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Abstract—Likelihood-based estimators with conventional regularization
methods generally produces images with nonuniform and anisotropic spa-
tial resolution properties. Previous work on penalty design for penalized-
likelihood estimators has led to statistical reconstruction methods that yield
approximately uniform “average” resolution. However some asymmetries
in the local point-spread functions persist. Such anisotropies result in the
elongation of otherwise symmetric features like circular lesions. All pre-
viously published penalty functions have used nonnegative values for the
weighting coefficients between neighboring voxels. Such nonnegativity pro-
vides a sufficient (but not necessary) condition to ensure that the penalty
function is convex, which in turn ensures that the objective function has a
unique maximizer. This paper describes a novel method for penalty design
that allows a subset of the weighting coefficients to take negative values,
while still ensuring convexity of the penalty function. We demonstrate that
penalties designed under these more flexible constraints yield local point-
spread functions that are more isotropic than the previous penalty design
methods for 2D PET image reconstruction.

I. M OTIVATION

Statistical reconstruction methods are often preferred over
analytic methods because they generally yield lower noise im-
ages, and allow for the incorporation of a wide range of real-
istic system effects (i.e.: nonuniform attenuation, nonuniform
sampling, etc.). However, statistical methods rarely yield im-
ages with uniform resolution properties.1 For example, it is
well known in systems that possess a shift-variant geometric
response (as in SPECT where detectors have a depth-dependent
response, or in PET where nonuniform sampling or depth-of-
interaction effects exist), penalized-likelihood estimators yield
images with nonuniform resolution properties. Furthermore
nonuniformities will exist even in shift-invariant systems due to
the implicit data weighting by the estimator. [1] Such nonuni-
formities can lead to shape distortion when resolution properties
are anisotropic, and can complicate both qualitative and quanti-
tative comparisons between images or image regions.

In contrast, analytic methods like filtered backprojection
(FBP) yield uniform resolution properties for systems with a
uniform geometric response. Or, for nonuniform systems like
SPECT, analytic methods have been developed that compensate
for effects like the depth-dependent response [2, 3]. However,
such methods generally ignore the noise model, or rely on ap-
proximations to the actual system model so that nonuniformities
cannot be fully compensated. This is our motivation to modify
a statistical approach to provide both uniform resolution prop-
erties and good noise performance. It has been our intention to
use a shift-variant regularization in a penalized-likelihood esti-
mator to accomplish this task.

Prior work [1, 4] has improved resolution uniformity. How-
ever, when one investigates the local impulse responses that
quantify the local resolution properties, one finds that some

1One exception to this rule is post-smoothed maximum-likelihood recon-
struction. However, while the resolution properties are uniform, it generally
takes much longer for an iterative algorithm to converge to a solution for an un-
regularized problem versus a regularized version. Additionally, preliminary in-
vestigations suggest that penalized-likelihood techniques will outperform post-
smoothed maximum-likelihood in terms of noise.

asymmetries persist. Simple attempts at improving uniformity
by extending the penalty neighborhood size have provided only
marginal improvements. Therefore, we have sought other ways
to increase design freedom.

II. CONSTRAINED PENALTY DESIGN

Penalized-likelihood methods have been used extensively in
image reconstruction for a variety of goals. Roughness penalties
promote smooth images and reduce noise in reconstructions,
edge-preserving penalties can be used to include boundary in-
formation, other penalties are used to control resolution proper-
ties or optimize local contrast [5]. Regardless of the intended
goal of the penalty, certain restrictions must be placed on the
penalty.

Consider the penalized-likelihood objective,

�̂ = argmaxL(�; Y )�R(�); (1)

where� is a vector of lexicographically ordered pixel values,
Y is vector measured values,L(�; Y ) is the likelihood term
(which we will assume is convex), andR(�) is the penalty term.
Clearly one should selectR(�) so that finite solutions exist for
(1). Additionally, one would prefer an objective that yields a
unique solution. Thus, one typically uses the sufficient condi-
tion2 of restrictingR(�) to be a convex function.

