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ABSTRACT
We introduce a new fast converging parallelizable algorithm
for image restoration. This algorithm is based on paraboloidal
surrogate functions to simplify the optimization problem
and a concavity technique developed by De Pierro to simul-
taneously update a set of pixels. To obtain large step sizes
which affect the convergence rate, we choose the paraboloidal
surrogate functions that have small curvatures. The concav-
ity technique is applied to separate pixels into partitioned
sets so that parallel processors can be assigned to each set.
The partitioned separable paraboloidal surrogates are max-
imized by using coordinate ascent (CA) algorithms. Unlike
other existing algorithms such EM and CA algorithms, the
proposed algorithm not only requires less time per iteration
to converge, but is guaranteed to monotonically increase the
objective function and intrinsically accommodatesnonneg-
ativity constraints as well.

1. INTRODUCTION

Many imaging techniques have been applied to recover de-
graded images, such as maximum likelihood (ML), maxi-
mum a posteriori (MAP), and penalized maximum likeli-
hood (PML) estimators. Since there is no closed form so-
lution for these techniques, iterative algorithms are needed.
However, there are some drawbacks of these existing algo-
rithms such as convergence, computation time, paralleliz-
ability, etc. Fast converging algorithms are desirable to quickly
recover degraded images. Simultaneously updating all pa-
rameters in the EM algorithms [1, 2] causes a very slow
convergence rate. Therefore a number of algorithms have
been proposed to increase the convergence rate such as the
space-alternating generalized EM (SAGE) algorithm [3,4].
The SAGE method converges quickly but it is inconvenient
to implement. Due to slow convergence in simultaneous
updates, algorithms based on sequential updates, such as a
coordinate ascent algorithm with Newton-Raphson updates
(CA-NR) [5], have become attractive. However, the CA-NR
algorithm is not guaranteed to converge and is not paralleliz-
able. The paraboloidal surrogate coordinate ascent (PSCA)

algorithm [6] was introduced to solve the convergence prob-
lem of the CA-NR algorithm but it is still not paralleliz-
able. In this paper, we present a new algorithm called par-
titioned separable paraboloidal surrogate coordinate ascent
(PPCA) algorithm to enable a fast converging parallelizable
algorithm. Instead of simultaneously updating all unknown
parameters, we update all pixel subsets in parallel and se-
quentially update pixels withineach partitioned set. This
approach provides rapid convergence rates while being par-
allelizable as well. Therefore parallel processors can be as-
signed to each set to reduce the computation time. The algo-
rithms derived in [7–9] are closely related to this work; how-
ever, they simultaneously update pixels withineach group
whose pixels are not coupled and sequentially update pixels
between groups. Furthermore, those algorithms converge
more slowly and they are more difficult to implement than
the PPCA algorithm. The PSCA algorithm is the special
case of the PPCA algorithm when one subset is used. The
proposed algorithm is guaranteed to monotonically increase
the objective function and it intrinsically accommodates the
nonnegativity constraints.

2. THE PROBLEM

In image restoration problems, an image is usually degraded
by blur and noise. One approach to recover the degraded im-
age is to use statistical characteristics of the measurements.
In this paper, we consider the very broad class of objective
functions having the following form:

�(x) =
mX
i=1

 i([Bx]i) (1)

wherex 2 <p represents a true image andB is anm � p

matrix that typically includes both aq�p system matrix and
anr � p coefficient matrix of a roughness penalty function,
wherem = q+r, q is the number of measurements, andr is
roughly the number of neighbors ofeach pixel. A i func-
tion characterizes an agreement between the noisy measure-
ment and the unknown image. Due to the ill-posed nature



of the restoration problem, the roughness penalty function
is included in some of the i functions. We assume that the
objective function has a unique global maximum. Thus our
goal is to estimatex by maximizing the objective function:

x̂
4
= argmax

x�0
�(x): (2)

The ML, PML and MAP estimators are all special cases of
maximizing objective functions of the general form (1).

