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Abstract— We present new algorithms for penalized-likelihood im- can treat the problem. For regularized OS algorithms, De Pierro
age fggg”rséglxm;angf)’dg'ﬁg rZISa’X?E('jV' ébs'oé?"; Sse(glrlggrtgﬂ fsel?bus'zgesde exand Yamagishi [8] have recently presented the block sequential
EleeC Saraboloidal surrogates). Both of them are globally convergenf to reg_UIanzed_ EM (BSR_EM) algon_thm, an extension of the row-
the unique solution, easily incorporate convex penalty functions, and are action maximum likelihood algorithm (RAMLA) [7]. They have
parallelizable—updating all voxels (or pixels)_ simultaneously.‘They belor_lg provided a convergence proof for BSREM with a few “a poste-
el o e 0ol 1 S ror”assumptions: ) the convergence of the objecive sequence
can prove global convergence without previously imposed assumptions. we @Nd ii) the positivity and boundedness of each iterate. We relax
also introduce a diminishing relaxation parameter into the existing 0S-SPS such assumptions by making some modifications to BSREM: i)
(Erdogan and Fessler, 99) to achieve global convergence. We also modifyy modified scaling function and ii) a modified log-likelihood if
the penalized-likelihood function to enable the algorithms to cover a zero- . g
background-event case. Simulation results show that the algorithms are needed (zero-background-event case). Neither of these modifi-
both globally convergent and fast. cations changes the value of the final solution. They just ensure
that the iterates converge to that solution.

The paraboloidal surrogates (PS) method [9] [10] is another
attractive family of reconstruction algorithms. While the EM al-

TATISTICAL image reconstruction methods have showgorithm maximizes a surrogate function obtained by conditional

improved image quality over conventional filtered backprexpectation (E-step) for each update, the PS methods employ
jection (FBP) methodse(g, [1]). Statistical methods can useparaboloic (quadratic) surrogate functions. Separable surrogates
accurate physical models and take the stochastic nature of neigenatural for OS algorithms; the use of separable paraboloidal
into account; in addition, they can easily enforce object cosurrogates and OS principles leads to the OS-SPS algorithm [11]
straints like nonnegativity. For ML estimation, the eXpeCtatiOQ’(briginally suggested as OSTR in the context of transmission
maximization (EM) algorithm [2] was introduced into emistomography), which is fast but not globally convergent. We
sion and transmission tomography by Shepp and Vardi [3], aitroduce relaxation into the algorithm to obtain relaxed OS-
Lange and Carson [4]. The EM algorithm, despite its nice progPs, which we show to be globally convergent. We also modify
erties such as monotonicity and positivity, suffers slow convere log-likelihood if needed (zero backgrounds). The relaxed
gence; there has been considerable efforts to develop accelergt8dsPS can be seen as a diagonally scaled version of incre-
algorithms. mental subgradient methods [12] [13]. Of related work, Kudo,

Ordered subsets (OS) algorithms, also known as blod4akazawa, and Saito [14] applied to emission tomography re-
iterative or incremental gradient methods, have shown signienstruction their block-gradient optimization similar to the in-
icantly accelerated “convergence” compared to EMy( [5]). cremental subgradient methods; Bertsekas [15] proposed a hy-
The ordered subsets idea is to use only one subset of the nigtalgorithm from the least mean squares (OS) and the steepest
surement data in place of the total data for each update. Hudgescent methods (non-OS).
and Larkin [5] presented the OS-EM algorithm and showed
its order-of-magnitude acceleration over EM. However, OS-EM Il. THE PROBLEM
generally oscillates rather than converges to a ML solution, . . )
which is the typical behavior of OS algorithms without relaxt Penalized-Likelihood Image Reconstruction

ation. We would like an aIgorlthm to _be not only fast but also We focus on emission computed tomography: positron emis-
globally convergentAn algorithm is said to bglobally conver- - sjon tomography (PET) or single photon emission computed to-
gentif for any starting point the algorithm is guaranteed to gefinography (SPECT). Assuming usual Poisson distributions, the

