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Abstract 
A method has been developed for List Mode EM 

reconstruction of Compton scattering camera images in 3-D, 
using a previously reported 2-D technique and refining and 
adapting it to three dimensions. Spatial variation in the 
system sensitivity is determined by an approximate numerical 
integration which accounts for solid angle effects, absorption 
and escape probabilities, and variation in the differential 
angular scattering cross section. The method for computing 
the system transition probabilities uses a similar method to 
determine values in pixels along exact back-projected cones 
for each detected event, and uses pre-computed values of 
the inherent system resolution (which includes the effects 
of spatial and energy measurement resolution and Doppler 
broadening) to model the response in pixels neighboring the 
back-proj x t e d  cone. The algorithm has been parallelized, 
permitting reconstruction of images using larger number of 
detected events in relatively constant time by adding additional 
processors. Results are presented using 3-D simulated data. 

I. INTRODUCTION 
List-mode Expectation Maximization (EM) methods 

[ l ,  2, 31 have recently been applied to the Compton camera 
reconstruction problem [4, 51. The method is particularly 
appealing for this problem because the number of system 
variables is limited to N7N3,  if N7 is the number of 
detected events and N is the dimension of the image space. 
By contrast, the number of combinations of position and 
energy measurements which describe a Compton camera in a 
traditional iterative reconstruction approach can be as large as 
10 billion for each N 3  pixels. 

The list-mode Maximum Likelihood problem is posed 
as follows: Let Y be all possible measured projection data, 
accumulated as individual measurements x, and taking Y ,  -+ 1 
for each detected particle, and Y ,  -+ 0 for the infinite number of 
possible events not detected in the current measurement. The 
maximization step can then be written as 

and the expectation step as 
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leading to the iteration (indexed by 1 )  

(3) 

In the above s3 is the probability that a photon emitted from 
pixel j is detected anywhere, and t , j  the probability that yi 
was emitted from pixel j. Barrett et d [ 2 ]  and Parra [3] have 
proven that this treatment of Y holds (here we ignore any time 
dependence of the measurement), with the condition that as the 
detected Y ,  do not span the space of all possible events, s j  must 
be computed as the integral over all possible detected events z, 
including those for which Y, = 0. 

In earlier work [4, 51, a technique for determining the 
required system matrix coefficienls needed in the EM algorithm 
was developed, in which relative transition probabilities t i j  

were computed and stored for only those pixels intersecting the 
back-projected cone corresponding to each detected particle. 
Transition probabilities for pixels within a given angular range 
of the intersected pixels were then computed on the fly at each 
iteration step, with values based on the inherent cone-spread 
function for the device, which is a function of the energy and 
spatial resolution in the detectors, as well as the degree of 
Doppler broadening of the Compton scattered photon energy 
spectrum. In 2-D, this approximation reduces the average 
number of elements ti, which must be stored to roughly 
2NN,, but still allows for modeling of the entire N2N7 
system. The sensitivities s j  were computed by performing a 
crude numerical integral over the first detector volume for each 
pixel j and assuming uniform response in the second detector. 
Use of this reduced data set perrnits a full EM iteration to be 
computed in about 1 minute on a high end Unix workstation, 
for a 500,000 count problem solved on a 64 x 64 image space. 

11. METHODS 
In the current work we deploy more accurate computation 

of the sensitivities and the system matrix coefficients; apply 
the method to the 3-D case; and parallelize the algorithm 
using the MPI package 161 to permit running on multiple 
networked workstations. Since the efficacy of the algorithm 
has been shown to be limited by data size rather than speed, 
parallelization brings a linear increase in the size of the 
problem which can be treated, with constant computation speed 
(limited to message passing overhead). 

A measurement i in a Compton camera system consists 
of a first detector interaction position .Zi, a second detector 
interaction position z;, and an energy of interaction in the 
scatter detector E. The factors contributing to the computation 
of the probability of the emission of a gamma in pixel j 
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resulting in a measurement i include terms relating to the 
emission probability, the interaction and escape probabilities in 
the detectors, the scattering angles subtended by the interaction 
positions, Doppler broadening of the scattered gamma energy, 
and uncertainties introduced in the measurement and recording 
process, among other things. For the sake of simplicity, we 
choose here to ignore errors in  the measurement of the detected 
positions and scattering in the source. It can be shown then 
that [7] 