3. PARTITIONED SEPARABLE PARABOLOIDAL
SURROGATE COORDINATE ASCENT

ALGORITHM (PPCA)

Many existing algorithms have been applied to obtain a max-
imizer of�(x) in (2); however, there is a tradeoff between
convergence rate and parallelizability. Although the EM al-
gorithm is generally guaranteed to converge to at least a lo-
cal maximum, it converges very slowly. However, the EM
algorithm is usually fully parallelizable. On the other ex-
treme, the CA algorithm, which updates the unknown pa-
rameters sequentially, converges much faster than EM algo-
rithms. However, the CA algorithm is not parallelizable. In
this paper, we propose a new algorithm which not only con-
verges quickly but is also well-suited to coarse-grain paral-
lel processing. The partitioned separable paraboloidal sur-
rogate coordinate ascent (PPCA) algorithm is based on a
concavity technique developed by De Pierro [2] and uses
tangent parabolas.

To derive the PPCA algorithm, we first find a paraboloidal
surrogate function for the original objective function, and
then partition pixels intoK sets. Since the parabola is con-
cave, we can form a partitioned separable surrogate function
by using a concavity technique to separate pixels into parti-
tioned sets. Finally, the CA algorithm is applied in parallel
to each set of pixels. Here is our general idea for deriving
the surrogates:

�(x) � Q(x;xn) � �(x;xn) =
KX
k=1

Qk(xJk ;x
n);

whereQ(x;xn) denotes the paraboloidal surrogate func-
tion,�(x;xn) denotes the separable paraboloidal surrogate
function,Qk(xJk ;x

n) denotes the partitioned separable paraboloidal
surrogate function,Jk denotes thekth set of pixels andxJk
denotes the vector of lengthjJkj. Thus, instead of directly
maximizing�, we obtain the next estimatex in each set by
maximizingQk(xJk ;x

n):

x̂n+1j

4
=

�
argmaxxj�0Qk(xJk ;x

n); j 2 Jk
x̂nj ; j 62 Jk:

(3)

3.1. Paraboloidal Surrogates

The paraboloidal surrogate function for the original objec-
tive function can be expressed as follows:

Q(x;xn)
4
=

mX
i=1

qi([Bx]i; t
n
i )

qi(t; t
n
i )

4
=  i(t

n
i ) + _ i(t

n
i )(t � tni )�

1

2
ci(t

n
i )(t� tni )

2;

wheretni
4
= [Bxn]i, _ i is the first derivative of i andci(tni )

is the curvature of the parabolaqi(t; tni ). The parabola is de-
rived such thatqi(tni ; t

n
i ) =  i(tni ) and _qi(tni ; t

n
i ) =

_ i(tni )
for differentiable surrogate and objective functions. The
choice ofci(tni ) controls the parabola curvature which af-
fects the algorithm convergence rate. In addition, mono-
tonicity is satisfied if we choose the curvature such that the
following inequality ateach iteration holds:

 i(t) � qi(t; t
n
i ); for t � 0:

3.2. Separable Surrogates

After obtaining the paraboloidal surrogate functionQ, we
apply the concavity technique developed by De Pierro [2] to
separate pixels into partitioned sets. We can rewrite[Bx]i
as follows:

[Bx]i =
KX
k=1

�ik

�
1

�ik
[BJk(xJk � xnJk )] + tni

�
;

where them � jJkj matrixBJk is formed by selecting the
columns ofB that are indexed by elements ofJk. Sinceqi
is concave, the following inequality holds:

qi([Bx]i; t
n
i ) �

KX
k=1

�ikqi

�
1

�ik
[BJk (xJk � xnJk)]i + tni ; t

n
i

�
:

The constraint
PK

k=1 �ik = 1 must be satisfied to guar-
antee monotonicity of the algorithm. A simple choice of

�ik is
P

j2Jk
jbijj

Pp

j=1
jbijj

. Thus we obtain the partitioned separable

paraboloidal surrogateQk as follows:

Qk(xJk ;x
n) =

mX
i=1

�ikqi

�
1

�ik
[BJk(xJk � xnJk )]i + tni ; t

n
i

�
:

3.3. Coordinate Ascent Algorithm

To implement the maximization in (3), we apply the coor-
dinate ascent algorithm over each pixel ofxj by using the
most recent values of other pixels ofxj in that set. Define

Q̂n
kj(xj)

4
= Qk([: : : ; x̂j�1; xj; x̂j+1; : : : ; j 2 JK ];xn);



wherex̂ is the current estimate ofx. Then the updatexj for
j 2 Jk is sequentially estimated by maximizinĝQn

kj(xj) as
follows:

x̂n+1j = argmax
xj�0

Q̂n
kj(xj) =

"
x̂j +

_Qn
kj(x̂Jk)

dnkj

#
+

; (4)

where _Qn
kj(x̂Jk ) is the first derivative of̂Qn

kj(xj) evaluated

atxj = x̂j anddkj is the curvature of the parabolâQn
kj(xj).

