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Abstract—Likelihood-based estimators with conventional regularization asymmetries persist. Simple attempts at improving uniformity
methods generally produces images with nonuniform and anisotropic spa- by extending the penalty neighborhood size have provided only

tial resolution properties. Previous work on penalty design for penalized- . .
likelihood estimators has led to statistical reconstruction methods that yield marglnal Improvements. Therefore, we have SOUght other ways

approximately uniform “average” resolution. However some asymmetries t0 increase design freedom.

in the local point-spread functions persist. Such anisotropies result in the

elongation of otherwise symmetric features like circular lesions. All pre- 1. CONSTRAINED PENALTY DESIGN

viously published penalty functions have used nonnegative values for the

weighting coefficients between neighboring voxels. Such nonnegativity pro- ~ Penalized-likelihood methods have been used extensively in
;/ideg a sufficient (bu:1 'n?]t_necessary) concri]itiorrm] to ensure t?at the pﬁ”a'ty image reconstruction for a variety of goals. Roughness penalties
unction is convex, which in turn ensures that the objective function has a . s .
unique maximizer. This paper describes a novel metJhod for penalty design promote SmO_Oth |maggs and reduce n0|s§ in reconStrUCtlor_]S’
that allows a subset of the weighting coefficients to take negative values,edge-preserving penalties can be used to include boundary in-
while still ensuring convexity of the penalty function. We demonstrate that formation, other penalties are used to control resolution proper-

penalties designed under these more flexible constraints yield local point-ties or optimize local contrast [5]. Regardless of the intended
spread functions that are more isotropic than the previous penalty design P ’ 9

methods for 2D PET image reconstruction. goal of the penalty, certain restrictions must be placed on the
penalty.
. MOTIVATION Consider the penalized-likelihood objective,
Statistical reconstruction methods are often preferred over A =argmax L(),Y) — R(}), (1)

analytic methods because they generally yield lower noise im-

ages, and allow for the incorporation of a wide range of realvhere ) is a vector of lexicographically ordered pixel values,
istic system effectsi€.. nonuniform attenuation, nonuniform Y is vector measured valueg,(\,Y) is the likelihood term
sampling, etc.). However, statistical methods rarely yield infwhich we will assume is convex), adt{\) is the penalty term.
ages with uniform resolution propertiés.For example, it is Clearly one should seledt()\) so that finite solutions exist for
well known in systems that possess a shift-variant geomet(it). Additionally, one would prefer an objective that yields a
response (as in SPECT where detectors have a depth-dependeitjue solution. Thus, one typically uses the sufficient condi-
response, or in PET where nonuniform sampling or depth-dion? of restrictingR()\) to be a convex function.

interaction effects exist), penalized-likelihood estimators yield We will focus on quadratic pairwise penalties of the form,
images with nonuniform resolution properties. Furthermore

nonuniformities will exist even in shift-invariant systems due to 1 &K & , l.r

the implicit data weighting by the estimator. [1] Such nonuni- RQ) = ) Z Zwik(/\i )T = 22 RA @)
formities can lead to shape distortion when resolution properties ! :1;:11 _

are anisotropic, and can complicate both qualitative and quanti- R, = { Yo 3wy +wi), k= J , 3)
tative comparisons between images or image regions. —Wjks k#3j.

In contrast, analytic methods like filtered backprojection . . :
(FBP) yield uniform resolution properties for systems with glvherep Is the number of pixels and ;. represents a weight-
ing that reflects the relative strength of the penalty for a given

uniform geometric response. Or, for nonuniform systems IikeI el pair. Traditionally, a conve®/()) is ensured by restrict-
SPECT, analytic methods have been developed that compenga)fe pair. Y: y

for effects like the depth-dependent response [2, 3]. Howev%?q,g Wik Z 0 for all j, k pars. we W'Il refgr to this sghemg as
e individual nonnegativityconstraints, since each interpixel

such methods generally ignore the noise model, or rely on ap-_ , .. :
L : ... Weighting must be nonnegative.
proximations to the actual system model so that nonuniformities . .
The above penalty may also be written in terms of & p

cannot be fully compensated. This is our motivation to m0d|¥enalty matrixR. The convexity ofR(\) can be expressed as

a statistical approach to provide both uniform resolution prop- . . . .
. . . . nonnegative definiteness constrainfRoyor equivalently as a
erties and good noise performance. It has been our intention to o . .
) ) T . S nonnegativity constraint on the eigenvaluedkof If one has a
use a shift-variant regularization in a penalized-likelihood esti- . . . .
. . cost function,f (R), for the design of this penalty matrix, we
mator to accomplish this task.

