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Abstract— Regularization is desirable for image reconstruction
in emission tomography. One of the most powerful regularization
techniques is the penalized-likelihood reconstruction algorithm
(or equivalently, maximum-a-posteriori reconstruction), where the
sum of the likelihood and a noise suppressing penalty term (or
Bayesian prior) is optimized. Usually, this approach yields position
dependent resolution and bias. However, for some applications
in emission tomography, a shift invariant point spread func-
tion would be advantageous. Recently, a new method has been
proposed, in which the penalty term is tuned in every pixel
in order to impose a uniform local impulse response. In this
paper, an alternative way to tune the penalty term is presented.
The performance of the new method is compared to that of the
post-smoothed maximum-likelihood approach, using the impulse
response of the former method as the post-smoothing filter for the
latter. For this experiment, the noise properties of the penalized-
likelihood algorithm were not superior to those of post-smoothed
maximum-likelihood reconstruction.

I. INTRODUCTION

Regularization of maximum-likelihood expectation-
maximisation reconstruction (MLEM), by combining the
likelihood with a penalty [1–6], often results in position
and image dependent spatial resolution. However, for some
applications in emission tomography (e.g. image analysis
based on kinetic modeling or on standardized uptake values
[7]), it is desirable to have uniform spatial resolution. Recently,
methods have been proposed to impose uniform resolution, by
combining the likelihood with a data dependent penalty [8–
10] or by tuning the characteristics of a filter applied during
interations [11]. An alternative method to obtain uniform
resolution is to post-smooth the reconstruction obtained after
many iterations of a maximum-likelihood (ML) reconstruction
algorithm [12], [13]. Applying a sufficiently high number of
iterations ensures a nearly bias-free reconstruction, so after
post-smoothing, the spatial resolution is uniform and the point
spread function is (nearly) identical to the smoothing filter.
In this paper, we first derive an approximate expression for
the “natural” shape of the local impulse response function
associated with a quadratic penalty term. Then, a new
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penalized-likelihood method is proposed to obtain a symmetric
and shift invariant point spread function. The performance of
this new algorithm is compared to that of post-smoothed ML
reconstruction.

II. THEORY

A. The local impulse response with the quadratic prior and
uniform likelihood

Consider a one dimensional image, with pixels subject to
independent Gaussian noise (with known and constant vari-
ance) and regularized with a quadratic smoothing penalty, as
described by the following equations

L(y, λ) =
∑

j

Lj = −1

2

∑

j

(λj − yj)2 (1)

P1(λ) = −w
4

∑

j

(
(λj − λj−1)2 + (λj − λj+1)2

)
(2)

where L is the log-likelihood and −P1 the penalty, λj and yj
are the reconstructed and measured pixel values in j and w is
the penalty weight. To study the local impulse response of the
image maximizing L+P , we assume that the measured values
for all pixels are zero, except for a single pixel α, for which
it equals A > 0. Setting ∂(L+ P1)/∂λj = 0 for a pixel with
j 6= α produces an equation in λj , λj−1 and λj+1. Substituting
λj = abj reveals that the equation is satisfied if

λj = abj and b =
1 + 2w ±

√
1 + 4w

2w
, (3)

where a can be determined by requiring that the sum (over all
pixels) of the impulse response equals the sum of the impulse.
The local impulse response has an exponential shape for this
1D problem. The same result has been derived earlier by Unser
et al [14] using the z-transform representation.

A simple approximate expression for the 2D case can be
obtained, under the assumption that the local impulse response
is circularly symmetric, and that effects of the pixel grid
can be ignored. Experience shows that circular symmetry can
be achieved with good approximation using a 4 or 8 pixel
neighborhood. Assume that the local impulse is centered at
pixel j = 0, and that λj represents the pixel value at a
distance of j pixels from the center. The average distance of



the neighbors of the pixel at j is larger than j. This can be
taken into account by modifying the weights in (2) as follows:

P2(λ) = −1

4

∑

j

{wj − 1 + ε

j + ε
(λj − λj−1)2

+w
j + 1 + ε

j + ε
(λj − λj+1)2}, (4)

where ε is a small positive constant, introduced to avoid the
singularity for j = 0. To compute the local impulse response,
we proceed as above, obtaining the following solution:

λj '
a

(j + ε)
e−| ln(b)|j , and b as in (3). (5)

The main conclusion is that the local impulse response of
the quadratic prior has an exponential shape which is rather
different from that of typical low pass filters used in nuclear
medicine. Comparing penalized-likelihood methods with post-
filtering methods requires careful matching of the impulse
responses.

