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Abstract
Most PET scans are compensated for accidental coincidence

(AC) events by real-time subtraction of delayed-window
coincidences. Real time subtraction of delayed coincidences
compensates for the average of AC events, but also destroys
the Poisson statistics. Moreover, negative values result during
the real-time subtraction which would cause conventional
penalized maximum likelihood algorithms to diverge, and
setting these negative values to zero introduces a systematic
positive bias. We have previously developed and compared
two new methods for reconstructing transmission scans from
randoms precorrected measurements: one based on a “shifted
Poisson” (SP) model, and the other based on saddle-point
(SD) approximations. Simulations and experimental phantom
studies of transmission scans showed that both SP and
SD methods lead to significantly lower variance than the
conventional maximum likelihood methods (based on the
ordinary Poisson (OP) model). We have now extended these
methods to emission scans. In situations like 3D PET emission
scans (with low counts per ray but many total counts and high
randoms rates), we show that the proposed methods not only
avoid the systematic positive bias of OP method but also lead to
significantly lower variance. The new methods offer improved
image reconstruction in PET through more realistic statistical
modeling, yet with negligible increase in computation over the
conventional OP method.

I. I NTRODUCTION

In PET emission scans, a significant portion of the collected
data generally is accidental coincidence (AC) events, and these
are a primary source of background noise [1–3]. Moreover,
AC rates increase as thesquareof the amount of radio-isotope
injected to the patient, while true coincidences increase only
linearly with the radio-isotope concentration. This count rate
limitation, along with detector deadtime, determines the upper
limit on the injected radio-isotope dose for many PET studies.

In conventional PET scans the system detects coincidence
events during two time windows: the “prompt” window
and the “delayed” window, and the data are pre-corrected
for AC events byreal-time subtraction of delayed window
coincidences [2]. Each such pre-corrected measurement is
the difference of two independent Poisson random variables,
which compensates in mean for AC events, but which also
increases the measurement variance. Moreover, negative values
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result during the real-time subtraction of delayed coincidences
(especially in high-resolution 3-D PET systems where counts
per ray can be very low). Such negative values would cause
conventional penalized maximum likelihood algorithms to
diverge. Setting the negative values to zero alleviates this
problem but introduces a systematic positive bias in the
resulting images [1,4].

We have previously developed and compared two
methods for reconstructingtransmissionscans from randoms
precorrected measurements: one based on a “shifted Poisson”
(SP) model [5–7], and the other based on saddle-point (SD)
approximations [6,7]. In this paper we examine these methods
in emissionscans. In situations like 3D PET emission scans
(with low counts per ray but many total counts), we show that
the proposed methods not only avoid the systematic positive
bias of the conventional approach, but also lead to significantly
lower variance. Emission scan results also show an unexpected
benefit of the SD method that had been unrealized in our
previous investigation of the transmission reconstruction
problem.

II. M EASUREMENT MODEL AND EXACT

LOG-LIKELIHOOD

Let Y = [Y1, . . . , YN ]′ denote the vector ofprecorrected
measurements, where “′ ” denotes vector and matrix transpose.
The precorrected measurement for thenth coincidence detector
pair is Yn = Y promptn − Y delayn , whereY promptn andY delayn

are the number of coincidences within the prompt and delayed
windows, respectively.

Let λ = [λ1, . . . , λP ]′ denote the vector of unknown radio-
isotope concentration values. For emission scans, we assume
that Y promptn andY delayn are statistically independent Poisson
random variables with means̄ypn andȳdn given respectively as:

E
{
Y promptn

}
= ȳpn(λ) =

P∑
j=1

gnjλj + rn (1)

E
{
Y delayn

}
= ȳdn = rn, (2)

wherern > 0 denote the mean of the AC events for thenth
ray andG = {gnj} represents the system matrix including ray-
dependent factors such as attenuation and detector efficiency.

Let y = [y1, . . . , yN ]
′ be an observed realization ofY . Since

the measurements are independent, one can express the exact
log-likelihood as follows [6]:

L(λ) =

N∑
n=1

hn(ln(λ)), (3)
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with ln(λ) =
∑P
j=1 gnjλj and ignoring constants independent

of λ throughout:

hn(l) , log


 ∞∑
m=[−yn]+

(l + rn)
yn+m

(yn +m)!

rmn
m!