In the above expression, P(zi ,  z:, E(z7~) is the probability of 
a particle emitted at z; (which is contained in voxel j )  being 
measured as having interacted at positions zi and z'i with 
energy E ;  K ,  the ratio of the Compton to total absorption 
cross section in the first detector; zdll, the distance traveled 
in  the first detector before the interaction; Zd12,  the distance 
traversed in leaving the detector after the scatter; Zd2 ,  the 
distance traveled in the capture detector prior to the interaction; 
d&, the distance to the first interaction; and G2, the distance 
to the second; cos(41), the angle of incidence on the face of 
the first detector and cos(42), the angle on hitting the second; 
and fn (e, E ) ,  the probability of scattering through 6' with 
energy E. This function includes the convolution of the energy 
measurement resolution with the doubly differential cross 
section which combines the Klein-Nishina cross section with 
the Doppler broadened spectra. The sensitivities s j  can be 
calculated then by integrating P(zi ,  z;, Elz;) over the pixel 
(z;), volume of the first detector (zi), volume of the second 
detector (zj), and all possible energies ( E )  between the upper 
and lower thresholds on the system, 

pt. 

E2 
s j  = J J J P(zi,z'i,Elz~)dz7Jdzidz~dE. ( 5 )  

D1 0 2  E l  

In the current work, these integrals are computed by a simple 
numerical integration, in which P(.ii, &,El&) is evaluated at 
4 mesh points inside each pixel, 4 over each of the individual 
elements of the scatter detector, and 120 points over the 
larger, area capture detector. Most of the components of 
the expression in (5) can be determined easily, and tables 
of fn(8,E)  can be prepared in advance and for each point 
in the numerical integral (0 is defined exactly by the three 
positions). For the current work, however, the effect of Doppler 
broadening on the sensitivities is ignored, and so f n (0 ,E)  is 
taken as just the Klein-Nishina cross section convolved with 
the system energy resolution. The integral of (5) thus becomes 
a triple sum over the pixel j and the detector volumes of the 
factors in the expression for P(zi ,  z;, Elz7J). 

The system transition probabilities t i j  are given by 
the integral of P(zi,z;,EJ&) over the emitting pixel j .  
As described in a previous work [5], to avoid the lengthy 
computation involved in' performing this integral over every 
pixel for every particle and to avoid having to store this large 
numbcr of transition probabilities, we compute only the track 

through the image space of the back-projection assuming 
perfect data, and assume that the relative weights of the 
neighboring pixels can be inferred from the inherent system 
resolution, which is computed in advance. We are left then 
with simply integrating the expression for P(z i ,  8, Elz;) 
over the pixel volume. In the current work, again the Doppler 
broadening is ignored, and the integral over the pixel volume 
is approximated by assuming that P(z i ,  z j ,  Elz;) is constant 
over the relatively small and usually distant pixel volume. 

The application of the method above to 3-D is straight- 
forward. We simply apply the 2-D algorithm described above 
to successive planes in the image space. We therefore increase 
the number of elements for which we must store data elements 
in going from the 2-D to the 3-D case by a factor equal to 
the dimension of the image space, to approximately 2N2N,. 
There are two potential drawbacks to this method, however. 
First, as the 2-D method is based on the intersections of 
conics with planes in the image space, .the current 3-D method 
involves computations of weights for area elements in given 
planes, rather than volume elements in the image space. Thus 
weights are computed differently for nearest neighbor voxels 
depending on whether the neighbor is lateral in the initial 2-D 
reference plane or the next reference plane. Second, when the 
track of the initial particle is almost parallel to the orientation 
of the image plane, the numerical uncertainty involved in 
computing the conic intersection with the plane is so large that 
the data must be rotated and the computation done in a different 
orientation, and then used in that alternative orientation when 
computing neighboring weights during the iterations. Based 
on the results from for perfect point sources presented later, 
neither of these problems appear to have significant effects. 
Indeed, images of point sources symmetric in both lateral and 
longitudinal dimensions. 