B. Emission tomography

In emission tomography, the log-likelihood function can be
written as [12]:

L(y, λ) =
∑

i

{yi ln(ri)− ri} (6)

ri =
∑

j

cijλj + qi (7)

where yi is the measured photon count in detector i, λj is
the radioactivity in pixel j, cij is the probability that a photon
emitted in j is detected in i, qi is the expected number of counts
contributed by such processes as scatter and randoms, and terms
independent of λ have been dropped. The certainty provided
by the likelihood is position dependent. Combination with a
uniform penalty term yields position dependent smoothing. In
[8], an algorithm is presented to impose approximately uniform
spatial resolution by tuning the weights wjk of a quadratic
penalty of the form:

P (λ) =
1

4

∑

j

∑

k

wjk(λj − λk)2, (8)

where the weights wjk are zero except when pixels j and k are
neighbors, and wjk = wkj . Based on the analysis of an explicit
expression for the local impulse response function, the authors
proposed to chose the weights as follows:

wjk ∼

√√√√
(∑

i

c2ij
ȳi

)(∑

i

c2ik
ȳi

)
, (9)

where ȳi is the measurement mean for detector i. The factors
between parentheses are the j-th and k-th diagonal elements
of the Fisher information matrix [15], which can be regarded
as a measure for the certainty provided by the likelihood. We
will denote this algorithm as CPL, “Certainty based Penalized-
Likelihood reconstruction”. Although this algorithm makes the

resolution more uniform, the resulting local impulse response
is asymmetric, and the asymmetry is still position dependent.
Stayman and Fessler [9], [10] have extended the algorithm to
reduce the asymmetry as well. Their approach is based on an
explicit expression for the local impulse response function, and
they optimize the weights wjk to obtain a best fit between
this computed local impulse response and a predefined target
impulse response.

Here we follow a different approach, aiming at a simpler
algorithm. The Fisher information estimates the “resistance” of
the likelihood against smoothing, and with (9), more smoothing
is applied if the resistance is higher. However, the Fisher infor-
mation measures the certainty about the absolute pixel values,
whereas the smoothing only penalizes differences between pixel
values. So it seems meaningful to estimate the resistance against
smoothing by computing the certainty about pixel differences
provided by the likelihood. To do this for a particular pixel
pair (j, k), we rewrite the likelihood (6) as a function of the
difference and sum of these pixels, and compute the Fisher
information for estimating the difference. Setting djk = λj−λk,
we obtain

wjk ∼ −E
(
∂2L(y, λ)

∂d2
jk

)
=

1

4

∑

i

(cij − cik)2

ȳi
, (10)

where E is the expectation, and ȳi is the expectation of yi. For a
projection line i intersecting both pixels j and k, we have cij '
cik, so this projection i does not contribute any certainty. In
contrast, a projection line perpendicular to the line connecting
j and k can only intersect one of the pixels, and in that case it
contributes a maximum amount of certainty. Consequently, we
can introduce the following approximation:

∑

i

(cij − cik)2

ȳi
'

∑

i∈Sj−k

c2ij
yi
, (11)

where Sj−k is the subset of projections with projection line
approximately perpendicular to the line connecting the centers
of pixels j and k.

We investigated a modified penalty for 2D reconstruction
by inserting approximation (11) directly in (10), using four
different subsets Sj−k . This approach only somewhat improved
the resolution uniformity if the weights wjk were computed
using 8 neighbors in a 3x3 neighborhood. However, if only
horizontal and vertical neighbors were used, good resolution
performance in vertical and horizontal direction was observed.
It seems that there is some interference between diagonal and
vertical directions in the 8-neighborhood system, which is not
captured by (10). This interference could be avoided by using a
heuristic modification. For every pixel, we compute the “direc-
tional” Fisher information in vertical, horizontal and diagonal
directions using (11). If the “directional” Fisher information
(11) is maximum along a vertical or horizontal direction, then
the weights of the diagonal elements are simply set to zero.
If the “directional” Fisher information is maximum along one
diagonal direction, the weights for the vertical and horizontal
neighbors are set to the minimum Fisher information and that



of the other diagonal is set to zero 1. The resulting weights
are smoothed with a 2D Gaussian, and finally all weights are
rescaled to ensure that the sum over all neighbors equals the
sum of (11) over the four subsets. This approach aims at good
performance along the four principle directions, hoping that this
will suffice for acceptable performance in any direction.

This new algorithm is actually a straightforward extension
of the CPL-algorithm (9). The essential difference is that in
the new algorithm, the Fisher information is split in different
components, which represent the information about pixel dif-
ferences along different orientations. It is convenient to give
it a name, so we will denote the new algorithm as OCPL,
“Orientation dependent Certainty Penalized Likelihood”. After
designing the penalty function with OCPL, we are ready to
maximize the penalized-likelihood objective function: the sum
of (6) and (8). One could apply any of the many iterative
algorithms in the literature to this optimization problem. For
the results given in the following section, we have applied the
gradient ascent algorithm proposed in [6].

