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1
METHOD AND APPARATUS FOR ITERATIVE
RECONSTRUCTION

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH AND DEVELOPMENT

The invention was made with government support under
Government Contract Number HL0O98686 awarded by the
National Institutes of Health. The U.S. Government may have
certain rights in the invention.

BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates generally to
imaging systems, and more particularly, to a method and
apparatus for reconstructing an image using iterative tech-
niques.

Traditionally, images have been reconstructed from Com-
puted Tomography (CT) data using direct reconstruction
algorithms such as filtered back projection (FBP) or convo-
Iution back projection (CBP). Recently, model based iterative
reconstruction (MBIR) algorithms have become commer-
cially available for reconstructing CT images. One advantage
of MBIR algorithms is that MBIR algorithms can more accu-
rately model the measurements obtained from CT systems.
This is particularly true for helical CT systems with multi-
slice detectors because helical CT systems produce projec-
tion measurements that pass obliquely through the two-di-
mensional (2D) reconstructed image planes, and the acquired
data is inherently noisy. By more accurately modeling these
projections, MBIR algorithms can produce reconstructions
with higher quality (e.g., resolution), lower noise, and fewer
artifacts. As a result, MBIR algorithms may be used as a tool
to significantly reduce the dose in CT scans while maintain-
ing the diagnostic image quality.

However, a major challenge of MBIR is the computation
time and computational resources required to complete a
reconstruction. MBIR algorithms typically reconstruct an
image by first forming an objective function that incorporates
an accurate system model, statistical noise model, and prior
model. With the objective function in hand, the image is then
reconstructed by computing an estimate that minimizes the
objective function, which is typically performed using an
iterative optimization algorithm. Examples of some of such
iterative optimization algorithms include iterative coordinate
descent (ICD), variations of expectation maximization (EM),
conjugate gradients (CG), and ordered subsets (OS). How-
ever, because of the complexity of the MBIR objective func-
tion and the associated iterative solution, some iterative algo-
rithms may require a relatively high number of iterations to
achieve the final estimate. As a result, known iterative algo-
rithms that solve the MBIR objective function may require a
relatively large amount of time to reconstruct an image.

BRIEF DESCRIPTION OF THE INVENTION

In one embodiment, a method is provided for iteratively
reconstructing an image of an object. The method includes
accessing measurement data associated with the image, and
using a simultaneous algorithm to reconstruct the image.
Using the simultaneous algorithm to reconstruct the image
includes determining a scaling factor that is voxel-dependent,
and applying the voxel-dependent scaling factor to a gradient
of an objective function to reconstruct the image.

In another embodiment, an imaging system includes a
detector array and a computer coupled to the detector array.
The computer is configured to access measurement data asso-
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ciated with an image of an object, and use a simultaneous
algorithm to reconstruct the image. The computer is config-
ured to use the simultaneous algorithm to reconstruct the
image by determining a scaling factor that is voxel-dependent
and applying the voxel-dependent scaling factor to a gradient
of an objective function to reconstruct the image.

In another embodiment, a method is provided for itera-
tively reconstructing an image of an object. The method
includes accessing measurement data associated with the
image, and using a simultaneous algorithm to reconstruct the
image. The simultaneous algorithm includes computing a
gradient of a regularizer function. Using the simultaneous
algorithm to reconstruct the image includes storing a plurality
of sample gradient values in a look-up table, accessing the
sample gradient values in the look-up table, and computing an
approximate actual gradient value using the sample gradient
values.

In another embodiment, a method is provided for itera-
tively reconstructing an image of an object. The method
includes accessing measurement data associated with the
image, and using a simultaneous algorithm to reconstruct the
image. The simultaneous algorithm includes computing a
gradient of a regularizer function. Using the simultaneous
algorithm to reconstruct the image comprises computing an
actual gradient at an iteration of the reconstruction of the
image, adding a compensation term to the actual gradient, and
using the actual gradient and the compensation term as the
gradient for a subsequent iteration of the reconstruction of the
image.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart of an exemplary method for recon-
structing an image of an object in accordance with various
embodiments.

FIG. 2 is a visual representation of an exemplary coeffi-
cient map generated using the method shown in FIG. 1.

FIG. 3 is a graph illustrating an exemplary convergence of
an exemplary ordered subset separable paraboloidal surro-
gate (OS-SPS) algorithm associated with the method of FIG.
1.

FIG. 4 is a visual representation of a variety of images
generated using the exemplary OS-SPS algorithm of FIG. 3.

FIG. 5 is another flowchart illustrating an exemplary
method of reconstructing an image of'an object in accordance
with various embodiments.

FIG. 6 is a visual representation of exemplary helical
geometry and exemplary reconstructed image in the helical
geometry.

FIG. 7 is a graph illustrating exemplary mean and standard
deviations of an OS-SPS algorithm associated with the
method of FIG. 5.

FIG. 8 is another flowchart illustrating an exemplary
method of reconstructing an image of'an object in accordance
with various embodiments.

FIG. 9 is another flowchart illustrating an exemplary
method of reconstructing an image of'an object in accordance
with various embodiments.

FIG. 10 is a visual representation of a variety of images
generated using an exemplary OS-SPS algorithm associated
with the method of FIG. 9.

