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Abstract— What type of regularization method is optimal for
penalized-likelihood image reconstruction when the imaging task
is signal detection based on a channelized Hotelling (CHO)
observer? To answer such questions, one would like to have
a simple analytical expression (even if approximate) for the
performance (SNR) of the CHO observer given different recon-
struction methods. Bonetto, Qi, and Leahy (IEEE T-NS, Aug. 2000)
derived and validated one such expression for penalized-likelihood
(aka MAP) reconstruction and the Signal Known Exactly (SKE)
problem using linearizations and local shift-invariance approx-
imations. This paper describes a further simplification of the
analytical SNR expression for the more general case of a Gaussian-
distributed signal. This simplification, based on frequency-domain
decompositions, greatly reduces computation time and thus can
facilitate analytical comparisons between reconstruction methods
in the context of detection tasks. It also leads to the very interesting
result that regularization is not essential in this context for a large
family of linear observers.

Work supported in part by NSF grant BES-9982349 and by
NIH grant CA-60711.

I. INTRODUCTION

In the design of imaging systems, there are fundamental
tradeoffs between spatial resolution and sensitivity. Similarly, in
the design of image reconstruction methods, there are tradeoffs
between bias and variance. For example, the type of regular-
ization method and the value of the regularization parameter
influence this tradeoff for regularized image reconstruction
methods. One would like to use relevant and quantitative figures
of merit to guide the design of imaging systems and image
reconstruction methods.

There has been steadily growing interest in the use of signal
detection tasks to optimize design parameters of imaging sys-
tems and image reconstruction algorithms. As recent examples,
Gifford et al. used ROC studies to choose the type and amount
of filtering for FBP reconstruction of SPECT images [1] and to
compare FBP to OSEM reconstructions with detector response
compensation [2]. These studies involved both human observers
and mathematical observers. The large time expense of using
human observers limits one to small sets of comparisons. When
using mathematical observers, if the detection performance
has an easily-evaluated mathematical expression, then one can
quickly compare imaging systems or reconstruction methods.
If no such expression is available, then one must resort to
Monte Carlo evaluation of the mathematical observer, which
can require very substantial computing time.

Bonetto et al. [3] recently presented an accurate approxi-
mate mathematical expression for the performance (SNR) of
the channelized Hotelling (CHO) observer applied to MAP
(aka penalized-likelihood) reconstructed images from emission
tomography measurements. This expression was derived using
adaptations of several recent publications that analyze the sta-
tistical properties of MAP / penalized-likelihood reconstruction
methods [4–8]. They used this expression to evaluate the SNR
as a function of signal contrast and lesion size. They reported
that this evaluation required “on the order of a couple of
days” to complete, whereas a Monte Carlo evaluation would
have required over 200 days! This is an impressive speedup.
However, because it requires the expense of two iterative image
reconstructions per SNR calculation, the approach described in
[3] would still be inconvenient to use systematically for design
in a high-dimensional parameter space, such as when designing
a shift-variant regularization method.

Consider the question: “what is the best quadratic regular-
ization method in terms of detection performance?” We know
that to provide uniform spatial resolution with a penalized-
likelihood reconstruction method, one must use a shift-variant
penalty function [5], [9], i.e., a different set of regularization
parameters for every pixel. Similarly, to optimize pixel contrast-
to-noise ratio, one must use shift-variant regularization [7].
It seems plausible thus that the “best” regularization method
for detection performance will also be shift-variant. So the
design parameter space is enormous (one or more regularization
parameters per pixel). To make progress towards answering
these types of questions, we must have a simple analytical
approximation for detection performance. Towards this end, we
developed a frequency-domain approximation suitable for CHO
observers. After this work was orginally submitted, we learned
that Xing et al. [10] had also developed this simplification.

