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ABSTRACT

This paper describes two statistical iterative reconstruction methods for X-ray CT. The first method assumes a mono-energetic
model for X-ray attenuation. We approximate the transmission Poisson likelihood by a quadratic cost function and exploit its
convexity to derive a separable quadratic surrogate function that is easily minimized using parallelizable algorithms. Ordered
subsets are used to accelerate convergence. We apply this mono-energetic algorithm (with edge-preserving regularization) to
simulated thorax X-ray CT scans. A few iterations produce reconstructed images with lower noise than conventional FBP
images at equivalent resolutions. The second method generalizes the physical model and accounts for the poly-energetic X-ray
source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. We assume the object consists
of a given number of non-overlapping tissue types. The attenuation coefficient of each tissue is the product of its unknown
density and a known energy-dependent mass attenuation coefficient. We formulate a penalized-likelihood function for this
poly-energetic model and develop an iterative algorithm for estimating the unknown densities in each voxel. Applying this
method to simulated X-ray CT measurements of a phantom containing both bone and soft tissue yields images with significantly
reduced beam hardening artifacts.
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1. INTRODUCTION

X-ray computed tomography (CT) provides structural information about tissue anatomy by imaging the tissue attenuation
characteristics. CT scanners record ‘projection’ data that measure the amount of X-ray attenuation through tissue at different
angles.

The linear attenuation coefficientµ(x, y, z, E) characterizes the overall attenuation property of tissue. It depends on the
spatial coordinates and the beam energy, and has units of inverse distance. For a ray of infinitesimal width, the expected photon
flux detected along a particular projection lineLi is given by:

E[Yi] =

∫
Ii(E)e

−
∫
Li
µ(x,y,z,E)dl

dE , i = 1, ..., N, (1)

whereYi represents the photon flux measured at theith detector, and there areN detectors. The integral in the exponent is
taken over the lineLi andIi(E) incorporates the energy dependence of the incident ray and detector sensitivity. The goal of
any CT algorithm is to reconstruct the attenuation mapµ from the measured data[Y1, ..., YN ].

Filtered back projection (FBP) is the standard reconstruction technique for CT. Under situations with truncated or missing
data, such as when metallic implants are present or when nonstandard scanning geometries (cone-beam, multi-slice or helical)
are used, FBP-type algorithms require innovative rebinning and interpolation, and lead to biased estimators since they do not
take the statistics of the data into account.1

Statistical techniques have several attractive features.2–5 They can be well suited for arbitrary geometries and situations with
truncated data. They can also model such phenomena as scatter and energy dependence leading to more accurate and artifact-
free reconstruction. Statistical methods also easily incorporate the system geometry, detector response, object constraints and
any prior knowledge. Their main drawback (when compared to FBP) is longer computation times. A lot of research effort is
being invested in developing accelerated versions of statistical algorithms.6,7,5

The next section discusses the mono-energetic model and algorithm. Section 3 generalizes the model and the resulting
algorithm to the more realistic poly-energetic case. In Section 4 we present preliminary results. Section 5 summarizes the
results and outlines potential future work.
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2. MONO-ENERGETIC X-RAY CT

In this section we describe the physical and statistical models for the problem of X-ray CT reconstruction. For simplicity,
we assume a mono-energetic X-ray beam. The statistical reconstruction method involves maximizing a penalized-likelihood
objective function. Maximizing the objective function by some appropriate iterative algorithm yields the reconstructed image.

2.1. Mono-energetic Model and Assumptions

Under the assumption of a mono-energetic beam, i.e.Ii(E) = Ii(Eo)δ(E − Eo), the expected photon flux simplifies as follows:

E[Yi] = Ii(Eo)e
−
∫
Li
µ(x,y,z,Eo)dl

. (2)

We parameterize the image in object space (attenuation coefficient) using square pixels. The goal of the algorithm becomes to
estimate the value of the (discretized) attenuation coefficient at those pixels. Letµ = [µ1, ..., µp]

′
be the vector of unknown

attenuation coefficients having units of inverse length, where′ stands for transpose.