FIG. 11 is a graph illustrating convergence rates associated
with the exemplary OS-SPS algorithm associated with the
method of FIG. 9.

FIG. 12 is another graph illustrating convergence rates
associated with the exemplary OS-SPS algorithm associated
with the method of FIG. 9.
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FIG. 13 is a visual representation of a variety of images
generated using the exemplary OS-SPS algorithm associated
with the method of FIG. 9.

FIG. 14 is a pictorial view of an exemplary multi-modality
imaging system formed in accordance with various embodi-
ments.

FIG. 15 is a block schematic diagram of the system illus-
trated in FIG. 14.

DETAILED DESCRIPTION OF THE INVENTION

The foregoing summary, as well as the following detailed
description of various embodiments, will be better under-
stood when read in conjunction with the appended drawings.
To the extent that the figures illustrate diagrams of the func-
tional blocks of the various embodiments, the functional
blocks are not necessarily indicative of the division between
hardware circuitry. Thus, for example, one or more of the
functional blocks (e.g., processors or memories) may be
implemented in a single piece of hardware (e.g., a general
purpose signal processor or a block of random access
memory, hard disk, or the like) or multiple pieces of hard-
ware. Similarly, the programs may be stand alone programs,
may be incorporated as subroutines in an operating system,
may be functions in an installed software package, and the
like. It should be understood that the various embodiments
are not limited to the arrangements and instrumentality shown
in the drawings.

Described herein are various embodiments for iteratively
reconstructing an image using a simultaneous algorithm. The
image is composed of a plurality of image elements. For the
purposes disclosed herein, the term “image element” shall
refer to an element of an object within the image space array.
For example, animage element may include an image pixel or
picture element that can correspond to a single voxel or vol-
ume element in a two dimensional (2D) or three-dimensional
(3D) reconstruction. The image is reconstructed by optimiz-
ing an objective function. As used herein, an objective func-
tion, or cost function, generally includes a model of the imag-
ing system used to acquire the imaging data, of noise
associated with the imaging system, and of the type of image
being reconstructed. In the following the terms ‘optimize’and
‘minimize’, ‘objective function’ and ‘cost function’ are inter-
changeable.

Various embodiments provide a novel approach to com-
pute an “adaptive” voxel-dependent scaling factor. The voxel-
dependent scaling factor is applied to a gradient of the simul-
taneous algorithm to reconstruct the image. Various
embodiments provide a novel approach to relax (or scale)
updates to the image depending on the acquisition (e.g., scan-
ner/recon) geometry. The updates to the image can be relaxed
(or scaled) by either appropriate scaling of the gradient or by
modifying the step-size applied to the gradient to compute the
image update. The step size is typically a scaler applied to the
gradient. Computing the optimal step-size may lead to opti-
mal convergence. Various embodiments provide novel ideas
for reducing the amount of time of computing the gradient of
a regularizer function without impacting the monotonicity of
an underlying montonic algorithm. At least one technical
effect of various embodiments is reduced transients and
improved image quality for a fixed computation time. At least
one technical effect of various embodiments is faster conver-
gence to the solution of the original cost function in fewer
iterations than with conventional simultaneous algorithms.
For example, various embodiments may converge to similar
values of a convergence metric for acceptable image quality
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4

in five to ten iterations as compared to 50 or 100 iterations
required by conventional algorithms published in the art.

There has been significant interest in developing model-
based iterative reconstruction (MBIR) algorithms for com-
puted tomography (CT) imaging as MBIR algorithms have
been demonstrated to improve the image quality by reducing
noise and improving resolution. MBIR algorithms typically
work by first forming a cost function that involves a data
statistics model, a system model describing the system geom-
etry, and a prior model describing the desirable properties of
the reconstructed image. Because the cost function is typi-
cally too complex to allow direct reconstruction of the image
from the measurement in one pass, the image is estimated by
minimizing the cost function in several steps. Hence, iterative
optimization algorithms are required to solve such model-
based cost functions and are called MBIR algorithms.

Let ueR” be the image and yeR™ be the measured projec-
tion data. The maximum a posteriori (MAP) estimation prob-
lem can be formulated as the sum of data log-likelihood term,
L, and a prior term, R. The log-likelihood term is formulated
based on the statistics of the data and the system geometry.
The prior term ensures that the image estimates belong to
certain probability density function (pdf) and § is the prior
scaling, or prior strength, with which this constraint needs to
be applied.

D) = =@ (y, ) + pOy (1) (¢8)]

= argmin®(y) 2)

=0

There can be several choices of the log-likelihood term L
depending on the model of data-statistics. One such choice of
L is a quadratic form leading to:

(DL()"all):‘b"_AﬂHWza 3

where W is a MxM diagonal matrix computed as the approxi-
mate inverse of the variance of the measured data, and
AeR* {5 the system geometry model. One end of the spec-
trum of iterative optimization algorithms is iterative coordi-
nate descent (ICD). ICD updates one image element (termed
as “voxel”) at a time while keeping all other voxels fixed,
creating a sequence of one-dimensional (1D) problems
wherein the gradient of the cost function is updated after
every voxel update. Computing the updates to the gradient
and Hessian of a 1D cost function is relatively trivial, and ICD
has relatively fast convergence speed, provided a good set of
initial conditions. Non-homogenous ICD (NH-ICD), a vari-
ant of ICD, updates certain voxels more often than others
leading to faster convergence. The voxels are chosen based on
a map and the map is computed using historical information
of all the updates. Non-homogenous ICD is based on the
observation that the voxels with large updates are the furthest
away from the PWLS solution and hence require more fre-
quent updates. However, ICD (and variants thereof) are chal-
lenging to parallelize relatively efficiently and relatively mas-
sively on highly parallelizable compute platforms.