We will focus on quadratic pairwise penalties of the form,
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wherep is the number of pixels andwjk represents a weight-
ing that reflects the relative strength of the penalty for a given
pixel pair. Traditionally, a convexR(�) is ensured by restrict-
ing wjk � 0 for all j; k pairs. We will refer to this scheme as
the individual nonnegativityconstraints, since each interpixel
weighting must be nonnegative.

The above penalty may also be written in terms of ap � p

penalty matrixR. The convexity ofR(�) can be expressed as
a nonnegative definiteness constraint onR, or equivalently as a
nonnegativity constraint on the eigenvalues ofR. If one has a
cost function,f(R), for the design of this penalty matrix, we
may write

R̂ = arg min
eig(R)�0

f(R): (4)

The f(R) term could represent, for example, a least-squares
design objective for the penalty, as discussed in [4], where the
goal is to find a penalty that yields uniform resolution properties

2Alternately, it would be possible to obtain a necessary condition that depends
on the form of the likelihood term,L(�; Y ).
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in the reconstructed image. The eigenvalue constraint does not
preclude negative pairwise weights between pixels.

The main problem with the formulation presented in (4) is
that the minimization will generally be impractical due to the
size ofR. Evaluation of the constraint,eig(R), and possibly
the cost,f(R), will generally be too computationally intensive
for most applications.

In the case of a shift-invariant penalty,R is circulant and its
eigenvalues may be computed using fast Fourier transforms.
It is straightforward to formulate a shift-invariant “toy” de-
sign problem where suchFourier constraintsmay be applied.
We have performed such a shift-invariant design using the lin-
earized uniform resolution design objective presented in [4].
Specifically, we have chosen a shift-invariant problem that is
similar to a design problem in the shift-variant case, where res-
olution anisotropy effects persist. Contours of the resulting im-
pulse response functions are shown in Figure 1. Two things are
immediately evident in this figure: (1) the Fourier constraints
lead to more uniform responses, and (2) increasing the size of
the penalty neighborhood does not improve uniformity for the
individually applied nonnegativity constraints. Clearly the in-
corporation of negative weights has allowed for greater design
freedom.
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Fig. 1. Contours of the resulting impulse response functions for a toy shift-
invariant problem. Two constraint methods are applied: (top row) Simple
individual nonnegativity constraints and (bottom row) the full eigenvalue
constraints onR which is applied via Fourier methods. Each column repre-
sents a design with a different penalty neighborhood size. Specifically, (left
to right) results for designs with penalties including 8, 16, and 24 neighbors
are shown.

The Fourier constraints are just one way of constraining a
shift-invariantR. An alternative is to use simpler constraints
such as those derived by Lakshmanan for 2D Gaussian Markov
random fields [6]. Unfortunately, it is unclear how to extend
either these constraints or the Fourier constraints to the shift-
variant case, which is required for the uniformity problem.

As in [4], one typically wants to develop a shift-variant
penalty by performing a local design. That is, one would like
to determine the weights in a pixel-by-pixel fashion, rather than

all weights simultaneously. For example, at a given pixel one
would like to determine all the weights between that pixel and
its neighbors (see Figure 2). Unfortunately, the only pointwise
constraint is the individual nonnegativity constraint. Thus, one
needs to consider at least groups of pixels to incorporate nega-
tive weights.
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Fig. 2. Pointwise constraints for a single pixel with eight neighbors/interpixel
weights (labeleda-h).

Consider the small three pixel image shown below in Fig-
ure 3. There are three weights associated with the three pixel
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Fig. 3. A three pixel image and its penalty matrix.

pairs, labeleda, b, andc. The penalty matrix for this image
is also shown. Finding the characteristic polynomial forR and
finding the associated Routh array, it is straightforward to derive
the following constraints on the weights themselves,

a+ b+ c � 0

ab+ bc+ ac � 0: (5)

These constraints allow for at most one of the weights to be
negative.

While one would rarely deal with an image this small, the
constraints found here can still be quite useful. Since the sum
of nonnegative definite functions is nonnegative definite, one
can break the summation in (2) into more manageable portions
and satisfy nonnegative definiteness constraints locally. Specif-
ically, using the constraints in (5), one can satisfy a nonnegative
definiteness constraint on any sum of three weights in a large
image, provided they form a loop.