We focus below on the task of detecting a signal character-
ized by a known Gaussian distribution since it is amenable to
analysis. The Signal Known Exactly (SKE) task can be treated
as a special case. For simplicity of presentation, we consider
the case where the measurement noise is zero-mean and Gaus-
sian with a known covariance matrix that is independent of
whether the target signal is present or not. Readers familiar
with previous analysis of image reconstruction methods will
recognize that it is fairly straightforward to extend analysis of
non-white Gaussian noise to the case of Poisson noise using



approximations that are quite accurate [4–8].
We analyzed the SNR of four linear mathematical observers,

all well-known from the literature [11], [12]: the region-of-
interest (ROI) observer, the non-prewhitening (NPW) observer,
the Hotelling observer (equivalent to the prewhitening observer
only in the SKE case), and the channelized Hotelling observer
(CHO), all operating in the reconstructed image domain. We
showed that the first three observers (ROI, NPW, and Hotelling)
belong to a broader family of observers that we call Fisher
observers since they involve a Fisher information matrix. We
also found that for each observer in this family, there exists
an unregularized reconstruction method that, when combined
with that observer, achieves the ideal SNR among all linear
reconstructor and observer pairs for this detection problem.
Therefore, in this specific detection problem regularization is
apparently inessential for this entire family of observers, so
optimizing regularization would not lead to fruitful results. We
also showed this to be true under certain circumstances and
given certain approximations for the CHO observer.

We will focus hereafter mainly on the CHO observer, since
it has been found to better model human observer performance.
We will present the main points of our theoretical results and
some preliminary experimental testing of our CHO analysis and
approximations.

II. FISHER OBSERVERS AND RECONSTRUCTORS

The detection task at hand is to decide between the following
pair of hypotheses:

H0 : y = ε

H1 : y = Ax + ε,

where A ∈ IRnd×np is the system model, ε is zero-mean
Gaussian noise with non-white covariance matrix Π, and x ∈
IRnp is the small target signal, also Gaussian with known mean
x̄ and covariance matrix Πx. The SKE task corresponds to a
deterministic signal with x = x̄ and Πx = 0. The a priori
probabilities of H1 (signal present) and H0 (signal absent) are
known and equal to p1 and 1 − p1 respectively. A detection
method is a map of y into the set {H0,H1}.

The ideal test statistic (aka observer) for this detection
task is quadratic in y (in the general case where Πx �= 0)
and thus difficult to analyze. Nevertheless, the observers most
commonly studied in the literature are all linear and we will
focus here on linear observers as well. Also, we will focus on
observers that are applied not in the sinogram domain but in
the reconstructed image domain, as this is the common practice
of human observers.

We consider linear reconstruction methods of the form:

x̂ = x̂(y) = BΠ−1/2y

where B ∈ IRnp×nd . We consider linear observers of the form:

λ̂ = λ̂(x̂) = w′x̂

for some template w ∈ IRnp .

As a figure of merit we use the Signal-to-Noise Ratio (SNR):

SNR2 =

(
E[λ̂|H1] − E[λ̂|H0]

)2

p1 Var
{

λ̂|H1

}
+ (1 − p1)Var

{
λ̂|H0

} (1)

It can be shown that for any (w, B) pair, the SNR of the
linear observer satisfies SNR2 ≤ x̄′F̌ x̄ � SNR2

◦, where
F̌ � A′Π̌−1A has the form of a Fisher inrormation matrix and
Π̌ � Π + p1AΠxA′, is the unconditional covariance of y, also
known as the intra-class scatter matrix in pattern classification
literature. For the SKE case this reduces to Π̌ = Π and
F̌ = F � A′Π−1A.

We focus now on the family of Fisher observers (for lack of
a better term), whose templates have the form:

w = F̌ px̄

for some p ∈ IR. We allow p to be negative, in which case we
interpret F̌ p = (F̌ †)−p, where the superscript “†” denotes a
pseudo inverse.

We also focus on the family of Fisher reconstructors, defined
by:

B = F̌ qA′Π̌−1Π1/2, (2)

for some q ∈ IR.
We have shown that when a Fisher observer and a Fisher

reconstructor with p = −q are combined, then SNR = SNR◦,
i.e., for any Fisher observer, there is a corresponding Fisher
reconstructor that achieves the ideal SNR. Furthermore, these
Fisher reconstructors appear to be devoid of regularization,
so it appears that regularization is inessential for this large
family of linear observers in this specific detection task. The
conclusions hold even if the problem has a singular Fisher
information matrix, such as when one uses more pixels than
sinogram measurements, or when one uses a continuous-to-
discrete formulation of the imaging problem.