On the other end of the spectrum of iterative optimization
algorithms are simultaneous algorithms. As used herein, a
“simultaneous algorithm” is an algorithm that updates two or
more voxels simultaneously. Moreover, the term “optimiza-
tion” is synonymous with “update” in the context of an itera-
tive algorithm for reconstructing an image. Simultaneous
algorithms for MBIR may solve an N dimensional problem at
each step. Simultaneous algorithms are amenable to parallel-
ization on relatively highly parallel compute platforms. One



US 8,958,660 B2

5

iteration of such algorithms can be computationally faster
than ICD, but simultaneous optimization algorithms usually
take significantly more iterations to converge than ICD.
Hence, the challenge is to find an optimization algorithm that
both converges relatively fast and is amenable to relatively
efficient parallelization.

Most iterative algorithms for finding a minimizer of penal-
ized likelihood function @ use the gradient V& of the likeli-
hood function ®. Many such algorithms can be written in the
following form:

W= e, D VO, 4

where o,,>0 is the relaxation factor (or step size) and where
the NxN matrix D(u) is a voxel-dependent scaling matrix.
The scaling matrix D(it) may also be referred to herein as a
“scaling function” and/or a “scaling factor”. D may or may
not be diagonal depending on the optimization algorithm. In
a conventional gradient-descent algorithm, D is an identity
matrix and the proper choice of an guarantees convergence,
and an is computed using a 1D optimization called a line
search. However, the relatively slow convergence of gradient
descent deems it unattractive for practical purposes. Conju-
gate gradient (CG) is superior to gradient descent in terms of
finding a better search direction. Preconditioning the CG
algorithm results in an acceleration of the convergence speed
as a function of iteration. The ideal preconditioner is the
inverse of the Hessian of the cost function in which case it
becomes a Newton’s method and can be solved in a single
step for quadratic problems. However, for tomographic prob-
lems, the Hessian is spatially invariant and is relatively large
and relatively difficult to invert. Explicit diagonal and circu-
lant approximations have been proposed for the Hessian of
the cost function. Implicit preconditioners can also be
derived.

The problem can also be solved using principles of opti-
mization transfer and constructing a surrogate function ¢(.;
") that is easier to maximize to compute W** by using the
current iterate 1. The surrogate function is constructed to
have the following properties:

D)=p(up");
DE)=P(LH) s

Ve =V Db, ey ©

Optimization transfer algorithms such as separable parabo-
loidal surrogate (SPS) algorithm, alternating minimization
algorithms, and expectation maximization algorithms use a
surrogate function.

“Block-iterative” methods (also called “ordered-subsets”
method) have been proposed. Such algorithms may signifi-
cantly accelerate the convergence of many simultaneous
algorithms with proper block-dependent scaling. Ordered
subset algorithms use range decomposition of the forward
projector to accelerate the underlying algorithm. Each subset
consists of a subset of the data and acceleration is achieved by
approximating the full gradient using the subset of the data.
This leads to acceleration roughly by the number of subsets.
However, ordered subset accelerated algorithms are not
monotonic and enter an undesirable limit cycle. The magni-
tude of the limit cycle depends on the number of subsets, and
larger subsets lead to larger limit cycle. A larger limit cycle is
undesirable and may lead to significant deviation from the
actual desired solution when the algorithm is terminated.

The simultaneous as well as the “block-iterative” methods
are typically highly parallelizable but may lack the flexibility
of influencing the updates based on historical information as
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6

proposed in NH-ICD. Such algorithms usually have relatively
fast low-frequency convergence and relatively slow high-
frequency convergence. It has been noted that NH-ICD sig-
nificantly speeds up the convergence of the baseline ICD
algorithm by updating more often the voxels that are further
away from convergence. In the method 100 shown in FIG. 1,
a novel approach to compute an “adaptive” voxel-dependent
scaling factor D(u) (Equation 4) for the updates is discussed
leading to faster convergence than the conventional gradient-
based optimization algorithms. In known reconstruction
methods, the term “resealing” D has been used to accelerate
the convergence of “block-iterative” algorithms, but the
resealing factor is a fixed factor determined by geometry, does
not change with iteration index, and is not adaptive to the data.
In the methods described and/or illustrated herein, the pro-
posed scaling factor can be adaptive to the data, change with
iteration number, and be computed based on factors such as
historical updates, acquisition geometry, data values, image
features, and/or the like.