The measurements in a photon-limited counting process such as X-ray CT are reasonably modeled as independently dis-
tributed Poisson random variables.4 In transmission tomography, the mean number of detected photons is related exponentially
to the projections (line integrals) of the attenuation map. The measurements are also contaminated by extra background counts,
caused primarily by scatter. In addition, the detector introduces additive Gaussian read-out noise that can be accounted for in a
several ways.8 We assume the following model for our measurements:

Yi ∼ Poisson{bie−[Aµ]i + ri}, i = 1, ..., N (3)

wherebi = Ii(Eo) is the blank scan factor and N is the number of measurements (or, equivalently, the number of detector bins).
The notation[Aµ]i =

∑p
j=1 aijµj represents theith line integral. TheN × p matrixA = {aij} is the system matrix which

accounts for the system geometry as well as any other significant physical effects such as detector response. For rayi and pixel
j, aij is the (normalized) area of overlap between the ray beam and the pixel. The termri accounts for the mean number of
background events and can incorporate an estimate for read-out noise as well. The photon flux measured by theith detector is
represented byYi. We assume theYi’s are independent and thatbi, ri and{aij} are known non-negative constants.4

To find a statistical estimate for the attenuation coefficient vectorµ that is anatomically reasonable, we use a likelihood-
based estimation approach. This is a natural choice since the likelihood is based on the statistical properties of the problem.9,10

The Poisson log likelihood for independent measurements is given by:

L(µ) =

N∑
i=1

{
Yi log(bie

−[Aµ]i + ri)− (bie
−[Aµ]i + ri)

}
(4)

ignoring constant terms. WhenA has full column rank and the data is noise-free, maximizing the likelihood function will give
a perfect result. In reality, the data is noisy and maximum likelihood (ML) will give a very noisy reconstruction due to the
ill-posedness of the problem, hence the need for regularization.

We regularize by adding a penalty term to the likelihood function. A general form for the regularizing penalty is the
following:

R(µ) =
K∑
k=1

ψ([Cµ]k) (5)

where theψ’s are potential functions acting on the soft constraintsCµ ≈ 0 andK is the number of such constraints. We use
the convex edge-preserving Huber penalty

ψ(x; δ) =

{
x2

2 , x < δ

δ|x| − δ
2

2 , x ≥ δ.
(6)

Combining the likelihood with a penalty gives a penalized-likelihood (PL) objective function:

Φ(µ) = L(µ)− βR(µ) (7)



whereβ is a scalar that controls the tradeoff between the data fit and the penalty terms. The goal of the reconstruction technique
becomes to maximize (7) subject to certain object constraints such as non-negativity:

µ̂ =
argmax
µ ≥ 0

Φ(µ). (8)

The next section will discuss an approach to finding a solution for (8) using an iterative technique.

2.2. Penalized Weighted Least Squares with Ordered Subsets

We formulate our algorithm by deriving a quadratic approximation to the Poisson likelihood, which leads to a simpler objective
function. This is equivalent to assuming an additive noise Gaussian model for the data. This model is reasonable because of
the large SNR in clinical X-ray CT.11,12 The quadratic approximation leads to a penalized weighted-least-squares (PWLS)
estimate. With high photon flux, PWLS leads to negligible bias1 and the simpler objective function reduces computation time.

For convenience, we write the negative log likelihood for transmission data

−L(µ) =
N∑
i=1

hi([Aµ]i) (9)

=

N∑
i=1

{
−Yi log(bie

−[Aµ]i + ri) + (bie
−[Aµ]i + ri)

}
. (10)

Applying a second-order Taylor’s expansion tohi(l) around some valuêli yields13:

hi(l) ≈ hi(l̂i) + ḣi(l̂i)(l − l̂i) +
ḧi(l̂i)

2
(l − l̂i)

2 (11)

whereḣi andḧi are the first and second derivatives ofhi. AssumingYi > ri, we can estimate the line integral with

l̂i = log

(
bi

Yi − ri

)
. (12)