− (l+2rn), (4)

where[x]+ = x if x > 0 and is0 otherwise.

Since image reconstruction is ill conditioned, we combine
a roughness penaltyR(λ) with the log-likelihood to form a
penalized-likelihood objective function:Φ(λ) = L(λ) −R(λ).
The goal is to estimateλ by maximizing Φ(λ) over the
nonnegative cone. The exact log-likelihood function (4) has a
complicated form because of the lower andupper summation
limits. Although one can express the exact log-likelihood
function using modified complex Bessel functions [8, 9], it
does not yield in practical maximization methods [10]. Next
we describe practical and yet accurate approximations to the
exact log-likelihood.

III. A PPROXIMATIONS TO THEEXACT

LOG-LIKELIHOOD

In this section, we briefly review the three practical
approximations toL(λ). All log-likelihood approximations
have the form (3) for different choices forhn(l, yn).

A. Ordinary Poisson (OP) Approximation
The conventional approach is to ignore the random

coincidences by assuming that{[Yn]+}
N
n=1 are distributed as

independent Poisson random variables with meansȳn(λ) given
by (1). The log-likelihoodLOP(λ) corresponding to this OP
approximation is of the form (3) with

hOPn (l) = [yn]+ log(l) − l. (5)

The thresholding[yn]+ ensures concavity of the OP objective
function.

B. Shifted Poisson (SP) Approximation
A better approach is to match both the first and

second moments by approximating the random variables
{Yn + 2rn}

N
n=1 as having Poisson distributions with means

{ȳn(λ) + 2rn}. This idea leads to the SP approximation
LSP(λ) [11] of the form (3) with

hSPn (l) = [yn + 2rn]+ log(l+ 2rn)− (l+ 2rn), (6)

where again the zero thresholding of(yn+2rn) ensures that the
objective function is concave.

C. Saddle-point (SD) Approximation
An better alternative to the previous approximations for the

exact pmf of precorrected measurements is to make second
order Taylor series approximations in thez-transform domain
(i.e., on the probability generating function) and then to
perform the inverse transform. For emission tomography this

saddle point (SD) approximation [6,7] is of the form (3) with:

hSDn (l) = yn log

(
l+ rn
zn + un(l)

)
− l+ un(l) −

1

2
log (un(l)) ,

(7)
where

zn =

{
yn + 1, yn ≥ 0
yn − 1, yn < 0,

(8)

and
un(l) =

√
z2n + 4(l+ rn)rn. (9)

D. Exact Log-likelihood for Prompt Data
If one has access to the prompt dataypn separately, then the

exact log-likelihoodLPR(µ) can be written in the form (3) with

hPRn (l) = y
p
n log(l+ rn)− (l + rn). (10)

We include the exact log-likelihood model for prompt data for
comparing the bias and variance results with the methods for
randoms-precorrected data.

IV. CONCAVITY AND LOG-LIKELIHOOD

MAXIMIZATION

The second partial derivatives of the OP (5) and the SP (6)
objective functions and the PR log-likelihood (10) are:

−
∂2

∂λjλk
L(λ) =

N∑
n=1

gnjgnk
xn

(ȳn(λ) + dn)2
,

with

dn ,



0, OP
2rn, SP
rn, PR,

andxn ,



[yn]+ , OP
[yn + 2rn]+ , SP
ypn, PR.

Thus,L(λ) is globally concave whenxn > 0, hence the zero
thresholds in (5, 6). Since the “thresholding function”[yn]+ is
not differentiable atyn = 0, it is difficult to derive accurate
analytic approximations for the mean and variance of these
estimators. However, one can explain the overall effect of
zero-thresholding as follows: setting negative precorrected data
values to zero increases the mean of the precorrected data. For
the emission problem the data is linearly related to emission
rates, thus the increase in the mean value of the precorrected
data causes the estimator to introduce a systematicpositive bias
for the estimated emission rates [1, 4]. A detailed concavity
analysis [10] of the SD method shows that thehSDn (l)’s are
concave forl ∈ [0,∞) without any zero thresholding, which
makes it free of any systematic positive bias.