III. EXPERIMENTS

A. The shape of the local impulse response

To assess the value of the approximate equation (5), the
two-dimensional uniform likelihood problem has been simu-
lated, using an 8-pixel neighborhood, a weight of 1 for direct
neighbors and of 1/

√
2 for diagonal neighbors and a strong

global weight for the penalty term. Two hundred iterations of
a gradient ascent algorithm were applied. The horizontal row
containing the center of the impulse response was extracted to
obtain a one dimensional profile, and the three parameters of
(5) were computed with least squares fitting.

B. Evaluation of the new method

The OCPL method was implemented and evaluated with two-
dimensional PET and SPECT simulations. Figure 1 shows the
activity distribution of the 2D software phantom. The object
consists of a uniform low activity background disk containing
circles of higher activity, and uniform attenuation. For the
SPECT simulation, collimator blurring was taken into account
(using Gaussian diffusion [16]). No noise has been added. A
circle is useful to evaluate orientation dependent smoothing,
since recovery of the circular activity is sensitive to smoothing
in any direction. The asymmetric position of the circles ensures
strong position and orientation dependence of the certainties
provided by the likelihood.

Reconstructions were computed with a uniform quadratic
prior, with the CPL-algorithm (9), with the new OCPL-method
and with post-smoothed MLEM. For the smoothing kernel in
post-smoothed MLEM, we used the impulse response of the
OCPL method to ensure a good resolution match between the

1Simply setting the vertical and horizontal weights to zero would divide the
image into two independent subimages, corresponding to the white and black
fields on a checkerboard. Some coupling along vertical and horizontal direction
is needed.

Fig. 1. Simulation object to evaluate the new uniform resolution penalized-
likelihood with PET and SPECT.

two methods. With the quadratic prior and the CPL-method,
the impulse response is not symmetrical and a close match with
the other methods cannot be imposed. An approximate match
was achieved by tuning the penalty aiming at similar mean
signal recovery along the circle. A high number of iterations
was applied: 200 for PET and 450 for SPECT. We used a higher
number for SPECT, because the inclusion of collimator blurring
slows down convergence.

C. Comparison to post-smoothed MLEM

The aim of this experiment was to compare the signal-to-
noise ratio obtained with the OCPL algorithm to that obtained
with post-smoothed MLEM. In a first experiment, a simple
elliptical object was used, with uniform activity and uniform
attenuation. First, a single hot pixel was inserted in the im-
age and noise-free attenuated PET-projections were computed
(128 projections with 80 bins per projection). An OCPL-
reconstruction was computed using 200 iterations. The very
same procedure was applied again, but this time without the
hot pixel. The difference between the two images is the local
impulse response. This local impulse response was captured in
a filter mask (15 x 15 pixels), for later use as the smoothing
filter in post-smoothed MLEM.

Subsequently, two more hot pixels were inserted, and atten-
uated PET-projections were computed. These were used as the
mean of a Poisson distribution, and 400 noise realizations were
generated. In addition, 400 noise realizations in absence of the
hot pixels were produced. From all these simulated projections,
images were reconstructed with three different algorithms: 1)
200 iterations of the new OCPL-algorithm; 2) 200 iterations
of the MLEM algorithm, followed by post-smoothing; 3) 6
iterations of iterative filtered backprojection (IFBP), followed
by post-smoothing with the same impulse response. IFBP was
used, because with regular (non-iterative) filtered backprojec-
tion, a small amount of smoothing due to interpolation is hard
to avoid. This smoothing is eliminated after a few iterations
of IFBP. After 200 iterations of MLEM or 6 iterations of
IFBP, the impulse response of the unsmoothed reconstructions
was very close to an ideal impulse. Consequently, after post-
filtering, both reconstructions should have nearly exactly the
same impulse response as the penalized-likelihood algorithm.

From the 400 noise realizations with and 400 realizations
without signal, the signal-to-noise ratio in the three hot pixels is



Fig. 2. Attenuation map (left) and activity distribution (right) for the simulated
thorax phantom. The points are numbered from bottom to top, the first point
(in tissue) is used the determine the local impulse response.

computed. For visual inspection, also the mean and variance im-
ages were computed for each of the reconstruction algorithms.

The results were verified with a simplified simulation of a
PET study of the thorax, using the phantom shown in figure 2.
Due to the asymmetry of the attenuation, the local impulse
response function is very asymmetric if a uniform prior is
used [9]. The processing of this phantom was identical to
that of the first one, except that more iterations were needed
to obtain sufficient convergence. We used acceleration based
on ordered subsets [17], applying an iteration scheme with
gradually decreasing number of subsets (16, 8, 4, 2 and 1
subset, 16 iterations of each), which is roughly equivalent to
about 500 regular MLEM iterations.

IV. RESULTS

A. The shape of the local impulse response

Expression (5) was fitted to the horizontal profile, extracted
from the image. An excellent fit was obtained, the fitted
parameters were a = 3.24, ln(b) = 0.11 per pixel and ε = 1.06
pixels.