Substituting this estimate into (11) gives the following approximation forhi:

hi(l) ≈ (Yi − Yi log Yi) +
wi

2
(l − l̂i)

2. (13)

The first term in (13) is independent ofl and can be dropped. The weight iswi =
(Yi−ri)

2

Yi
. The resulting cost function is

Φq(µ) =

N∑
i=1

wi

2
([Aµ]i − l̂i)

2 + βR(µ). (14)

The subscriptq indicates that this objective function is based on a quadratic approximation to the log likelihood. We retain the
penalty term, which may be non-quadratic.

According to the optimization transfer principle,14,15 rather than minimizing the cost function in (14), one can resort to
replacingΦq with a surrogate function that is easier to minimize at each iteration. The process is repeated iteratively, using a
new surrogate function at each iteration.

The surrogate we seek forΦq is one that will make the cost function separable, so that all pixels can be updated simultane-
ously. Towards that end, we exploit the convexity of the data-fit term in (14). Rewrite the line integral14,15

[Aµ]i =

p∑
j=1

aijµj =

p∑
j=1

αij

{
aij

αij
(µj − µ

n
j ) + [Aµ

n]i

}
(15)

where
p∑
j=1

αij = 1, ∀i, αij ≥ 0. (16)



By convexity,

([Aµ]i − l̂i)
2 ≤

p∑
j=1

αij

(
aij

αij
(µj − µ

n
j ) + [Aµ

n]i − l̂i

)2
. (17)

The left hand side of (17) satisfies the conditions of the optimization transfer principle for a surrogate for the data-fit term.4

We thus get the following separable surrogate:

Q(µ;µn) =

N∑
i=1

p∑
j=1

αij
wi

2

(
aij

αij
(µj − µ

n
j ) + [Aµ

n]i − l̂i

)2
. (18)

A similar development can be pursued for the convex penalty termR(µ) yielding a separable penalty surrogate, denoted
S(µ;µn). We now seek to minimize the new separable global surrogate:

φ(µ;µn)
4
= Q(µ;µn) + βS(µ;µn). (19)

Since the surrogate is a separable paraboloid, it can be easily minimized by zeroing the first derivative. This leads to the
following simultaneous update algorithm:

µn+1j =


µ
n
j −

∂φ(µ;µn)

∂µj

∣∣∣∣
µ=µn

∂2φ(µ;µn)

∂µ2j

∣∣∣∣∣
µ=µn



+

, j = 1, ..., p. (20)

The first and second derivatives of the surrogate are easily shown to be:

∂φ(µ;µn)

∂µj

∣∣∣∣
µ=µn

=

N∑
i=1

aijwi([Aµ
n]i − l̂i) + β

∂S

∂µj

∣∣∣∣
µ=µn

(21)

∂2φ(µ;µn)

∂µ2j

∣∣∣∣∣
µ=µn

=

N∑
i=1

a2ijwi

αij
+ β

∂2S

∂µ2j

∣∣∣∣∣
µ=µn

(22)

To make the denominator in (20) small (and hence the step size large), we want{αij} to be large. We also want{αij} to
facilitate convergence, and to be independent of the current iterate (so that it can be pre-computed).3 One convenient choice is

αij =
aij∑p
j=1 aij

. (23)

It is possible that better choices exist.

Note that both the numerator and denominator in (20) involve summations over sinogram indices (i.e. back projection). In
the spirit of similar work7,6 we use ordered subsets to accelerate convergence. Ordered subsets subsample the sinogram in the
angular domain. The back-projection process over the complete sinogram is replaced with successive back-projections over
these subsets. One iteration is complete after going through all of the subsets. Ordered subsets accelerate algorithm convergence
by a factor proportional to the number of subsets.7,2 We call this method the ordered subsets penalized weighted least squares
(OS-PWLS) algorithm for transmission tomography. To summarize, the OS-PWLS algorithm flows as follows:

• for each iterationn = 1, ..., niter

– for each subsetS = 1, ...,M

∗ µold = µ̂

∗ µ̂j =


µ̂j −

M
∑
i∈S

aijwi([Aµ̂]i − l̂i) + β
∂S

∂µj

∣∣∣∣
µ=µold

M
∑
i∈S

a2ijwi

αij
+ β

∂2S

∂µ2j

∣∣∣∣∣
µ=µold



+

j = 1, . . . , p.