In geometries like helical CT, the voxels are not sampled
uniformly by the scanning trajectory. Typically, a three-di-
mensional (3D) region-of-interest (ROI) is reconstructed that
is prescribed by the user. The number of views is determined
by the ROI and the voxels outside the ROl may be sampled by
fewer projection views than voxels inside the ROI. During the
convergence process, these voxels may exhibit significant
transient artifacts and hurt the image quality of intermediate
estimates. In the method 200 shown in FIG. 5, a novel
approach to relax (or scale) the updates, w”*'—u”, (see Equa-
tion 4) depending on the acquisition geometry is described
and illustrated. The updates can be relaxed (or scaled) by
either appropriate scaling of the gradient V@ or by modifying
the step-size a,,. The method 200 may reduce transients and
improve image quality. Different schemes have been pro-
posed for the relaxation factor a, in the literature for “block-
iterative” algorithms to ensure convergence. However, the
scaling factor in that context is an iteration-dependent
sequence of scalars. The scaling factors described herein are
spatially varying values that may depend on factors such as
acquisition geometry, historical updates, data values, image
features, and/or the like.

Referring to Equations 1 and 4, the iterative optimization
algorithms for the MBIR cost function require that the gradi-
ent of the regularizer R() be computed at each iteration. The
regularization function typically consists of power, loga-
rithm, and trigonometric functions. Therefore, the time
required to compute the gradient of the regularizer can be
significant. In the methods 300 and 400 shown in FIGS. 8 and
9, respectively, novel ideas are presented to reduce the time to
compute the regularizer gradient without impacting the
monotonicity of an underlying monotonic algorithm, or the
convergence speed of the optimization of the algorithm.

Inthe method 100 shown in FIG. 1, various approaches are
discussed that can be used to efficiently construct an “adap-
tive” voxel-dependent map used for scaling the diagonal
matrix D(i) in Equation 4 leading to further acceleration of
iterative optimization algorithms for the MBIR cost function.
Several ideas are discussed to improve the adaptivity of the
map and also to construct the map more efficiency. An
example of resealing the diagonal matrix D(u) using the
voxel-dependent map is shown using an ordered-subsets SPS
(OS-SPS) algorithm.

In the method 200 shown in FIG. 5, techniques to properly
relax (or scale) the updates ("' —1*) are described leading to
reduced transients and improved image quality. An example
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of computing an appropriate relaxation (or scaling) factor
using the acquisition geometry is described for the OS-SPS
algorithm.

FIG. 1 is a flowchart of the exemplary method 100 for
iteratively reconstructing an image of an object. Measure-
ment data that is associated with the image is acquired using
an exemplary imaging system. At 102, the method 100
includes accessing the measurement data. At 104, a simulta-
neous algorithm is used to reconstruct the image. Using at 104
the simultaneous algorithm to reconstruct the image includes
determining, at 106, a scaling factor D() that is voxel-depen-
dent. In the exemplary embodiment of method 100, the scal-
ing factor is determined at 106 by generating, at 108, a coef-
ficient map. It has been noted by Thibault and others that
updating more frequently the voxels that are further away
from the solution can accelerate convergence. Hence, such
voxels need to be identified and the “coefficient map” should
consist of such voxels. In NH-ICD, the coefficient map can be
directly incorporated to choose the update order of the voxels.
For simultaneous algorithms, the diagonal sealing matrix
D(w) can be modified to incorporate the coefficient map. Care
should be taken to ensure that the monotonicity of the algo-
rithms is not altered.

A natural choice for such an coefficient map is the differ-
ence of at least two iterations or at least two sub-iterations.
The at least two iterations or sub-iterations may or may not be
consecutive. In one embodiment, the coefficient map is the
difference of two consecutive iterations, which is given by

n_y, n+l

=l (6)

The difference in Equation 6 should highlight the voxels
that are changing the most and hence likely to be further away
from the solution. This difference changes with iteration.
Hence, the coefficient map can be a function of iteration as
well be as adaptive to the data. The coefficient map " can be
transformed based on the histogram of the difference in Equa-
tion 6. The transformation may be discrete or continuous. The
ideal map is locally smooth and hence the final map can be
low-pass filtered from an intermediate map. However, the
coefficient map may not be available until one full iteration is
over, hence an initial coefficient map can be generated from
the initial image. The initial image is typically reconstructed
using the filtered back-projection (FBP) algorithm, but the
choice is not limited to FBP. The initial map can be generated
using an edge or an intensity detector on the initial image, or
both, and also depend on the scan geometry. The edge and
intensity detector may be a reasonable choice for improving
high-frequency convergence, assuming the initial image has a
decent low-frequency content.

The coefficient map provides a sound framework to adap-
tively choose the sealing for the image volume. The decision
to construct the coefficient map can be augmented using
several factors such as, but not limited to, prior knowledge
about the initial image, information about the acquisition
geometry, image features such as features of the current
image (such as, but not limited to, edges, homogeneous
regions, and/or the like), and/or the like. For instance, FBP
algorithm exhibit artifacts due to truncation of the scanned
object outside the scan field of view and this information can
be utilized to further scale the updates in the truncated region.
Another example is motivated from the fact that the simulta-
neous algorithms have relatively slow high-frequency con-
vergence. Hence, the coefficient map p, at every iteration
index can be augmented with a map obtained from a high-
pass filtered image of ,,.

An example of an coefficient map p.j4:p.j" is shown in FIG.
2, wherein the coefficient map is discretized using the histo-
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gram of the map. The largest 5% voxels are assigned a value
of 16, and the next 10%, 20%, and 40% voxels are assigned
values of 8, 4, and 2, respectively. The rest of the voxels are
assigned a value of 1, followed by low-pass filtering. Adap-
tively scaled SPS updates makes larger updates to the voxels
that are bright in that figure, whereas ordinary SPS updates all
voxels equivalently.