A sample application of the constraints in (5) applied to a
larger image is shown in Figure 4. All of the weights repre-
sented by white arrows form loops of three weights and must
satisfy the constraints in (5). The remaining weights (black ar-
rows) are not part of a loop constraint and thus must satisfy the
usual individual nonnegativity constraint. Thus, the nonnega-
tive definiteness ofR can be guaranteed, the weights are locally
constrained (allowing some form of local design), and negative
weights are allowed.

These constraint loops may be chosen somewhat arbitrarily,
as long as each weight is constrained exactly once (using either
(5) or the simple individual nonnegativity constraint). Clearly,
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Fig. 4. A sample image, where the nonnegative definiteness of penalty has been
ensured by applying the constraints in (5) over loops of three weights.

the number of ways to choose these loops increases tremen-
dously with the number of pixels. The (impractical) optimal
solution is to optimize over all possible loop configurations and
select the set that yields the bestR according to the penalty
design objective,f(R).

The best way to choose these loops will be dependent on the
specific penalty design goal. In the context of the uniform reso-
lution goal of [4], the penalty design objective is a least-squares
objective that can be applied locally to find all weights linked
with a given pixel position. Specifically, the objective has the
form

ŵj = argmin
wj

jj�jwj � d
j jj2; (6)

wherewj is a vector of weights associated with pixelj (i.e.,
wj = [wj1; : : : wjp; w1j ; : : : ; wpj ].), and�j anddj are model
specific components (also dependent on pixel position). One
could create an objective of the form in (4) by combining (6)
for each pixel position.

To choose loops we have adopted the following heuristics:

� Calculate the unconstrained local solution,w j
uc, to (6) for

each pixelj.
� Choose only from loops that include the most negative el-

ement ofwj
uc

� Select from remaining loops by finding the loop that allows
for the most negative weight. (Plug in the unconstrained
solutions for the two positive values in (5) and find the
bound on the remaining weight.)

While these heuristics do not necessarily yield an optimal
choice for the weight constraints, such choices should gener-
ally increase design flexibility and allow for the most important
negative (i.e.: the most negative weight in the unconstrained
problem) to go negative in the constrained problem.

Once a set of constraints has been chosen (i.e., a “map” such
as Figure 4 is available), one must still findR. Technically,
this involves performing the minimization in (6), using the con-
straints that apply to these local weights, simultaneously for
all pixel positions. We have opted to use an update approach
where all nonlocal weights are held constant, the constrained (6)
is minimized using a sequential quadratic programming algo-
rithm, and the local solution is used as an update to the current
estimate ofR. This approach is illustrated below in Figure 5.

We cycle through all pixel positions until the weightings appear
to have sufficiently converged.
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Fig. 5. An illustration of the update approach. In the first image a pointwise
design is used to update only the interpixel weights lying in the gray re-
gion. Nearby weights (not in the pointwise design) that used to constrain
the design are held constant. In the following image, the pointwise design is
applied to the next pixel in the sequence, cycling through all pixel positions.

RESULTS

We have evaluated the these methods using the digital phan-
tom shown in Figure 6. The measurement model includes
nonuniform attenuation effects and a PET (strip integral) sys-
tem model.
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Fig. 6. Image of the emission densities for the digital phantom used in this in-
vestigation. The ’+’ sign indicates the position of the local impulse response
used to compare the different design constraints.

We have performed the penalty design represented by (6) us-
ing both the traditional nonnegativity constraints and the pro-
posed relaxed constraints. This penalty design used a neighbor-
hood of the twenty nearest pixels. The designed values for one
of these weighting directions (namely, the horizontal weight be-
tween neighboring pixels) is shown for the two methods below
in Figure 7.