– end

• end

The next section presents a poly-energetic model and generalizes OS-PWLS accordingly.

3. POLY-ENERGETIC X-RAY CT

In the previous section, we ignored the poly-energetic nature of the X-ray beam and the energy dependence of the attenuation
coefficient. With a poly-energetic source, the detected photon flux along pathLi is given by (1). Nonlinear beam hardening
artifacts result if one were to ignore the energy dependence of the measurements.16–18 The nonlinear behavior generally leads
to a reduction in the attenuation coefficient. Thick bones also generate dark streaks. In soft tissue, the values are depressed
in a non-uniform manner, leading to what has been termed ‘cupping’. In addition, bone areas can ‘spill over’ into soft tissue,
leading to a perceived increase in the attenuation coefficient. In this section we develop a model for poly-energetic X-ray CT
and develop an iterative algorithm that generalizes OS-PWLS.

3.1. Poly-energetic Statistical Model for X-ray CT

We assume that the object is comprised ofK known non-overlapping tissue types. We also assume that the tissue class of
each voxel is known. These classes can be determined by segmenting a FBP reconstruction that has been pre-processed for
soft-tissue beam hardening effects.18 For thekth tissue type, the attenuation coefficient is modeled as the product of the
energy-dependentmassattenuation coefficientmk(E) (cm2/g) and the energy-independent densityρk(x, y) (g/cm3) of the
tissue.19,18,20 Expressed mathematically,

µ(x, y, E) =
K∑
k=1

mk(E)ρ
k(x, y)rk(x, y) (24)

whererk(x, y) = 1 if (x, y) ∈ tissuek andrk(x, y) = 0 otherwise.

We again denote the system matrix withA = {aij} and make the following definitions:

Rk
4
= {set of pixels classified as tissue typek}, (25)

rk =
(
rk1 , . . . , r

k
p

)
where




rkj = 1, j ∈ Rk

rkj = 0, otherwise,
(26)

ski (ρ)
4
=

∫
Li

ρk(x, y)rk(x, y) dl, (27)

vi(ρ) = (s1i , s
2
i , ..., s

K
i ). (28)

We also assume that the mass attenuation coefficients{mk(E)}Kk=1 of theK tissue types are known. Discretization aside, from
(1) the mean of the measured data along pathLi is

E[Yi] =

∫
Ii(E)e

−

K∑
k=1

mk(E)

∫
Li

ρk(x, y)rk(x, y) dl

dE

=

∫
Ii(E)e

−

K∑
k=1

mk(E)s
k
i (ρ)

dE

=

∫
Ii(E)e

−m′(E)vi(ρ)dE

4
= Ȳi(vi(ρ)) (29)



wherem′(E) = [m1(E), ...,mK(E)]. We have expressed the measurements as a function of the vectorvi which has as its
elements the line integrals of theK different tissue densities. From knowledge of the X-ray spectrum, we tabulate the values
of Ȳi(vi) and its gradient∇Ȳi(vi). In the discrete domain,

ski (ρ) =

p∑
j=1

aijr
k
j ρj . (30)

The goal of the algorithm is to estimate the density coefficient vectorρ = [ρ1, ..., ρp]. Note that rather than estimatingK
vector quantities of lengthp, each representing the density of one kind of tissue, the assumption of non-overlapping tissue types
enables us to keep the number of unknowns equal top, as is the case in the mono-energetic model. This is possible only if prior
segmentation of the object is available. This can be obtained from a good FBP image, for example.

3.1.1. Poly-Energetic Model Cost Function

We now setup the Poisson log likelihood in terms of the densityρ and the vector functionvi. To get a quadratic cost function,
we again use the second-order Taylor’s expansion.