Referring again to FIG. 1, after the generation of coeffi-
cient map, the coefficient map is used to influence the diago-
nal scaling matrix D(u). Accordingly, the method 100
includes using, at 110, the coefficient map to compute the
voxel-dependent scaling factor D(u). Once the voxel-depen-
dent scaling factor D(1) has been determined, the method 100
includes applying, at 112, the voxel-dependent scaling factor
D(u) to the gradient V& of the objective function to recon-
struct the image.

The coefficient map should influence the voxel-dependent
scaling factor D(u) without impacting the monotonicity ofthe
original algorithm. It is less of a concern in when the original
algorithm is not monotonic, for example the “block-iterative”
algorithms. A practical aspect that should not be ignored is the
efficiency of incorporating the coefficient map to scale the
diagonal scaling matrix in the implementation. Some pos-
sible ideas are described below.

The idea of utilizing the coefficient map to scale the diago-
nal scaling matrix D(u) can be utilized for most of the simul-
taneous algorithms, such as, but not limited to, CG algorithms
with implicit or explicit preconditioners. An exemplary OS-
SPS algorithm that illustrates one embodiment of the method
100 will now be described. The OS-SPS algorithm is one
example of resealing a diagonal matrix D(it) using a voxel-
dependent coefficient map.

The penalized weighted least square cost function is writ-
ten as:

M @)

3w Aﬂ)+ﬁz‘l‘r(cﬂ

i=1 r=1

Ly, )=

K = 13xN, C e RFN

1 M K
=50, @A) + B i(ICH],)
i=1 r=1

where, y is the projection data with M elements, w is the
statistical weighting matrix, A is the system matrix, | is the
image with N elements, C is the finite differencing matrix,
and W is any Markov random field (MRF) prior that includes
directional coefficients. The separable surrogate algorithm is
motivated from the convex decomposition lemma proposed
by De Pierro and allows relatively easy inversion of the Hes-
sian of the surrogate function and relative ease in incorporat-
ing the non-negativity constraint. The surrogate for the data fit
term and the regularization term can be derived using the

following transformations:
N N @®
[Aul; = Z Aty = Tij [ Hj—H)+ [Aﬂn]t}
=1 1
N N
n| i n n
=Z Crftj = ”rj[ﬂ—n(ﬂj—ﬂj)+[cﬂ ]r}
= — i
=
where
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Using Equation 8, the surrogate can be constructed as:
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N
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and maximum curvature for the surrogate of the regularizer,
leads to one form of the SPS algorithm that can be written as:

S VgAY THACK,) a0

Q.n R.n
&7 +d;
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In Equation 10, the diagonal scaling matrix is the inverse of
the Hessian of the surrogate cost function (Equation 9). The
Hessian is a diagonal matrix and hence can be relatively
easily inverted. The choice of this scaling matrix makes it
dependent only on both data statistics and geometry. Hence,
the scaling matrix is fixed and does not change with iteration
index.

The non-uniform map pi, can be incorporated in the scaling
matrix by modifying ,, and ;. Using

aji;

2 Gyt

Cyjltj

.
2 Crithj

iy

and Krj=

the updates for SPS with non-uniform updates (NU-SPS) can
be written as:

S VAl Y THCH,) an

Qn R.n
;" +d;

ntl _ o on

Hj Hi—
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uj
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The inclusion of p, leads to an adaptive d,;” that is iteration
dependent and can adapt to the data. Equation 11 uses one full
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forward and back-projection to compute d” using the coeffi-
cient map w”. FIG. 3(a) plots the root mean squared (RMS)
difference (in HU) from the converged image versus iteration
with patient data, and it shows that the adaptive scaling of the
diagonal matrix accelerates the convergence rate about three
times. FIG. 4 also confirms that the reconstructed image with
the new scaling matrix is closer to the converged image than
that without the new scaling. FIG. 4(a) illustrates an initial
FBP image. FIG. 4(4) illustrates the converged image. FIGS.
4(c) and 4(d) illustrate reconstructed images after 20 itera-
tions by (c¢) ordinary OS-SPS (82 subsets) and (d) adaptively
scaled OS-SPS (82 subsets). Moreover, FIG. 3(b) shows that
the convergence rate ofhigh frequency components are accel-
erated by more than, three times. (The convergence of high
frequency terms are measured by calculating the full-width
half maximum (FWHM) of a high-contrast wire.)

A practical aspect that should not be ignored is the effi-
ciency of incorporating the coefficient map to scale the diago-
nal scaling matrix. The ideas are implementation specific and
may vary from one algorithm to another. Some possible ideas
of reducing the computations are:

1. The frequency of computing the coefficient map can be
reduced and it can be computed every few iterations
(e.g., every n-th iteration) instead of every iteration.

2. The coefficient map can be downsampled to reduce the
time for forward and back-projection. The coefficient
map is locally smooth and hence downsampling may not
significantly influence the convergence.