The upper half of each image shows the positive weight val-
ues and the lower half shows the negative values. For the indi-
vidual nonnegativity method, there are no negative values and
the lower half is blank. Also evident in the upper half of the
left image is that the nonnegativity constraint is quite active for
this weight. All those positions colored white indicate a zero
weight. In comparison, the design with the proposed relaxed
constraints does include negative weights. Additionally, if one
visually combines the top and bottom halves of the right image,
there are relatively few positions that are zero (i.e.neither pos-
itive or negative). Other weighting “directions” show similar
results.
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Fig. 7. Images of one of the interpixel weights (in this case, the horizontal
weights) using the individual nonnegativity constraint and the relaxed local
constraints. The upper half of each image shows the positive weights and
the lower half shows the negative weights. Both halves of each image show
weights on a logarithmic color scale.

After designing quadratic penalties under the two different
constraint choices, we found the resulting local impulse re-
sponses, which quantify the resolution properties of the estima-
tors, according to the methods in [4]. We have chosen a partic-
ular location for the local impulse response investigation. This
position, indicated in Figure 6, lies in one of the areas where
resolution anisotropy persisted even after the application of a
penalty designed using the individual nonnegativity constraint.
Local impulse responses for both the old and new constraint
choices are shown in Figure 8.

Note that the local impulse response using the proposed re-
laxed constraints shows contours (particularly the innermost
contour) closer to the desired response for which the penalty
was designed (as indicated by the dashed contours). While the
left image in Figure 8 shows increased blur in an slightly off-
vertical direction, the right image shows improved isotropy of
the response. Thus the increased design flexibility of the pro-
posed constraints yields improved resolution uniformity.
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Fig. 8. Comparison of the resulting resolution properties for a penalized-
likelihood PET reconstruction using the traditional nonnegatively con-
strained design and the proposed relaxed constraints. Contours of the de-
sired local impulse response (dashed) and actual local impulse response
(solid) are shown.

Most local impulses throughout the image show either sim-
ilar improvements or or performance as good as the individual
nonnegativity constraints. Indeed, we expect that the proposed
constraints should yield a design no worse than the nonnega-
tively constrained design, since the nonnegative solution is in
the feasible region of the proposed constraints. However, there
are a few locations where there are slight degradations in the
uniformity. We suspect that such degradations are the result
of the suboptimal greedy iterative optimization approach used
to calculate the weights. Such results may be due to incom-
plete convergence of the design optimization, or limit cycles.

It is possible that some kind of regularization (i.e.: smoothing
of the weight values between iterations) might decrease these
effects. It may also be possible to develop an alternative op-
timization approach that is less susceptible to such problems.
However, it should also be noted that these effects are gener-
ally relatively small, and that the uniformity improvements out-
weigh the degradations.

III. C ONCLUSIONS

We have found that the nonnegativity constraints in our prior
penalty design work are often very active, and that a zero
weighting still appears to induce too much smoothing in certain
directions, yielding anisotropic resolution properties. The abil-
ity to include negative weights allows one to more effectively
reorient the penalty “direction.” While shifting some weights to
be negative will generally increase the values of other weights
to satisfy (5), the nonnegatively constrained feasible region is
a subset of the feasible region imposed by the proposed con-
straints, and thus (theoretically) yields solutions no worse than
those found using the traditional constraints. While it is difficult
to find the optimal solution in practice, we have demonstrated a
simple practical suboptimal approach that can be implemented
to obtain improved uniformity performance.

The proposed constraints can be applied locally, are computa-
tionally practical, and yield improved performance for uniform
resolution penalty design. While these constraints were devel-
oped for the goal of increased flexibility in resolution control,
these techniques may be applicable in other situations. That is,
there may be other penalty objectives where a similar increase
in design flexibility may be important.

It is possible that one could find other constraints using a
similar development. That is, instead of using a small region
of three pixels as in (3), one could extend these methods to
incorporate weight constraints on larger loops or other weight
geometries. However, while making the local constraints in-
creasingly complicated may increase local design flexibility, it
will become increasingly difficult to incorporated the local con-
straints into a global set of constraints. In other words, it be-
comes increasingly difficult to form the analogous constraint
map to the one shown in Figure 4, both in terms of the actual
geometric fitting of such constraints and the selection of which
constraints will yield the greatest (or most significant) design
freedom.
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