Prior work [1, 4] has improved resolution uniformity. How-MaY write A )
i i i R =arg min f(R). (4)
ever, when one investigates the local impulse responses that cig(R)>0

guantify the local resolution properties, one finds that somﬁ1e F(R) term could represent, for example, a least-squares

1One exception to this rule is post-smoothed maximum-likelihood recaiesign objective for the penalty, as discussed in [4], where the
struction. However, while the resolution properties are uniform, it genera@@ : - : : : .
takes much longer for an iterative algorithm to converge to a solution for an -al is to find a penalty that yields uniform resolution properties
regularized problem versus a regularized version. Additionally, preliminary iny
vestigations suggest that penalized-likelihood techniques will outperform p%%t
smoothed maximume-likelihood in terms of noise.

Alternately, it would be possible to obtain a necessary condition that depends
the form of the likelihood termi,(\,Y).
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in the reconstructed image. The eigenvalue constraint does ahtweights simultaneously. For example, at a given pixel one

preclude negative pairwise weights between pixels. would like to determine all the weights between that pixel and
The main problem with the formulation presented in (4) igs neighbors (see Figure 2). Unfortunately, the only pointwise

that the minimization will generally be impractical due to theonstraint is the individual nonnegativity constraint. Thus, one

size of R. Evaluation of the constraingig(R), and possibly needs to consider at least groups of pixels to incorporate nega-

the cost,f(R), will generally be too computationally intensivetive weights.

for most applications.

In the case of a shift-invariant penall, is circulant and its b
eigenvalues may be computed using fast Fourier transforms. h 1a a>0 b>0 e>0
It is straightforward to formulate a shift-invariant “toy” de- PA\ANS d>0 e>0 f>0
sign problem where suckourier constraintsmay be applied. 9 i g g >0 h>0 N
We have performed such a shift-invariant design using the lin- f| Y€ - -

earized uniform resolution design objective presented in [4].
Specifically, we have chosen a shift-invariant problem that is
similar to a design problem in the shift-variant case, where refgg. 2. Pointwise constraints for a single pixel with eight neighbors/interpixel
olution anisotropy effects persist. Contours of the resulting im- V&i9nts (abeled-h).
pulse response functions are shown in Figure 1. Two things ar
immediately evident in this figure: (1) the Fourier constraints ; . . ;
Y eVK 9 (1) . : eUle 3. There are three weights associated with the three pixel
lead to more uniform responses, and (2) increasing the size 0

the penalty neighborhood does not improve uniformity for the

eConsider the small three pixel image shown below in Fig-

individually applied nonnegativity constraints. Clearly the in- a atb  —a b

corporation of negative weights has allowed for greater design bf \\ R — e ade —c
freedom. { N

—— —b —C b +c
Ind. Nonnegativity 8 Ind. Nonnegativity 16 Ind. Nonnegativity 24 C

70 70 70

68 68 68 Fig. 3. Athree pixel image and its penalty matrix.

66 66 66 . . .

pairs, labeleds, b, andec. The penalty matrix for this image

64 64 64 is also shown. Finding the characteristic polynomialRoand

62 62 62 finding the associated Routh array, it is straightforward to derive
60 60 60 the following constraints on the weights themselves,

60 62 64 66 68 7060 62 64 66 68 7060 62 64 66 68 70
Fourier Constrained 8 Fourier Constrained 16 ~ Fourier Constrained 24

20 20 20 a+b+c > 0

68 68 68 ab+bc+ac > 0. (5)

66 66 66 These constraints allow for at most one of the weights to be
64 64 64 negative.

62 62 62 While one would rarely deal with an image this small, the

constraints found here can still be quite useful. Since the sum

60 60 60
60 62 64 66 68 7060 62 64 66 68 7060 62 64 66 68 70  of nonnegative definite functions is nonnegative definite, one