Recall that the function̄Yi(vi(ρ)) represents the expected value of the measurementYi at theith detector. UsinḡYi in (4)
gives the following negative log likelihood:

−L(ρ) =
N∑
i=1

hi(vi(ρ)) (31)

hi(vi(ρ))
4
= −Yi log

[
Ȳi(vi(ρ)) + ri

]
+ (Ȳi(vi(ρ)) + ri) (32)

The problem now is to find an estimateρ̂ such that:

ρ̂ =
argmin
ρ ≥ 0

Φ(ρ) (33)

where
Φ(ρ) = −L(ρ) + βR(ρ). (34)

The regularization term can be treated exactly as before or it can be modified to avoid smoothing between different tissue types.
For simplicity in this presentation we focus on the likelihood term.

Suppose we have an initial estimate ofvi(ρ), denoted̂vi = (ŝ
1
i , ..., ŝ

K
i ), obtained from forward projecting an initial density

imageρ̂. We expandhi(vi(ρ)) in a second-order Taylor series aroundv̂i:

hi(v) ≈ hi(v̂i) +∇hi(v̂i)(v − v̂i) +
1

2
(v − v̂i)

′∇2hi(v̂i)(v − v̂i). (35)

Taking the first and second derivatives ofhi(v) = −Yi log Ȳi(v) + Ȳi(v) yields the following:

∇hi(v) =

(
1−

Yi

Ȳi(v)

)
∇Ȳi(v) (36)

∇2hi(v) =

(
1−

Yi

Ȳi(v)

)
∇2Ȳi(v) +

Yi

Ȳ 2i (v)
∇′Ȳi(v)∇Ȳi(v). (37)

The gradient∇hi is a row vector and the Hessian operator∇2 gives aK × K matrix of partial derivatives. To simplify the
algorithm and maintain the desirable property of separability, we assume thatYi is close enough tōYi(v̂i) for us to drop the
first term on the right of (37). This also ensures that the resulting Hessian approximation is nonnegative definite.

In the Taylor expansion (35), the first term is constant and does not affect minimization, so we drop it. We now have the
following quadratic approximation to the negative log likelihood:

−L(ρ) ≈ Φq(ρ)
4
=

N∑
i=1

∇hi(v̂i)(vi(ρ)− v̂i) +
1

2Yi
(vi(ρ)− v̂i)

′∇′Ȳi(v̂i)∇Ȳi(v̂i)(vi(ρ)− v̂i) (38)

=

N∑
i=1

∇hi(v̂i)(vi(ρ)− v̂i) +
1

2Yi

(
∇Ȳi(v̂i)(vi(ρ)− v̂i)

)2
. (39)



Substituting (30) into (39) and expanding the vector inner product yields:

Φq(ρ) =

N∑
i=1



K∑
k=1

∂hi

∂ski
(v̂i)(s

k
i (ρ)− ŝ

k
i ) +

1

2Yi

[
K∑
k=1

∂Ȳi

∂ski
(v̂i)(s

k
i (ρ)− ŝ

k
i )

]2
 (40)

=

N∑
i=1



K∑
k=1

∇khi(v̂i)
(
ski (ρ)− ŝ

k
i

)
+
1

2Yi

[
K∑
k=1

∇kȲi(v̂i)
(
ski (ρ)− ŝ

k
i

)]2 , (41)

where∇k denotes thekth element of the gradient vector. To simplify the above equation, we make the following definitions:

Zi
4
=

K∑
k=1

∇kȲi(v̂i)ŝ
k
i = ∇Ȳi(v̂i)v̂i,

bij
4
=

K∑
k=1

∇kȲi(v̂i)aijr
k
j ,

B
4
=

K∑
k=1

D
(
∇kȲi(v̂i)

)
AD
(
rk
)
.