erate a sequence of points converging to a solution [6, p.182kasurement model for emission scans is as follows:
When implemented appropriately, a diminishing relaxation pa-

rameter (or stepsize) can help OS algorithms converge by sup-

I. INTRODUCTION

p
pressing the limit cycleg(g, [7]). yi ~ PoisSOR Y "agAj+rip, i=1,2,...,N (1)
Due to the ill-posedness of the image reconstruction prob- j=1

lem ML estimation yields unsatisfactory noisy images. Reg-
ularization or penalization, equivalently a Bayesian approastherey; > 0 is the number of photons counted in tt bin,
A; > 0is the activity at thejth voxel (or pixel), A = {a;;}
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[A1, A2, ..., Ap]" based on the measuremeiis with known A where
andr;’s where’ denotes the transpose. .
é {

The log-likelihood of the datg;’s is, ignoring constants in- Ei(l)

dependent oA, as follows: hi(l) for 1>e

N with

LX) = Z hi(li(N)) 2)
=1 Al . <(I)(V) — Dkt hk(yk)) 2
€ = —min { exp s Yiy Z aijl/j .
whereh; (1) = y;logl —l andl;(A) = 3, ai;A; + . The 2 ie] Yi =
penalized-likelihood (PL) estimation is to maximize the follow-
ing penalized-likelihood objective function ovar> 0: Then we can show [16] that
®(A) = L(A) — BR(N) (3) A= argax D(A) = argmax D(N),

where > 0 is a regularization parameter which controls thgheaning that this modified objective function has the same max-
level of smoothness in the reconstructed image, Bnid, for jmizer as the original. The modified objective functibmas the
example, the following type of roughness penalty function:  njce properties tha¥’® is Lipschitz continuous and bounded
L over B contrast to? (whenr; = 0), while preserving the max-
_z _ L imizer A. We will henceforth takeéd as our objective function
B 2 ; gj;j Wik (A = Ar) “) but keep the notatios for simplicity; likewise,h; will denote
h; whenr; = 0.
whereN; denotes the neighborhood of thiga voxel (or pixel), )
wji, is a weighting factor ang is a potential function. We as- B Ordered Subsets (OS) Algorithms
sume that) is convex, continuously differentiable and bounded Most iterative algorithms for finding = arg maxx>o ®(\)
below; so isR. In addition, we assumeiny R(A) = 0 without use the gradier ®() of the objective function which involves
loss of generality. 1f8 = 0, the problem becomes maximuma sum over sinogram indicése., backprojection. Among them,
likelihood (ML) estimation. many “parallelizable” algorithms—able to update all the vox-
We assume that the objective functidnis strictly concave, els (or pixels) simultaneously—can be written in the following
so there exists the unique PL solutidn= arg maxx>o ®(A). form:
This can be ensured by choosifgappropriately. Under this
assumption one can verify that there exists an upper bound X/ *' = A} + and;(A")V;@(A"Y), j=1,2,...,p (7)
U € (0,00) for A, given anyr € RP such thatb(v) € R,

as follows [16]: whereca,, > 0 is a stepsize (or relaxation parametef)(A)’s

are nonnegative scaling functions avidb(\) is, ignoring here

UL max {& ?L} 41 (5) the regularization term for simplicity, as follows:
1<j<p ( Qi;5 Qijj N

Vo) =Y aihi(li(N)). (8)

wherei; = arg maxo<i<n Gij, vj, and ! ; ! )

Ordered subsets (OS) algorithms are obtained by replacing
Ui £ exp [ hi(y; +1) + Z hi(yr) — @) |, Vi the sumzfi1 in (8) with a sum}_,_s over a subses,, of
ki {1,2,...,N}. Let{S,,}M_, be a partition of{1,2,..., N},
As a result, we have and let A
ult, we hav

FnN) =D hili(N) ©)