More specifically, we have shown that for each of the ROI,
NPW, and Hotelling observers, there is a Fisher reconstructor
that they can be paired with to achieve the maximum SNR =
SNR◦ in the detection task at hand. These pairs of observers
and reconstruction methods appear in Table I.

TABLE I

LINEAR OBSERVER AND RECONSTRUCTOR PAIRS ACHIEVING OPTIMAL

SNR IN GAUSSIAN SIGNAL DETECTION TASK

Observer Best estimator x̂ q Interpretation
ROI A′Π̌−1y 0 Backprojection
NPW (F̌ †)1/2A′Π̌−1y -1/2 Partly deconvolved backproj.
Hotelling F̌ qA′Π̌−1y IR Any Fisher reconstructor

III. ANALYSIS OF CHO OBSERVER FOR FISHER

RECONSTRUCTORS

The CHO observer passes the reconstructed image x̂ through
a small set of M bandpass filters that attempt to model the
human visual system. Let C ∈ C

np×M denote the matrix with



mth column equal to the impulse response of the mth bandpass
filter centered at the ROI center. The output of this M -channel
filter-bank can be expressed:

ĉ = ĉ(y) = C′x̂(y).

The CHO observer is essentially the Hotelling observer applied
not directly to the reconstructed image x̂ but to the channel
output vector ĉ instead. In other words, the corresponding test
statistic is:

λ̂(y) = {[p1 Cov{ĉ|H1} + (1 − p1) Cov{ĉ|H0}]†

· (E[ĉ|H1] − E[ĉ|H0])}′ĉ(y). (3)

We now examine the existence of a Fisher reconstructor that
would achieve the optimal SNR when paired with the CHO
observer. If such a reconstructor existed, it would mean that
regularization is not important for this observer either, at least
as far as SNR in this detection task is concerned. It can be
shown that when a Fisher reconstructor of the form (2) is used,
(3) gives:

λ̂(y) = x̄′F̌ F̌ qC(C ′F̌ qF̌ F̌ qC)†ĉ(y).

Using (1), the SNR of this test statistic is shown to be:

SNR2
CHO,F = x̄′F̌ F̌ qC(C ′F̌ qF̌ F̌ qC)†C ′F̌ qF̌ x̄. (4)

Evaluating the SNR from (4) would be computationally ex-
pensive. However, using local shift-invariance approximations,
we can derive a much more computationally tractable, Fourier-
domain expression for the SNR. As described in [5], we can
often find a matrix G for which G′G is approximately shift
invariant and F ≈ DQΛQ′D where Λ = diag{λk}, λk is the
frequency response of G′G local to the target signal position,
Q is the orthonormal DFT matrix, D = diag{κk} with:

κk �
√∑nd

i=1 [Π−1/2Aek]2i∑nd

i=1 g2
ik

,

and ek is the kth unit vector of length np. Similarly, we can take
Πx ≈ QMQ′ where M = diag{µk} and µk is the frequency
response of Πx (i.e. the object power spectrum) local to the
target signal position. Using these approximations, as well as
the probably riskier one Q′DΠxDQ ≈ D2M , we can show
that:

F̌ ≈ DQΛ̌Q′D, (5)

where Λ̌ = diag
{
λ̌k

}
and

λ̌k � λk

1 + p1κ2
kµkλk

,

which reduces to Λ̌ = Λ in the SKE case.
To further simplify this expression, we observe that the

channel bandpass filters can also be expressed in terms of the
DFT matrix Q. Let tm ∈ C

np denote the frequency response
of the mth bandpass filter. Without loss of generality, choosing
the target signal center to be the “0” coordinate for the DFT
matrix, one can then show that:

C = QT , (6)

where the mth column of T is tm/
√

np.
Substituting (5) and (6) in the SNR expression (4) and

stretching the approximations even further yields:

SNR2
CHO,F ≈ X ′D2+2qΛ̌1+qT (T ′D2+4qΛ̌1+2qT )†

·T ′D2+2qΛ̌1+qX,

where X = Q′x̄ is spectrum of the mean target signal.
Furthermore, note that the bandpass filters used in CHO

observers often have non-overlapping passbands. (This sim-
plification is not essential.) In this case, the M × M matrix
T ′D2+4qΛ̌1+2qT is diagonal, and we can prove the following
simplified the SNR expression and bound:

SNR2
CHO,F ≈

M∑

m=1

∣∣∣
∑

k Xktmk κ2+2q
k λ̌1+q

k

∣∣∣
2

∑
k |tmk |2κ2+4q

k λ̌1+2q
k

(7)

≤
∑

k

|Xk|2κ2
kλ̌k ≈ x̄′F̌ x̄ = SNR2

◦.