can break the summation in (2) into more manageable portions
Fig. 1. Contours of the resulting impulse response functions for a toy shifind satisfy nonnegative definiteness constraints locally. Specif-
invariant problem. Two constraint methods are applied: (top row) Sim'%?ally using the constraints in (5), one can satisfy a nonnegative
individual nonnegativity constraints and (bottom row) the full eigenvalué¢ " 7’ . ! . .
constraints ofR which is applied via Fourier methods. Each column repr@fefm'teness constraint on any sum of three weights in a large
sents a design with a different penalty neighborhood size. Specifically, (ieftage, provided they form a loop.
to right) results for designs with penalties including 8, 16, and 24 neighborsA sample application of the constraints in (5) applied to a
are shown. . . . . .
larger image is shown in Figure 4. All of the weights repre-
The Fourier constraints are just one way of constraining‘c’ae med by white arrows form loops of t_hr_ee We_lghts and must
satisfy the constraints in (5). The remaining weights (black ar-

shift-invariantR. An alternative is to use simpler constraints . .
such as those derived by Lakshmanan for 2D Gaussian Marl{(?\\/NS) are n_ot partofa Ioop _constramt gnd thus must satisfy the
random fields [6]. Unfortunately, it is unclear how to exten sual individual nonnegativity constraint. Thus, the nonnega-

either these constraints or the Fourier constraints to the shift- definiteness aR can be guaranteed, the weights are locally

variant case, which is required for the uniformity problem. constrained (allowing some form of local design), and negative

As in [4], one typically wants to develop a shift-variantwe'ghts are allowed. .
penalty by performing a local design. That is, one would like These constraint loops may be chosen somewhat arbitrarily,

to determine the weights in a pixel-by-pixel fashion, rather tha%)lS long as each weight is constrained exactly one (using either
' ) or the simple individual nonnegativity constraint). Clearly,
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As We cycle through all pixel positions until the weightings appear
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<__>3 to have sufficiently converged.

A,
R
NN

A

SN
RERE

>

A 12 A 13 A 14 A 15 v
A A, A, A, As
— + <
Fig. 4. A sample image, where the nonnegative definiteness of penalty has been X V% X
ensured by applying the constraints in (5) over loops of three weights. ° 1 *
Ay
- -
the number of ways to choose these loops increases tremen- he Ao [Aw utt

dously with the number of pixels. The (impractical) optimal_. _ , - L
lution is to optimize over all possible loob configurations anI(::Ig. 5. Anillustration of the update approach. In the first image a pointwise

solution is pu 'Z_ Vi p ! p Igurat design is used to update only the interpixel weights lying in the gray re-

select the set that yields the bd&taccording to the penalty  gion. Nearby weights (not in the pointwise design) that used to constrain

design objectivef(R). the design are held constant. In the following image, the pointwise design is
The best way to choose these |OOpS will be dependent on theapplled to the next pixel in the sequence, cycling through all pixel positions.

specific penalty design goal. In the context of the uniform reso-

lution goal of [4], the penalty design objective is a least-squares RESULTS

objective that can be applied locally to find all weights linked

with a given pixel position. Specifically, the objective has th?o We have evaluated the these methods using the digital phan-

m shown in Figure 6. The measurement model includes

form &' = argmin @9 w — dj”Z’ ©6) nonuniform attenuation effects and a PET (strip integral) sys-
w’ tem model.
wherew’ is a vector of weights associated with pixeli.e.,
w! = [wj1, ... wjp,wij,. .., wy.), and®J andd’ are model 10
specific components (also dependent on pixel position). One zg
could create an objective of the form in (4) by combining (6) 2
for each pixel position. 50
To choose loops we have adopted the following heuristics: 60

20 40 60 80 100 120
« Calculate the unconstrained local solutiar,., to (6) for o » » o
Fig. 6. Image of the emission densities for the digital phantom used in this in-

each p'xelj' ) . vestigation. The '+’ sign indicates the position of the local impulse response
» Choose only from loops that include the most negative el- used to compare the different design constraints.

ement ofw?

« Select from remaining loops by finding the loop that allows We have performed the penalty design represented by (6) us-
for the most negative weight. (Plug in the unconstraingélg both the traditional nonnegativity constraints and the pro-
solutions for the two positive values in (5) and find thgosed relaxed constraints. This penalty design used a neighbor-
bound on the remaining weight.) hood of the twenty nearest pixels. The designed values for one

While these heuristics do not necessarily yield an optim8f these weighting directions (namely, the horizontal weight be-
choice for the weight constraints, such choices should genB{€€n neighboring pixels) is shown for the two methods below
ally increase design flexibility and allow for the most importanf' F1gure 7. , o _

negative (e the most negative weight in the unconstrained 1h€ uPper half of each image shows the positive weight val-
problem) to go negative in the constrained problem. ues and the Iowgr_ half shows the negative value_s. For the indi-