AEBE2{AERP:0< ) <, Vj} 1€5m

be a sub-objective functioWm, resulting in® = Zﬁf:l s
Next, we modify the penalized-likelihood for a zerowhere the regularization term is included in one or more of the

background-event case;(= 0) to make the objective func- ¢ ‘s Suppose the following “subset balance™like conditions

tion well-behaved oveA € B (especially on boundaries). Al- hold:

though non-zero background events are realistic, we would like VAA) VA2 - 2Vfiy(A) (10)

our algorithms to also be applied to the= 0 case which has _

been used more frequently despite its oversimplicity. Deci@& €auivalently,

I ={1<i¢<N:r =0} Givenanyr € B such that ~

®(v) € R, consider the following modified objective function: VEQA) = MV (), Vim. (1)

Now an ordered subsets version of (7) can be obtained, by sub-

Y stituting M'V; f,, (A) for V;®(A), as follows:

N
B(A) = 3 hil:(A) + Y hi(l:(N) - BR(A)  (6)
| &

S

= n,0 _ \n
- A0 = 3



AP = NPT 0, dy (AT Y o (AT, Y Then it can be shown [16] that eadti™ generated by (14)
belongs to the interior o8 when i) A\° € Int B and i) 0 <

n+l _ \n,M
>‘j - >‘j (12) an < agp, Vn, where
where the factol is absorbed intev,,. We refer to each update
as themth subiteration of theuth iteration. In the tomography ) U/2 1 (16)
i M _ Qp = min s
context, the partitioq S,, }.,—, are naturally chosen so that pro md | Dies, VitV Dies,, @ij

jections within one subset correspond to projections with down-
sampled projection angles. It is desirable to order the subsetg g, v = maxj m, xes {BnViRA), BmA;VR(A), 0}

a way that projections corresponding to one subset are as B§farefore, each iterate satisfies positivity and boundedness. The
pendicular as possible to previously used angles at each SUb‘F&TOWing Theorem [16] guarantees the global convergence of

ation [17]. _ _ ) the modified BSREM:
The OS algorithms have been successful in speeding up coNthaorem 1:Suppose thab < o,

< ag, ¥ a, = ©
vergence. However, they generally get into a limit cycle wheg,q S 42 < co. Then the sequeonc%,\n”_}l generated
using a constant stepsize, = a and do not converge to theb n=l o

) e ) 14) with an initial pointA°® € Int B conver \ =
solution\. We may need to use a diminishing stepsize such tha}/t (14) with & tial pointA™ € Int B converges tox
argmaxxep ®(A).

a, — 0 to suppress the limit cycle. Even if an algorithm with . . S
. . For any strictly concave functio® and sub-objective func-
relaxation converges to somé, we still must ensure that the , M .
tions f,,'s such that® = > " | fn, if D(A)Vf,(A) and

limit is the solutionA. LS : n i\ <
V&(A) is Lipschitz continuous, then we can obtain similar re-

IIl. GLOBALLY CONVERGENTORDERED SUBSETS sults.

ALGORITHMS
. ) B. Relaxed OS-SPS
We present relaxed OS algorithms which are globally con-

vergent: modified BSREM and relaxed OS-SPS. The goal is toVe consider another family of OS algorithms with a constant
maximize the penalized-likelihoo#i(A) over A > 0 (equiva- Matrix D as follows: .

lently, A\ € B). Given a partition{S,,}*_, of {1,2,...,N}, AT = A"

we take the following sub-objective functions: AT Py ()\”’m” i aanfm()\n,mq)) . Vm

, ) M whereD = diag{di,...,dp} with d; > 0, Vj, andPp (\)
thSre Pm(2 0)'s satisfy 2., fm = B. (Note & = is the projection of\ € R? onto B. If D = I, the algorithm
> me1 fm-) (17) becomes one of incremental subgradient methods [13]; so
A Modified BSREM Ltrlcé?r?ot()je viewed as a diagonally scaled incremental subgradient