The expression in (7) captures the properties of the imaging
system, the reconstruction method, the target signal, and the
observer. There are two obvious cases where we have found
Fisher reconstructors that achieve the SNR upper bound above.
This happens when each channel filter has a flat passband, i.e.,
tmk = 1{k∈Tm} and either of the following is true:
• The Xk’s are constant over each passband, in which case

q = 0 is optimal or
• The κk’s and λ̌k’s are constant over each passband, in which

case any q ∈ IR is optimal (regardless of x̄).
In practice, it may be unlikely that either the κk’s and λ̌k’s
or the Xk’s are exactly uniform over each channel’s passband,
but if the passbands are reasonably narrow, then it is likely that
these spectra will be approximately uniform over each channel.
So to within the accuracy of the approximations considered
above, one or more Fisher reconstructors will nearly achieve the
highest SNR obtainable in the specified detection task for the
given CHO channels. Once again, it appears that regularization
does not seem to have a dominant role, even for the CHO
observer.

IV. ANALYSIS OF CHO OBSERVER FOR PWLS

Although regularization does not seem to be too significant
in maximing the SNR of the CHO observer, it is still interesting
to derive expressions for the SNR of this observer when paired
with regularized reconstruction. For reasons of simplicity, we
focus here on the penalized weighted least-squares (PWLS) re-
construction method; extension to penalized-likelihood methods
is fairly straightforward [4], [7].

An unconstrained PWLS estimator has the form:

x̂ = arg min
x

1
2
(y − Ax)′W (y − Ax) +

1
2
x′Rx,

for some regularization matrix R that we would like to design
to optimize detectability. The usual weight matrix W = Π−1

is appropriate for the SKE case but to accomodate signal



variability and for ease of analysis we use W = Π̌−1. In this
case, the estimator is easily shown to be:

x̂ = [F̌ + R]−1A′Π̌−1y.

Using (1), we can show that the SNR of the CHO observer
for the PWLS reconstruction method is:

SNR2
CHO,PWLS = x̄′F̌ 1/2S′(SS′)†SF̌ 1/2x̄,

where S � C ′[F̌ + R]−1F̌ 1/2 ∈ C
M×np . Using local shift-

invariance approximations we can write F ≈ DQΛQ′D as
before, and also R ≈ QΩQ′, where Ω = diag{ωk} and ωk

is the frequency response of the regularizer local to the target
signal. These approximations were used by Bonetto et al. [3]
to partially simplify the alternate SNR expression: SNR2 =
λ̂(E[y|H1] − E[y|H0]).

We further simplify as in the previous section by using
C = QT , DQ′ΛQD ≈ D2Λ and assuming nonoverlapping
passbands. Then we can derive the following form for the SNR:

SNR2
CHO,PWLS ≈

M∑

m=1

∣∣∣
∑

k Xktmk
κ2

kλ̌k

κ2
kλ̌k+ωk

∣∣∣
2

∑
k |tmk |2 κ2

kλ̌k

|κ2
kλ̌k+ωk|2

.

With this expression it is feasible to begin tackling questions
like finding the best regularization parameter in terms of a
detection task. The dependence of the SNR on the mean signal
spectrum is somewhat unappealing, since in practice the mean
target signal is not exactly known so it would seem somewhat
unrealistic to optimize the regularization method for a particular
signal. Instead, we consider the case where the size of the target
signal is very small compared to the system spatial resolution.
In such cases, the numerator of the SNR expression above will
be dominated by the decay of the λ̌k terms. (In the limiting case
of a point-source target, the spectrum Xk would be a constant.)
Thus we propose to focus on the following relative SNR:

SNR2
CHO,PWLS,rel ≈

(
1

∑
k λ̌k

)
M∑

m=1

∣∣∣
∑

k tmk
κ2

kλ̌k

κ2
kλ̌k+ωk

∣∣∣
2

∑
k |tmk |2 κ2

kλ̌k

|κ2
kλ̌k+ωk|2

, (8)

where the normalization term is the approximate SNR2
CHO,PWLS

when the CHO observer has all np ideal channels. This relative
SNR is at most unity.