3. The updates in Equation 11 require computing the gra-
dient Vq, which requires forward and back-projection.
The forward and back-projection to compute xt;; can be
simultaneously performed with the gradient calculation.
This may reduce the overhead of computing the diagonal
scaling matrix D(u). For example in OS algorithms, the
gradient is computed using a partial forward and back-
projection. In this case, the new scaling matrix can be
computed with the gradient but the full computation of it
would require cycling through at least some of the sub-
sets, if not all.

FIG. 5 is a flowchart of another exemplary method 200 for
iteratively reconstructing an image of an object. In some
acquisition geometries, such as multislice helical CT, the
image volume is non-uniformly sampled. As shown in FIG. 6
(b), the voxels inside the three-dimensional region-of-interest
(3D-ROI) are sampled by more projection views compared to
the voxels outside the ROI. These undersampled voxels may
significantly slow down the convergence of algorithms and
lead to transitory artifacts, if the updates to the current image
(Equation 4) are not scaled appropriately.

Referring again to FIG. 5, measurement data that is asso-
ciated with the image is acquired using an exemplary imaging
system. At 202, the method 200 includes accessing the mea-
surement data. The measurement data being non-uniformly
sampled in a 3D acquisition geometry. At 204, a simultaneous
algorithm is used to reconstruct the image. Using at 204 the
simultaneous algorithm to reconstruct the image includes
determining, at 206, a scaling factor D(u) that is voxel-depen-
dent. In the exemplary embodiment of the method 200, the
voxel-dependent scaling factor is constructed based on the
acquisition geometry. Accordingly, at 208, the method 200
includes computing the voxel-dependent scaling factor
directly based on the acquisition geometry.

Once the voxel-dependent scaling factor D(i) has been
determined, the method 200 includes applying, at 210, the
voxel-dependent scaling factor D(i) to the gradient VO (see
Equation 4) ofthe objective function to reconstruct the image.
The gradient V@ may be scaled or the step-size a,, may be
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modified for stability. For example, in some embodiments,
applying at 210 the voxel-dependent scaling factor to the
gradient includes scaling the gradient using the voxel-depen-
dent scaling factor. The scaling may be obtained using A”WA
(see Equation 15). The scaling may be linked to contribution
of'the subsets to every voxel leading to suitable scaling of the
updates. In other embodiments, applying at 210 the voxel-
dependent scaling factor to the gradient includes computing a
relaxation factor for each slice of the image data. Sampling of
the image volume is non-uniform and slices inside the ROI
are sampled by more views compared to slices outside the
ROL. The step-size (or relaxation factor) usually is a scalar but
may be modified to be a vector for each slice. This may enable
relaxing the slices outside the ROI more than the slices inside
the ROI. However, this may increase the dimension of the
search space for o and increase the compute time.

The idea of relaxing (or scaling) the updates for under-
sampled voxels is applicable for all simultaneous algorithms.
An exemplary OS-SPS algorithm that illustrates one embodi-
ment of the method 200 will now be described. The OS-SPS
algorithm is one example of the construction of the scaling
factor and utilization of the scaling factor to scale the gradient
Vo.

The update for the SPS algorithm can be written using
Equation 10:

(12

nt+1

Hj

Z‘. “UWJ(ZJ- aji - y;) + ﬁ’zr V<I>r(2j crjﬂ'}-)

:ﬂ”._
J dj

where d; is the scaling function (see Equation 4) that is deter-
mined from the Hessian of the surrogate cost function. d,
consists of the data-fit term and the regularizer term described
in Equation 10. Now in OS-SPS, the gradients are calculated
using the subset of views and one full iteration corresponds to
cycling through all the S number of subsets. Each iteration
involves multiple sub-iterations and each sub-iteration
requires computing the gradient of regularizer and the data-fit
term using subset of the data. The OS-SPS updates can be
written as:

ns+l _

H =

- VJMZ; GisVis (Z] @ik - y"x) +ﬁZrV®r(Zj C’”‘?)

J dj

a3

where s denotes the subset index and n denotes the iteration
index. If properly scaled the gradient computed using the
subset of views can match the gradient computed using all
views. This will speed up the convergence by a factor of S
compared to the original SPS algorithm. However this ideal
scaling factor,

14

ns .
E i wixjwix(E (Gis it _y‘x)
ns _ s J
Yio = >

Z‘. awi(X ;a7 = vi)

is impractical to compute. The conventional practical imple-
mentation of OS-SPS is to use a constant scaling factor y;"*=S
that corresponds to the number of subsets. However, this
choice works poorly when the ideal scaling factor y>* is
significantly non-uniform. This non-uniformity in the scaling
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can cause the algorithm to have significant transitory artifacts
that are not desirable. One of the reasons for the non-unifor-
mity can be the geometry of the acquisition. The geometry of
the acquisition can lead to non-uniform sampling of the
image volume. A voxel-dependent scaling to the gradient can
be developed based on the geometry of the acquisition. One
such choice of the non-uniform map is,

s (15)

Vi =Z I ,
L {Z‘.Saimix(z jazxj)>°}

where 1) is 1 when B is true and 0 when B is false. In
Equation 15, B is true when a given voxel indexed by j
receives contributions from views belonging to the subset
indexed by s. The non-uniform map and the denominator

M
dj= § agw ) ay = § aig iy ) i
J oy J

i

can be computed simultaneously.