De Pierro {:md Yamagishi [8] have recently presented theThe special case of (17) is OS-SPS [11]dif = 1 andd;
BSREM algorithm and proved its global convergence on the fg& the inverse of a corresponding “precomputed curvature”). For

lowing assumptions: i) the sequengk™} generated by the al- example, for 0S-SPS with a quadratic penalty/¢f) = ¢2/2,
gorithm is positive and bounded and ii) the objective sequengg diagonal elements are as follows:

{®(A\™)} converges. These conditions are not automatically en-
sured by the form of the original BSREM. We eliminate those N » -1
assumptions by modifying the algorithm. di=M | =S ayhi(y)y aw+28 Wik , V5.
The basic idea of the modification is to ensure all iterates ; v ; kEZA:,j !

lying in the interior of the constraint sé by suitably choos-
ing a scaling functioni; () and a relaxation parametgt.,,}  If we allow a diminishing stepsize, we obtain a relaxed OS-SPS.
so that implementation and convergence analysis become ctie relaxed OS-SPS, contrast to ordinary OS-SPS, is globally
venient. For EM-like algorithms, we observe that the form afonvergent by the following Theorem [16].
d;j(X) = (some term) \; helps each iterate to keep positivity, Theorem 2:Suppose that,, > 0, Vn, andej’:l Qay = 00.
ie, to_av_0|d crossing the lower boundaxy = 0. We can also Then the sequencf\"} generated by (17) converges o=
do a similar thing for the upper boundaxy = U. Consider the 1o max,cp D(N).
following modified BSREM algorithm: For any strictly concave functiof® and sub-objective func-

A0 =\ tions f,,'s such thatb = Zﬁf:l fms If fm(A) is concave and

V fm(A)’s are bounded, then we can obtain similar results.
AM — An,mfl 4 OCTL‘D(An,mfl)me(An,mfl)7 m,
AntL — z\mM (14) IV. RESULTS

whereD(A) = diag{d:(A), .. ., dy(A)} with We performed PL image reconstruction for two-dimensional
PET simulation using the Shepp-Logan digital phantom to

test the performance of the modified BSREM and the relaxed

OS-SPS. We chos&6 subsets by angular downsampling in

)\j fOfOS)\j<%

d](A):{ U_)\j for %SAJSU ,VJ (15)



sinogram. For comparison, we also performed SPSub- X1 Penalized log-likelihood

set with “optimum curvature”), ordinary OS-SP$6(subsets O O P S T
with “precomputed curvature”) and De Pierro’s modified EM °
(DPEM) [18]. The sinogram hati28 radial bins andl60 an- ;
gles uniformly sampled ovetr80 degrees. The total photon s -
counts amounted t6 x 10% and,r; corresponded to a uniform :
field of 10% of random coincidences. The reconstructed image &2
were128 by 128 pixels and attenuation was not considered. W1§ :
used a first-order quadratic penalty functioft) = ¢2/2 with

a regularization parametgr= 8. The FBP reconstruction was
used as a starting image. As a relaxation parameter, we chc
an, = 11/(10 + n) for relaxed OS-SPS, and, = 4 x 107%/n

for modified BSREM through a few trials.

The upper bound’ for A computed by (5) in this example
was too large for computers capability (exp 10°); so U is :
virtually infinity. This implies that in practicé; () of (15) be- o7l
comes); as the original BSREM, an®; (-) of (17) becomes et aton e ®
just -]+ where[A], ; = max{0, \;}. A real “practical” prob- fo 1 c '  obiective | o5 of nonOS alcorith
lm fles in determining the upper boung for a elaxation pa- 0 Sonosion o Tl Ieess s o 1ori08 Sgoit
rameter to guarantee that the modified (or original) BSREM is ang 0s algorithms—original OS-SPS, modified BSREM, and relaxed OS-
positive. Equation (16) gives an extremely small relaxation pa- SPS—with16 subsets: the OS algorithms are shown to be faster than the
rameter in this example (since the gradient of the penalty func-non-OS algorithms.
tion can be very large on the constraint £t the convergence