The recursion formula of (3) lends itself easily to 
parallelization, even though the sums are over pixels in one 
case and projection data in the other. The data is split by 
dividing the particles among the processors. This allows for 
some time saving in the computation of the weights t i j ,  as, in 
fact, different processors need not have access to the weights 
computed by each other. For a problem with M processors and 
N-, photons, in the current implementation, each processor first 
computes for its allocation of N,/M photons the weights t i j  it 
requires, and a synchronization of the nodes is then imposed. 
Next, each processor computes the sum in the iteration formula, cMi xt,j/ xk  t i k X f ) .  Another synchronization is imposed, 
and these results are then collected and tabulated by the master 
processor, which then solves (3) for Ayf1). Values of this 
updated back-projection is then broadcast to all the slave nodes, 
which then update their local copies of Ck t , k X t )  for the 
N-,/M photons which they are processing. Thus, the only data 
that must be transfered between the processors are the M sets 
of the N 3  values of EM, I&/ ck t i k A f )  which must passed 
up by each slave, and the N 3  values of XI'+') broadcast by the 
controlling process at each update. The 2N-,N2/M weights 
are local to each processor. For memory limited problems such 
as this, this organization allocates 'resources most efficiently. 
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The MPI (Message-Passing Interface) [6] software was used 
to perform the inter-processor communication tasks required 
here. 

I. 

5.  

1. 

3 .  

2. 

111. RESULTS 
Results are given here for simulated data generated 

by Monte Carlo using a geometry similar to that of the 
C-SPRINT [8] system. C-SPRINT consists of a 32 by 8 array 
of 1.4 mm silicon detector elements .3 mm thick as the scatter 
detector and the SPRINT second detector. Projection data 
was generated by Monte Carlo simulation using the program 
SKEPTIC [9], which has been extensively employed and tested 
in  the simulation of Compton scatter cameras [8, 41. 

Two phantoms have been modeled. The first consists of 
two point sources in a cold background, one centered with 
respect to the the front face of C-SPRINT, and one at a position 
.24 cm behind and . I6  cm to the right of the center point. 
3-D measurements were simulated by performing separate 
simulations of rotations of the phantom through 36 equal 10 
degree steps. A 3 1 x 3 1 ~ 3 1  image space with .02 cm pixels 
was used in the reconstructions, with 8208 photons from 
the central point and 7491 events from the off-axis point 
modeled. For the purposes of validating the method, exact 
energy and position measurement data was used, and Doppler 
broadening of the scattered gamma energy was ignored. The 
initial back-projection and computation of the weights took 
approximately 3 minutes on a Sparc Ultra 1 workstation and 
each iteration roughly 20 seconds. No parallelization was 
required. 

Results of reconstructions are presented in figures 1 through 
3. All images are from the 20th iteration, and represent the 
slices at Z = 0.0, .12, and .24 cm. It is quite clear from 
the figures that the method is able to produce point images 
with the correct position in all three dimensions, and that the 
images are symmetric in all three axes. Further, the computed 
relative intensity of the two points is ,916, which is in excellent 
agreement with the .913 ratio between the input data points. 
The images from the slice between the planes of the points are 
zero to within 12 orders of magnitude. 

x 30' 

7 ,  

6 .  

5. 

1. 

3.  

2. 

Fig. 1 Z = 0.0 slice, 20th iteration 

The second phantom is a cylinder of radius 2.5 cm and 

x 70- 

,:I 
3 4  lh A 

Fig. 2 Z = +.12 slice, 20th iteration 

Fig. 3 Z = +.24 slice, 20th iteration 

background intensity I ,  with two hot spots of relative intensity 
10. and two cold spots of intensity 0. The hot and cold spots 
are centered 1.5 cm from the origin, and have radii of .2 
and .4 cm. The height of the cylinder is to 2.5 cm. Monte 
Carlo simulations were done and reconstructions performed in  
parallel, using 100,000 particles on each of 2 Unix workstations 
and a 3 x 3 2 ~ 3 2  grid of .2 cm pixels. Results for the central 
slice are presented for the loth, 20th, and 40th iterations in 
figure 4 through 6. Both hot spots are clearly visible, and as the 
iteration converges, they approach their expected relative size 
and intensities. The is more clearly demonstrated in figure 7, 
which is a cross sectional plot through the hot spots. The cold 
spots are also visible though less discernible. Further, with 
increasing iterations, because no regularization was used, the 
level of noise blurs the effect. 

IV. CONCLUSIONS 
A technique for list-mode EM reconstruction of Compton 

scatter camera images in 3-D has been developed. The method, 
which provides order of N saving in memory requirement, has 
been implemented in parallel using the MPI message-passing 
interface. Images reconstructed from distributed source 
phantom data generated by Monte Carlo simulation are 
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Fig. 4 Central slice, cylindrical phantom loth iteration 
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Fig. 6 Central slice, cylindrical phantom 40th iteration 
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