FIG. 6(b) shows that the properly scaled OS algorithm
provides improved image quality relative to the ordinary OS
algorithm that does not converge relatively quickly outside
ROI. The instability that appeared outside the ROI, affecting
the image quality within the ROI (as seen by the noise stan-
dard deviations in FIG. 6(5)), has been reduced by the pro-
posed relaxation (or scaling). FIG. 6(a) illustrates a diagram
of helical geometry. A dashed region indicates the detector
that acquires measurement data that receives contributions
from both voxels in the ROI and voxels outside the ROI. FIG.
6(b) illustrates the effect of gradient scaling in the OS-SPS
algorithm in helical geometry. Each image is reconstructed
after running 30 iterations of the OS algorithm with 328
subsets, using the ordinary and proposed scaling approaches.
The standard deviation o of a uniform region (in box) is
computed for comparison. (Several iterations of a convergent
algorithm are shown as a reference)

FIG. 7 further proves that the properly scaled OS is robust
within ROI, whereas the ordinary OS algorithm within the
ROI is degraded due to its instability outside the ROI. FIG. 7
illustrates mean and standard deviation within a uniform
region of an end slice of the ROI vs. iteration, showing the
instability of the ordinary OS approach compared with the
proposed OS approach (328 subsets).

FIG. 8 is a flowchart of another exemplary method 300 for
iteratively reconstructing an image of an object. FIG. 8 illus-
trates an exemplary embodiment of a regularizer gradient
calculation. Iterative optimization algorithms for the MBIR
cost function require computing the gradient of the regular-
izer function for updating the current image estimate (see
Equation 4). The time to compute the gradient of the regular-
izer can be significant depending on the regularizer potential
function (I). Most commonly, the potential function includes
powers, logarithms and trigonometric functions that involve
significant computations. Examples of such potential func-
tions include, but are not limited to:

Dr(u) =log(l +[u*) 16
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-continued

Dg(p) = log(cosh(|ul)) an

1 18
e s

Dp(p) = W

To reduce the cost required to compute the gradient of the
regularizer function, an approximation of the regularizer gra-
dient V@ (1) can be used based on sample gradient values in
a look-up table, as is described in the method 300. Alterna-
tively, as is described in the method 400 of FI1G. 9, a surrogate
can be constructed for the regularizer function, wherein the
gradient of the surrogate can be computed more efficiently
than the gradient of the actual regularizer function.

Referring now to the method 300, measurement data that is
associated with the image is acquired using an exemplary
imaging system. At 302, the method 300 includes accessing
the measurement data. At 304, a simultaneous algorithm is
used to reconstruct the image. Using at 304 the simultaneous
algorithm to reconstruct the image includes storing, at 306, a
plurality of sample gradient values in a look-up table. Option-
ally, storing at 306 includes sampling the gradient values at a
fixed sampling frequency. One approach for storing at 306 the
sample gradient values in the look-up table would be to
sample the values of V@ (1), i.e., to tabulate d,.=V® () for
k=0, ..., K. Ifthe points j1,=kA where A is a positive integer
representing the sampling frequency, then the following
indexing function for the table can be used (where |*| indi-
cates a floor function):

)

kwy = mn[

At 308, the method 300 includes accessing the sample
gradient values in the look-up table. An approximate actual
gradient value is then computed, at 310, using the sample
gradient values from the look-up table. The approximate
actual gradient value may be computed at 310 using any
interpolation scheme, such as, but not limited to, a linear
interpolation scheme, a bi-cubic interpolation scheme, and/or
the like. In one embodiment, computing at 310 the approxi-
mate actual gradient value includes computing an approxi-
mate actual gradient value for each iteration of the reconstruc-
tion.

FIG. 9 is a flowchart of another exemplary method 400 for
iteratively reconstructing an image of an object. FIG. 9 illus-
trates an exemplary embodiment of a regularizer gradient
calculation wherein a surrogate is constructed for the regu-
larizer function, as was briefly described above. Measure-
ment data that is associated with the image is acquired using
an exemplary imaging system. At 402, the method 400
includes accessing the measurement data. At 404, a simulta-
neous algorithm is used to reconstruct the image.

Using at 404 the simultaneous algorithm to reconstruct the
image includes computing, at 406, an actual gradient at an
iteration of the reconstruction of the image. The surrogate for
the regularizer function is then constructed, at 408 by adding

a9
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a compensation term to the actual gradient. The compensa-
tion term may consist of relatively simple mathematical
operations. For example, in some embodiments, the compen-
sation term only includes at least one of addition, subtraction,
division, and/or multiplication.

The actual gradient and the compensation term are then
used, at 410, as the gradient for a subsequent iteration of the
reconstruction of the image. For each subsequent iteration of
the reconstruction of the image, the actual gradient computed
at 406 is added to a different compensation term for use as the
gradient for the particular subsequent iteration. In one
embodiment, the gradient used at 410 for a particular iteration
is used as the gradient for all sub-iterations of the particular
iteration. In other words, in some embodiments, the gradient
used at 410 for a particular iteration is not recomputed for the
sub-iterations of the particular iteration, but rather is reused
for each sub-iteration of the particular iteration.