For j 62 Jk, we setx̂n+1j = x̂nj .

4. RESULTS

The 512 � 512 pepper image was degraded by a15 � 15
Gaussian PSF with FWHM of 11.7 pixels (� = 5:0) and
Poisson noise with PSNR of 25 dB as shown in Fig. 1b.
The noisy measurementY can be modeled as follows:

Yi � Poissonf[Ax]i + big; i = 1; � � � ;m

whereA is a system matrix andbi is a background noise
which is constant in this simulation. Our objective function
included the likelihood function based on the above Pois-
son model and the nonquadratic roughness penalty function
having the following potential function [10]:

 
penalty
i (t) = �2

����� t�
����� log

�
1 +

���� t�
����
��

;

where� controls the degree of edge preservation. The restora-
tion with 4-PPCA algorithm (using four parallel processors)
is shown in Fig. 1c.

Table 1 compares the elapsed time of the CA-NR, PSCA,
and PPCA algorithms with different numbers of partitioned
sets. Convergence in this table is defined such that�(xn)�
�(x0) > 0:999(�(x�) � �(x0)), where�(x0) is the ob-
jective value of the initial image, and�(x�) is the smallest
objective value among all methods obtained in 50 iterations.
The algorithms were tested on the IBM SP2 parallel com-
puter. Our results confirm that the PPCA algorithm is well
suited for parallel processing. Our patterns for different par-
tition sets were designed as shown in Fig. 2.

As shown in Table 1, the PPCA algorithms require less
elapsed times to converge than the PSCA and CA-NR al-
gorithms due to their parallelizability. Fig. 3 shows that the
PPCA algorithms increase the objective function essentially
as much per iteration as the PSCA algorithm. Fig. 4 shows
that the PPCA algorithms converge at faster rates (in terms
of elapsed time) than the PSCA algorithm. (The CA-NR
algorithm is not included in the plots because it is anon-
monotonic algorithm.)

(a) Original Image

(b) Noisy Image

(c) Restored Image

Fig. 1. Simulated images and restoration using a 4-PPCA
algorithm.



Convergence CA-NR PSCA 2-PPCA 4-PPCA 6-PPCA

#iters 24 32 32 33 34
time/proc 395.61s 269.19s 180.57s 135.10s 126.43s

time/iter/proc 16.48s 8.41s 5.64s 4.09s 3.72s
%speed up
(wrt PSCA) - - 32.94% 51.37% 55.77%

Table 1. Comparison of elapsed times and number of itera-
tions to converge for CA-NR, PSCA, and PPCA algorithms.

2 partitioned sets 4 partitioned sets 6 partitioned sets

Fig. 2. Partitioned set patterns.

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

#iters

Φ 
in

cr
ea

se

PSCA  
2−PPCA
4−PPCA
6−PPCA

Fig. 3. Comparison of objective function increase versus
iteration number of PSCA and PPCA algorithms.
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Fig. 4. Comparison of objective function increase versus
elapsed time of PSCA and PPCA algorithms.

5. CONCLUSION

We have presented a new parallelizable converging algo-
rithm that overcomes the drawbacks of the CA-NR algo-
rithm, which is nonparallelizable and is not guaranteed to
converge. Unlike EM algorithms that perform completely
simultaneous updates, the PPCA algorithm has a faster con-

vergence rate due to larger updating step sizes obtained by
using small parabola curvature. Furthermore, the parallel
processors can be assigned to each set to reduce the compu-
tation time. Therefore the PPCA algorithm converges much
faster than the CA-NR and PSCA algorithms in terms of
elapsed time.
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