V. PRELIMINARY RESULTS

A. SNR approximation error

We considered the case where A is a 2-D SPECT sys-
tem model with depth-dependent system blur and image size
32 × 32, the mean target signal x̄ is a small Gaussian bump and
and the target signal covariance Πx is generated by a Gaussian
autocorrelation fuction (ACF). We generated a measurement
noise covariance Π = diag{Axtrue} by taking the noiseless
projection of an anthropomorphic phantom xtrue. We used
dyadic constant-Q bandpass filters as the CHO channels. We
evaluated the SNR for the combination of the CHO observer
with a Fisher reconstructor for various values of q, using both
the exact (4) and the approximate (7) expression. For each

different reconstructor we evaluated the SNR while increas-
ing the spread of the target signal ACF (thus increasing the
correlation between adjacent pixel values). The relative error
of the approximation with respect to the true value is plotted
in Figure 1 versus the correlation coefficient of adjacent signal
pixels. The plot shows that even though the system model is
shift-variant and thus its Fourier expansion is not exact, the
approximation error is within 10% for q = −0.5, 0, 0.5 for
a significant range of correlation coefficients. The accuracy is
lower for larger q’s but the q ≤ 0 cases are perhaps of greater
interest.

0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

Corr. coeff. of adjacent signal pixels

E
rr

or
(%

) 
of

 S
N

R
 a

pp
ro

xi
m

at
io

n

q = −0.5
q = 0
q = 0.5
q = 1

Fig. 1. SNR approximation error versus correlation coefficient of adjacent
signal pixels for the CHO observer applied to several Fisher reconstructors.

B. Choosing the regularization parameter

To illustrate using the relative SNR approximation in (8) to
choose the regularization parameter β in penalized-likelihood
image reconstruction, we used the same system model as above
(with image size 64 × 64), an impulse as the mean target signal,
and the same Πx and Π as above. We evaluated the expression
in (8) for PWLS with first-order quadratic regularization and
various values of the regularization parameter β. We considered
various bandpass filter combinations for the CHO observer.
Figure 2 shows the relative SNR vs the regularization parameter
β for two representative cases: dyadic constant-Q bandpass
filters, and a single allpass channel. Such plots can be created
in seconds using the above simple SNR expression. The plots
show that for the single allpass channel the relative SNR varies
significantly with the amount of regularization. Nevertheless,
for the more useful case of the dyadic bandpass filters the SNR
curve stays relatively flat, which reinforces our conclusion that
regularization is not important in this detection problem.

VI. SUMMARY

The formulas we derived above should facilitate theoretical
comparisons between different reconstruction methods for CHO
observers much as Qi and Huesman described for the PW and
NPW observers [8].
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Fig. 2. Relative approximate SNR versus β for the CHO observer applied to
PWLS reconstruction.

Our analysis shows that regularization is inconsequential
for the ROI, NPW and Hotelling observers and, to within
the accuracy of certain approximations, it has limited impact
for the CHO observer. Preliminary results from testing these
approximations show that they can be trusted for a variety of
cases.

This may well mean that that the specific detection task is too
simplistic to capture the benefits of regularization in practical
clinical diagnosis. For that, the use of more realistic task
models such as uncertainty in the signal location might be in
order. Additional future work includes examining the usefulness
of our approximations when the measurements are Poisson-
distributed, as well as the usefulness of regularization when
combined with “naive” reconstruction methods that do not
have prior knowledge of second-order target signal statistics,
as would normally be the case in practice.

Finally, it is worth noting that for the different observers we
examined, the corresponding optimal reconstruction methods
were also different. Thus, clearly there is no universally optimal
reconstruction method: it will depend on both the task and the
form of the observer under consideration.
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