Recall thatA = {aij} is the geometrical system matrix. The matrixB = {bij} is a weighted system matrix, with the weights
expressed as the non-zero elements of a diagonal matrixD(·), to the left ofA. The termZi combines constants independent of
ρ. With the above definitions, expressing the line integrals explicitly in terms of the image pixels yields the following form of
the cost function:

Φq(ρ) =

N∑
i=1



K∑
k=1

∇khi(v̂i)


 p∑
j=1

aijr
k
j (ρj − ρ̂j)


+ 1

2Yi


 p∑
j=1

bijρj − Zi



2

+ βR(ρ). (42)

This cost function is convex, so we can easily derive a separable surrogate and an iterative update, along the lines of Section 2.
We state the results of the algorithm derivation below.

3.1.2. OS-PWLS Algorithm for Poly-Energetic CT

The separable paraboloidal surrogate forΦq(ρ) is given by:

Q(ρ; ρn) =

p∑
j=1

N∑
i=1

K∑
k=1

∇khi(v̂i)aijr
k
j ρj −

N∑
i=1

K∑
k=1

∇khi(v̂i)aijr
k
j ρ̂j

+

p∑
j=1

N∑
i=1

1

2Yi
αij

(
bij

αij
(ρj − ρ

n
j ) + [Bρ

n]i − Zi

)2
+ βS(ρ; ρn) (43)

where we choose

αij
4
=

bij∑p
j=1 bij

.

Setting the point of linearization of the Taylor series atρn, and evaluating the first and second derivative ofQ at the same point
gives:

∂Q(ρ; ρn)

∂ρj

∣∣∣∣
ρ=ρn

=

N∑
i=1

K∑
k=1

aijr
k
j∇khi(v̂i) + β

∂S

∂µj

∣∣∣∣
ρ=ρn

(44)

∂2Q(ρ; ρn)

∂ρ2j

∣∣∣∣∣
ρ=ρn

=

N∑
i=1

1

Yi

bij
2

αij
+ β

∂2S

∂µ2j

∣∣∣∣∣
ρ=ρn

. (45)

Here is the overall algorithm:



• initialize with ρ̂.

• for each iterationn = 1, ..., niter

– for each subsetS = 1, . . . ,M

∗ computêski =
p∑
j=1

aijr
k
j ρ̂j for k = 1, . . . ,K, v̂i = [ŝ

1
i , ..., ŝ

K
i ]

∗ computeȲi(v̂i), its gradient vector∇Ȳi(v̂i) andhi(v̂i)

∗ computebij =
K∑
k=1

∇kȲi(v̂i)aijr
k
j

∗ computedj =
∑
i∈S

1

Yi

b2ij

αij

∗ computeN̂j =
∑
i∈S

K∑
k=1

aijr
k
j∇khi(v̂i)

∗ compute

ρ̂j =


ρ̂j −

MN̂j + β
∂S

∂ρj

∣∣∣∣
ρ=ρ̂

Mdj + β
∂2S

∂ρ2j

∣∣∣∣∣
ρ=ρ̂



+

j = 1, . . . , p (46)

– end

• end

We expect this algorithm to globally converge to the minimizer of the cost functionΦq(ρ)when one subset is used, provided
the penalty is chosen so thatΦq is strictly convex. When two or more subsets are used, we expect it to be monotone in the
initial iterations.

4. PRELIMINARY RESULTS

We now present results for the reconstruction algorithms outlined earlier. A preliminary comparison between FBP and OS-
PWLS shows the superiority of the latter in terms of noise reduction for mono-energeticX-ray CT. Poly-energetic reconstruction
results show that our model is effective in eliminating most beam hardening effects. Some artifacts persist, perhaps due to
deficiencies in the Taylor approximation (35).

We assume a fan-beam system geometry with a source-to-detector distance of1000 mm. The source-to-isocenter distance
is 500 mm and the object is centered at isocenter. The field of view is500 mm and the fan angle is90o. We assume a flat
detector with a uniform response for the detector bins. The backgroundri is set to zero.