In this study we used the paraboloid surrogates
maximization algorithm [12] which requires certain convexity
conditions of the derivatives of thehSDn (l)’s [13]. In the
paraboloid surrogates coordinate ascent (PSCA) maximization
method [12] one maximizes a surrogate function (which is
parabolic). The surrogate function is composed such that the
log-likelihood function converges to the true maximizer. This is
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achieved by forming a summation of 1-D surrogate functions.
Then we use the fast coordinate ascent method for maximizing
the parabolic function. The optimum curvature for the PSCA
method requires certain conditions from the second and third
derivatives ofhn(l) [12], which are satisfied for the OP, SP and
PR methods [10]. For the SD method we showed that these
conditions are satisfied almost for all values ofl andyn [10].
For the remaining cases we use the maximum curvature [13].
which ensures monotonicity based on the generalized mean
value theorem for twice differentiable functions [10].

V. RESULTS

To study the bias and variance properties of the estimators
that are based on the above likelihood approximations, we
performed 2D simulations. Forλ we used the synthetic
emission phantom shown in Fig. 1. The spine, lungs, soft
tissue, and heart had relative radioactivity concentrations of 0,
1, 2 and 4 respectively. The sinograms had 200 radial bins and
300 angles uniformly sampled over 180 degrees. The system
geometry was 2.8 mm wide strip integrals and 2.8 mm ray
spacing. The reconstructed images were 64 by 64 with 9 mm
pixels. Thern factors corresponded to a uniform field of 50%
random coincidences.

We generated 300 pseudo-random emission measurements
according to (1) and (2). For each realization, we reconstructed
an estimate of the emission phantom using 30 iterations of
the paraboloid surrogates algorithm [12] applied to objective
functions (5), (6) and (7).

For regularization, we used the modified quadratic
penalty [14, 15], which improves resolution uniformity
and enables matching of the spatial resolutions of different
methods. We matched the resolution of the reconstructed
images for all methods to 1.9 pixels FWHM.

Since in these simulations we had access toY promptn and
Y delayn values separately, we also performed conventional
penalized maximum likelihood reconstruction with prompt
counts (PR) for comparison purposes. In the PR case the data
is not precorrected for randoms and we haveaccess torn
values separately. Thus, this method is expected to perform
better than the randoms-precorrected methods. We include this
method in our simulations for comparison purposes only.

Figs. 1 and 2 show the sample mean and standard deviation
images of different methods (including filtered back projection
(FBP) method for comparison) for a total of 50K counts2.
Fig. 3 shows the profiles through the sample mean images and
Fig. 4 shows the histogram of the ratio of the standard deviation
of different methods with respect to the PR method. The OP
method results in severe bias and the SP results in some bias
in the reconstructed images. However, the SP and SD methods
yield similar standard deviations. Fig. 5 shows the profiles
through the sample mean images for a total of 500K counts.
Again, the OP method results in systematic positive bias while
SP and SD methods are free of such bias. Also, Fig. 6 shows
the histogram of the ratio of the standard deviation of different

2To emulate 3D PET emission scans with very low counts per ray.

methods with respect to the PR method. Both, the SP and SD
methods yield lower standard deviation than OP method.

VI. CONCLUSIONS

For randoms pre-corrected PET emission measurements, we
have described practical approximations for the complicated
exact log-likelihood. The results at different count levels
show that the proposed models not only avoid the systematic
positive bias of OP method but also lead to lower variance.
The SP model is shown to be slightly biased for emission
scans with very low count rates, whereas the SD model is
free of any systematic bias and performs almost identically as
the exact log-likelihood. The new methods offer improved
image reconstruction in PET through more realistic statistical
modeling, yet with negligible increase in computation over the
conventional OP method.

Simulated phantom FBP OP

SP SD PR

Figure 1: Sample mean images of different methods from 300
realization with 50K counts per scan.

Simulated phantom FBP OP

SP SD PR

Figure 2: Sample standard deviation images of different methods
from 300 realization with 50K counts per scan.
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Figure 3: Profile through the sample mean images of different
methods from 300 realization with 50K counts per scan.
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Figure 4: Histogram of the ratio of standard deviation of different
methods to the standard deviation of PR method with 50K counts per
scan.
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Figure 5: Profile through the sample mean images of different
methods from 300 realization with 500K counts per scan.
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Figure 6: Histogram of the ratio of standard deviation of different
methods to the standard deviation of PR method with 500K counts per
scan.
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