an idealized PET system where the system
response is space-invariant, computation time can be reduced
through an appropriate factorization and precomputation (see
[1]). However such methods are inapplicable to space-variant
systems, such as for SPECT with a depth-dependent detector
response. We have previously investigated fast methods for
cases where the space-variant system may be modeled with
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a precomputed system matrix [4]. Such methods are generally
impractical for 3D systems, where the system model is too
large to be precomputed and stored. Other attempts at reducing
calculation time have been made using approximations based
on approximating the SPECT model using a space-invariant
model [8].

In this paper, we discuss a technique for making noise
and resolution predictions that are appropriate for both 2D
and fully 3D SPECT systems. These methods are appropriate
for systems where projections and backprojections are done
“on-the-fly”, and apply generally to noncircular orbits and
nonuniform attenuation. The approach discussed here is an
extension of the linear operator approach discussed in [1] for
PET systems. We apply approximations that reduce storage and
computation, yet retain prediction accuracy.

II. BACKGROUND

Consider the following SPECT model, where the measure-
ment vector,Y = [Y1, . . . , YN ], is related to the emission
image,λ = [λ1, . . . , λP ], through their means as follows

Ȳ (λ) =Hλ+ r, (1)

whereH ∈ IRN×P is the system matrix, andr = [r1, . . . , rN ]
represents the mean contribution from scatter and background
events. In SPECT, usually one can factor elements ofH , as
hij = bigijaij , where bi denotes ray-dependent factors that
incorporate nonuniformities across the face of the detector,
G = {gij} represents an object-independent geometric sys-
tem model, andA = {aij} describes the object-dependent
attenuation effects into the model. Using matrices, we write
H = DB(A � G), whereDB is a diagonal matrix with
elementsbi.

We reconstruct the emission image from the measurements
using a penalized-likelihood estimator defined as the implicit
maximizer of an objective function,

λ̂ = argmaxL(λ, Y )−R(λ), (2)

where the objective function is written as the difference of a
log-likelihood term,L(λ, Y ), and a penalty term,R(λ).

Using the formulations in [2] and [3], and the circulant ap-
proximations in [7], one may quantify the resolution properties
of λ̂ using an approximation for the local impulse response,

lj = F

{
F
{
H ′DHej

}
F {H ′DHej +R(λ)ej}

}
, (3)



Fig. 1. Our local impulse response approximation versus a response calculated
using the iterative methods described in [3].

and the covariance approximation,

Covj{λ̂} = F

{
F
{
H ′DHej

}
[F {H ′DHej +R(λ)ej}]2

}
. (4)

In these two equations,F{·} represents the Fourier transform
of its vector argument,R(λ) is the Hessian of the penalty
function, andej is thejth unit vector that indicates the position
of the local response or covariance function. Under a Poisson
model for the measurements, we use a diagonal weighting
matrix [3],D = diag{1/Yi}.

Because the Fourier transforms can be calculated quickly us-
ing fast Fourier transforms, the computations are dominated by
calculating the weighted projection-backprojection,H ′DHej .
Fast calculation of this term is the key to efficient evaluation
of the noise and resolution predictions.

III. E FFICIENT CALCULATION OF H ′DHej

We have previously investigated a technique for efficient
calculation ofH ′DHej whenH models a shift-invariant PET
system [1]. This technique was based on replacingH ′DHej

with an object-independent matrix that operates on the diagonal
elements ofD. Specifically, sinceH ′DHej is linear in the
elements ofD, one may find a set of linear operators,M j ,
such that,

H ′DHej =

N∑
i=1

mji [D]ii =M
jd, (5)

where d ∈ IRN is a vector of the diagonal elements of
D. We construct columns ofM j , using superposition with
mji = H ′diag

{
ei
}
Hej . Unfortunately, for SPECT these

operators areobject-dependentbecause of attenuation. Thus
precomputation of these operators generally does not provide
a useful speed-up for SPECT.

To find a suitable approach for SPECT, consider the follow-
ing observations. LettingF = H ′DH , we write the(k, j)th
element ofF as

Fig. 2. Comparison of covariance approximation versus an estimate formed
by calculating the sample covariance over 1000 reconstructions.

[F ]kj = (ek)′F ej = (ek)′H ′DHej

= (ek)′ [DB(A�G)]
′
D [DB(A�G)] e

j

=
[
(Aek)′ � (Gek)′

]
DBDDB

[
(Aej)� (Gej)

]
= (Gek)′diag

{
Aek
}
DBDDBdiag

{
Aej
}
Gej

= (ek)′G′DjkGej , (6)

where the diagonal matrix,Djk, has the following elements[
Djk
]
ii
= [Aek]i[D]ii[DB]

2
ii[Ae

j ]i = b
2
i aijaik[D]ii. (7)

BecauseAek generally varies relatively smoothly with
changingk andH ′DHej is fairly concentrated about the pixel
positionj, we make the following approximation,

F ej =H ′DHej ≈ G′DjjGej . (8)

Thus, we have an approximation where the object-dependence
enters only through the diagonal weighting (as in the PET case
discussed in [1]). The approximation (8) isexact at position
j and yields good predictions for a neighborhood aroundj.
Because of the object-independence ofG, we precompute the
following object-independent linear operators

m̂ji = G
′diag

{
ei
}
Gej . (9)

With these precalculated, we form predictions using

H ′DHej ≈ M̂ j d̂
j
, (10)

where elements of[d̂
j
]i = b

2
i a
2
ij [D]ii.

While (10) represents the key approximation that we use
in approximatingH ′DHej , we have developed additional
simplifications that reduce storage and computation making the
evaluation ofH ′DHej via (10) practical. These additional
simplifications are discussed in greater detail in [9].

IV. RESULTS

Because the precalculation of (9) involves significant com-
putation time, the main advantage of our methods over other



techniques arises when one wants to repeatedly calculate
the weighted projection-backprojection for different diagonal
weightings. Therefore, if one wants to investigate covariance
functions for many different images, or one wants to be able
to design a object-dependent shift-variant penalty as in [1] or
[5], our approximation will greatly reduce computation time.
While this is the main advantage, when one uses the additional
approximations we have derived (but not discussed in this short
summary), it is possible to reduce computation time versus
traditional predictors even when one includes precomputation
times in the comparison.

To illustrate the potential utility and accuracy of our approxi-
mation, we have compared sample local impulse responses and
covariance functions using our new approximations and more
traditional methods. Figure 1 compares our approximate local
impulse response using methods based on (10) and (3), versus
the iterative approach described in [3] (using the trueH).
These methods yield nearly indistinguishable results although
the approximate method takes a very small fraction of the time
of the iterative approach. One obtains similar accuracy using
the circulant approach in (3). However, compared to our method
(when the linear operators have already been precalculated) the
computational burden is much greater than our approach.

Figure 2 compares covariance functions with similar conclu-
sions. Our approximation, using (10) and (4), matches very well
with an empirically calculated covariance and, for precomputed
operators, the computation time is greatly reduced compared to
other prediction methods.
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