4.1. Comparison with FBP

We compare reconstructions from FBP and OS-PWLS (5 iterations, 10 subsets). We use data from the simulated thorax phantom
shown on the left in figure 1. The regions A (heart) and B (spine) ideally have uniform values and we compare noise behavior
therein.

The noisy sinogram has size250×250 and the reconstructed image is128×128 pixels at a resolution of3.91mm/pixel. The
regularization term in OS-PWLS is a Huber penalty, withβ = 120 andδ = 0.0005. We deduced the values for the parameters
β andδ by trial and error. They give comparable resolution to FBP. Figure 2 shows the FBP and OS-PWLS images. The FBP
image is used to initialize OS-PWLS.

We compute the standard deviation in regions A and B. The number of pixels used to compute the standard deviation in
each region is almost10 × 10. Since the two reconstructions have comparable resolution, the noise comparison is justified.
Overall, the results show superior noise reduction for the OS-PWLS case. After 2 iterations, the standard deviation is reduced
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Figure 1. Thorax phantom (left) and bone/water phantom (right)

Figure 2. FBP reconstruction (left) and OS-PWLS reconstruction (right)

by 60% in the heart and49% in the spine. After 5 iterations, the standard deviation is reduced by78% and53% in the heart and
spine, respectively.

The plots in figure 3 illustrate algorithm convergence. The left plot illustrates the fact that the quadratic approximation to
the likelihood is indeed a good one. On the right, we plot the objective function at every iteration with and without subsets.
Subsets clearly offer significant acceleration.

4.2. Beam Hardening Correction

To test our poly-energetic model algorithm, we use the density phantom shown on the right in figure 1 and simulate transmission
data with a poly-energetic spectrum with mean of68 keV and standard deviation of16 keV. Four high-density circles (‘bone’,
ρ = 2 gm/cm3) are immersed in water (ρ = 1 gm/cm3), which is surrounded by air (ρ = 0 gm/cm3). The phantom size is
128 × 128 and we use the geometry described earlier. We simulate a noise-free sinogram of size150 × 150. The object is
classified into bone or soft tissue by segmenting the original image using a density threshold of1.2. The left image in figure
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Figure 3. Quadratic approximation to the Poisson likelihood (left) and effect of subsets on convergence (right)

4 is reconstructed with FBP without any beam hardening correction. The right image in the same figure illustrates the result
of using the mono-energetic OS-PWLS algorithm with poly-energetic data. Figure 5 shows the image reconstructed with the
algoritm derived from the poly-energetic model. Both OS-PWLS results were reconstructed using 10 iterations and 4 subsets.
OS-PWLS.

No Beam Hardening Correction

Figure 4. Uncorrected FBP (left) and OS-PWLS (right) images

The (FBP and OS-PWLS) images reconstructed without correction exhibit typical beam hardening artifacts. There is an
overall reduction in the values of the reconstructed density for both high and low-density materials. Also, dark streaks caused by
the high density circles dominate the central region of the image. The poly-energetic model OS-PWLS adequately addresses the
reduction in density values. Some streaks persist, however, and we conjecture that they maybe due to the Taylor approximation.

With the knowledge of the mass attenuation coefficient, one can scale the resulting density images to obtain attenuation
coefficient information at any energy using (24).



Figure 5. Corrected OS-PWLS reconstruction

5. CONCLUSIONS

We described a statistical iterative reconstruction method for X-ray CT and illustrated that it is superior to FBP in terms of
noise reduction. The method is also generalized for energy dependent X-ray attenuation and produces images with significantly
reduced beam hardening artifacts for a bone and soft tissue object.

The beam hardening artifacts were not completely eliminated. This perhaps is due to the limitations of the Taylor approxi-
mation in (35) and is the subject of further investigation.

Future work will include applying the poly-energetic approach to objects with three or more tissue types. Also, the current
approach requires prior knowledge of the spatial distributions of the different tissues. Although this can be approximated from
a good FBP image, it is desirable to jointly estimate the object density and tissue classes.21 It is also necessary to carry out a
comparison between our method and more conventional post-processing beam hardening correction algorithms.18
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