14 +

jective i
I
I
:

Ob

—— SPS
—=- DPEM 4
A Original 0S-SPS
+- Modified BSREM
O- Relaxed OS-SPS

rate will become very slow with the small relaxation. Thresh- o’ Penalized log-likeliood

olding (like 7{);} = max{\;, d} for some smalb > 0) may Do
ensure positivity without the concern for relaxation parameter. 147 o o 0 ©00e °° :
But the algorithm including thresholding is already a “new” al- o 0 °

gorithm and we will have to analyze the global convergence fc [ °

> o

this “new” algorithm. Even though the “new” algorithm seems .| + 1
to be also globally convergent, it is not easy to prove it. Ir 3 & +
this simulation for modified BSREM, we chose a relaxation pa 24/ . ]
rameter reasonably small to keep iterates positivity and reasc% Ll |
ably large for the algorithm to be fast, through a few trials. Ir g
contrast, relaxed OS-SPS does not suffer from this difficulty i © 1as- 1
choosingxy, so it may be more convenientin practice.

Fig. 1 shows objective increases in the penalized lo¢c ™| " Wogited BSREM 1
likelihood ®(A™) — ®(A%). As can be seen in the figure, OS .| R 1
algorithms (OS-SPS, modified BSREM and relaxed OS-SP*
are faster than non-OS algorithms (SPS and DPEM). Fig. # 0 12 1 18 18 2
shows the same figure zoomed in for the OS algorithms. We Iteration
can observe that modified BSREM and relaxed OS-SPS kEﬁ‘dﬁ} 2. Comparison of objective increase rates of original OS-SPS, modified
increasing—actually, converge to the optimal point— whereas BSREM, and relaxed OS-SPS (same as Fig. 1 except zoomed in): modified
OS-SPS stagnated at a suboptimal point. Although the relaxedBSREM and relaxed OS-SPS are globally convergent whereas original OS-
0S-SPS seems to be superior to the modified BSREM in the fig->" > 9¢tS Stuck at a suboptimal point.

ure, we do not jump to such a conclusion from this preliminary

data since the performances depend on relaxation parame{giss|ayed OS algorithms, as well as globally convergent. How-
Fig. 3 displays the reconstructed images20yiterations of re- o\ or tor modified BSREM, as mentioned in Section IV, it was

laxed OS-SPS and modified BSREM (also the digital phanto[qgrd to determine the relaxation parameter (without threshold-

and FBP reconstruction). ing) for ensuring fast and global convergence. By contrary, it is
relatively easy to determine the relaxation parameter for relaxed
OS-SPS. Since the original OS-SPS has already been correctly
scaled, it is effective to use a relaxation parameter starting with
1 and decreasing as O(%). Nevertheless, there is still much
room for improvement in choosing the relaxation parameters.
Training of relaxation parameters for a specific type of tasks
We presented relaxed OS algorithms (modified BSREM anaay be performed [7] [17]. But we believe that convergence
relaxed OS-SPS) which are globally convergent. Simulation mate analysis will give us more insights related to relaxation and
sults showed that both algorithms can be faster than non-OS émthe choice of scaling functions. We will direct future research
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V. DISCUSSION



True image Fi

BP
-
-

Modified BSREM Relaxed OS-SPS

Fig. 3. Reconstructed imagess(subsets and0 iterations): true image; Shepp-
Logan phantom (top-left), starting image; FBP reconstruction (top-right),
modified BSREM reconstruction (bottom-left), and relaxed OS-SPS recon-
struction (bottom-right)

(13]
[14]

[15]
[16]

(17]

(18]

to convergence rate analysis.

An extension to transmission tomography is straightfor-
ward for zero background events. However, for a nonzero-
background-event case, the penalized-likelihood becomes non-
concave; it is an open problem to find a global maximizer. At
least we hope to find a stationary point.
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