B. Evaluation of the new method

Figure 3 shows the SPECT-images obtained with the four
reconstruction programs. Circumferenial profiles have been
computed by scanning the pixel positions on the circles in
the true image (figure 1) and extracting the corresponding
reconstructed pixel values. The profiles confirm that the re-
construction with OCPL is more uniform than that with the
quadratic penalty and with CPL, but still not as uniform as
post-smoothed MLEM. For PET, similar results were obtained,
except that the uniformity was slightly better for all methods
(due to lack of collimator blurring).

C. Comparison to post-smoothed MLEM

Figure 4 shows the variance and mean images computed from
the 400 noise realizations, for each of the reconstruction algo-
rithms. Because there was no non-negativity constraint in IFBP,
this algorithm produces noticeable variance in the background.
In the mean images, a small overshoot near the boundary of
the object is seen for the OCPL-algorithm. The mean image
in absence of hot pixels was subtracted from the mean image
with hot pixels, to generate the local impulse responses at

Fig. 3. The reconstructions of the SPECT simulations: the MAP-reconstruction
with quadratic penalty, CPL-reconstruction, OCPL-reconstruction and post-
smoothed MLEM-reconstruction.

Fig. 4. The variance (top) and mean (bottom) images, computed from the 400
Poisson noise realizations for the thorax phantom. Left: OCPL-reconstruction,
center: post-smoothed MLEM, right: iterative filtered backprojection.

the three hot pixel positions. For each local impulse response,
four profiles (horizontal, vertical, and the two diagonal ones)
were extracted by sampling along oriented straight line intervals
through the center of the impulse response. We found that the
profiles for the three algorithms are nearly identical in all four
directions, confirming that a close match of spatial resolution
was achieved.

Table I shows the signal-to-noise ratios for each of the points.
In each case, point 1 was the hot pixel that was used to
define the local impulse response function. The signal-to-noise
ratio was best for post-smoothed MLEM, but the performance
differences are relatively small and position dependent.

Finally, figure 5 compares the coefficients of variation in
every pixel, for the three algorithms and for the thorax phantom.
Images are produced by setting a pixel to 1 if the ratio of
standard deviation and mean in that pixel is lower with one
algorithm than with the other. Of course, this figure provides



TABLE I

THE SIGNAL-TO-NOISE RATIO’S FOR THE THREE POINTS IN THE MONTE

CARLO SIMULATION FOR THE THREE RECONSTRUCTION ALGORITHMS

(OCPL, POST-SMOOTHED MLEM AND IFBP, AND FOR THE TWO

SOFTWARE PHANTOMS.

Elliptic phantom
point OCPL pMLEM IFBP

1 17.2 18.4 15.8
2 14.1 15.4 13.7
3 16.9 18.0 17.1

Thorax phantom
point OCPL pMLEM IFBP

1 4.35 4.37 4.18
2 4.34 4.63 4.35
3 4.55 4.74 4.39

Fig. 5. Comparison of the coefficient-of-variation (cov) images. Left: pixels
where set when OCPL-cov was lower than post-smoothed MLEM-cov. Center:
OCPL-cov lower than post-smoothed IFBP-cov. Right: post-smoothed MLEM-
cov lower than post-smoothed IFBP-cov.

no information about signal recovery or signal-to-noise ratios.

V. DISCUSSION

In the simple denoising problem, the impulse response pro-
duced by the penalized-likelihood method with a quadratic prior
had an exponential shape, with relatively sharp peak and wide
extent. Similar shapes were reported in [18] for tomographs
with ideal resolution, but the shapes change if more realistic
detector blurring is taken into account. In contrast to post-
smoothed MLEM, penalized likelihood offers little control over
the shape of the impulse response.

Our simulation experiments confirm that the new penalized-
likelihood method (OCPL) achieves nearly uniform resolution.
However, its noise characteristics are slightly inferior to that of
post-smoothed MLEM. Probably, the approximations made in
the derivation of OCPL have resulted in somewhat degraded
noise performance: with their more sophisticated method,
Stayman et al. [19] obtained identical noise performance for
post-smoothed MLEM and their new method. In any case,
these studies suggest that post-smoothed MLEM has excellent
noise characteristics, which are not improved by including the
smoothing as a penalty in our penalized-likelihood methods.
Moreover, the penalized-likelihood methods have a suboptimal
performance near the object boundaries, in contrast to MLEM.

A very high number of iterations is required to ensure that
the MLEM impulse response is small compared to that of the
target resolution. As suggested by Stayman et al. [19], this may
be a reason to use a penalized-likelihood approach as a kind
of acceleration technique: the penalty improves the condition

number, which can be exploited to obtain faster convergence
than with unregularized OSEM.
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