Once a set of constraints has been chosen & “map” such vidual nonneggtlwty method, thgre are no negative values and

as Figure 4 is available), one must still filRl Technically, 1€ lower halfis blank. Also evident in the upper half of the
this involves performing the minimization in (6), using the conleftimage is that the nonnegativity constraint is quite active for

straints that apply to these local weights, simultaneously sthis weight. All those positions colored white indicate a zero

all pixel positions. We have opted to use an update approatfight. In comparison, the design with the proposed relaxed

where all nonlocal weights are held constant, the constrained @§)Straints does include negative weights. Additionally, if one
is minimized using a sequential quadratic programming algijisually combines the top and bottom halves of the right image,
rithm, and the local solution is used as an update to the curr&jgre are relatively few positions that are zeireeither pos-

estimate ofR. This approach is illustrated below in Figure 5!tVe Or negative). Other weighting “directions” show similar
results.
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Ind. Nonnegativity 104 Relaxed Local 10* It is possible that some kind of regularizatidre¢ smoothing

[y | W0 m ... 71 & of the weight values between iterations) might decrease these
102 10° effects. It may also be possible to develop an alternative op-
10 s | W10 timization approach that is less susceptible to such problems.
10° R | B 00 However, it should also be noted that these effects are gener-
107t k 107" ally relatively small, and that the uniformity improvements out-
1072 3 q 102 weigh the degradations.
107° R e 1073
107 107 [1l. CONCLUSIONS

Fig. 7. Images of one of the interpixel weights (in this case, the horizontalvve have found that the nonnegativity constraints in our prior
weights) using the individual nonnegativity constraint and the relaxed lopg@nalty design work are often very active, and that a zero
constraints. The upper half of each image shows the positive weights W@ighting still appears to induce too much smoothing in certain
w:i é?]"t":;;‘iflzgg‘r’:ﬁmi gi?;tg’ceaﬁe.'ghts' Both halves of each image Sr_ffl‘?'ecti_ons, yielding anisotropic resolution properties. The abil-

ity to include negative weights allows one to more effectively

reorient the penalty “direction.” While shifting some weights to
After designing quadratic penalties under the two differerite negative will generally increase the values of other weights
constraint choices, we found the resulting local impulse res satisfy (5), the nonnegatively constrained feasible region is
sponses, which quantify the resolution properties of the estima-subset of the feasible region imposed by the proposed con-
tors, according to the methods in [4]. We have chosen a partitraints, and thus (theoretically) yields solutions no worse than

ular location for the local impulse response investigation. Thikose found using the traditional constraints. While it is difficult

position, indicated in Figure 6, lies in one of the areas whete find the optimal solution in practice, we have demonstrated a

resolution anisotropy persisted even after the application ofsample practical suboptimal approach that can be implemented

penalty designed using the individual nonnegativity constraint obtain improved uniformity performance.

Local impulse responses for both the old and new constraintThe proposed constraints can be applied locally, are computa-

choices are shown in Figure 8. tionally practical, and yield improved performance for uniform
Note that the local impulse response using the proposed resolution penalty design. While these constraints were devel-

laxed constraints shows contours (particularly the innermasped for the goal of increased flexibility in resolution control,
contour) closer to the desired response for which the penathese techniques may be applicable in other situations. That is,
was designed (as indicated by the dashed contours). While there may be other penalty objectives where a similar increase
left image in Figure 8 shows increased blur in an slightly offin design flexibility may be important.

vertical direction, the right image shows improved isotropy of It is possible that one could find other constraints using a

the response. Thus the increased design flexibility of the prsimilar development. That is, instead of using a small region

posed constraints yields improved resolution uniformity. of three pixels as in (3), one could extend these methods to
B ; incorporate weight constraints on larger loops or other weight
1, Nonnegavity 1 oposed Relaxe geometries. However, while making the local constraints in-

creasingly complicated may increase local design flexibility, it
will become increasingly difficult to incorporated the local con-
straints into a global set of constraints. In other words, it be-
comes increasingly difficult to form the analogous constraint
map to the one shown in Figure 4, both in terms of the actual
2% 2% geometric fitting of such constraints and the selection of which
52 54 %6 58 52 54 %6 58 constraints will yield the greatest (or most significant) design

Fig. 8. Comparison of the resulting resolution properties for a penaliz§geedom.
likelihood PET reconstruction using the traditional nonnegatively con-

20 20

22 22

24 24
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