The idea of a surrogate is applicable to any simultaneous
reconstruction algorithm. An exemplary OS-SPS algorithm
that illustrates one embodiment of the method 400 will now
be described. The OS-SPS algorithm uses a surrogate for the
data-fit term and the regularizer term. Another surrogate is
introduced on top of the existing surrogate for the regularizer
to minimize the compute time for the gradient calculation,
hence the OS-SPS algorithm may be referred to as an
“Ordered-subsets with Double Surrogates™ algorithm.

Consider a general PL objective function of the form:

D)=PL(W+Pr(W),

where @, is the data fit term and @ is the regularizer. It is
assumed that the data fit term ®; has a quadratic surrogate of
the form:

(20)

Qplp) < Py ) = 21

1
DL+ VLI~ + 50~ B D - i), ¥ i,

with an appropriate diagonal matrix D;. A typical choice is
D L:diag(djg’"). It is also assumed that the regularizer @ (1)
has a quadratic surrogate of the form:

1 22
g < Prlpt 1) = (@) + VORI — 1) + 5 (1 — ' Dr@(e - 1), @)

s

with an appropriate diagonal matrix D;. A typical choice is
DR(u):diag(de’"). Then we define the following “double-
surrogate” function:

Bt 1 1) 2 B4 1) + DRl 7). @3

By construction, this quadratic surrogate has the following
properties: For a conventional regularized ordered-subsets
method, the minimization step for each subset is given as
follows:

@4

= =)~ [Dy (D) 4 Dy (e )] (D VR (1) + V()
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-continued

AP0 o g D D)

for m=1, . . ., M denoting the index of the subset. Each
iteration indexed by n of ordered-subsets involves M sub-
iterations. This iteration is undesirably slow because it com-
putes the regularization gradient V@, for every subset. To

16

@5

conventional OS even when the regularizer is updated rela-
tively infrequently per iteration.

On the other hand, FIG. 12 shows that the computational
expense required to obtain the same level of RMS differences

reduce this expense, it is proposed to exploit the generality of 10 was reduced by the exemplary OS-SPS algorithm associated

the double surrogate Equation 23 by using the following
novel update:

#™ = argming d(pt; @177, @)

with the method 400. FIG. 12 illustrates convergence rate
versus computation time for different regularizer update fre-

26)

= Dy, gD (D) 4 D)™ — Dy VL) — VO (™))

@n

where Dq,(p.(”"""D,p.(")):[DL(p("”""1))+DR(p.("))]"1. This new
iteration Equation 27 utilizes the same regularizer gradient
for all subsets. Compared to Equation 24, the updates in
Equation 27 are relatively similar except for an extra term that
compensates for not updating the regularizer gradient. How-
ever, this extra term has simpler operations (e.g., additions,
subtractions, divisions, and/or multiplications) and hence is
faster to compute. In the above description, the regularizer
gradient was updated only after all subsets were updated. This
implies computing the gradient once in the beginning of each
iteration and re-using this calculation for all the subsets,
instead of computing the gradient M times for each iteration
in the original OS method described in Equation 24. Obvi-
ously, the regularizer gradient can be updated as frequently as
needed and the update frequency is denoted as U, Updating
the regularizer gradient less often reduces the computational
cost at the expense of the convergence rate in early iterations.

The OS-SPS algorithm described above was investigated
on a 3D cone-beam CT image reconstruction problem with
limited view angles.

To assess the convergence speed of the method 400, we
computed the root mean squared difference between the
image estimate at the nth iteration, u®, with both the fully
converged solution, u, and true image, u'“*.

This type of “relaxed” OS is guaranteed to converge
because the final stage uses just 1 subset for which Equation
24 is convergent. FIG. 10 illustrates the images of the true
phantom, the FBP reconstruction, and the fully converged
image (1) from cone-beam CT data with 164 projection
views.

The projections were divided into 41 subsets, which cor-
respond to 4 views per subset. This is a rather aggressive
selection compared to conventional choices to try to acceler-
ate convergence relatively significantly.

The regularizer gradient was updated at different frequen-
cies to see the effect on convergence and computation time.
FIG. 11 illustrates convergence rates at each iteration for
different regularizer update frequencies. Within FIG. 11,
08-41-DS-n indicates OS with 41 subsets and U=n, and
“n=all” means only updating once after all subset updates are
done. FIG. 11(a) illustrates n with respect to u”, and FIG.
11(b) illustrates p with respect to u“**), FIG. 11 shows that
the exemplary OS-SPS algorithm associated with the method
400 gives similar root-mean-square (RMS) differences as the

quencies. FIG. 12(a) illustrates n® with respect to n, and
FIG. 12(b) illustrates n with respect to n“**). With U~13,
which gave the best result in this case, the exemplary OS-SPS
algorithm associated with the method 400 converges about 3
times faster than the conventional OS.

FIG. 13 compares the convergence speed of OSDS with
different update frequencies. In the left column, FIG. 13
illustrates images that are at the same time point (4000 sec-
onds after initialization). In the right column, FIG. 13 illus-
trates absolute difference images with respect to u®. By
observing the reconstructed image at the same time point,
FIG. 13 clearly shows that the exemplary OS-SPS algorithm
associated with the method 400 is converging faster. There are
tradeoffs between convergence rates and computational
expense, and in the present case calculating the regularizer
gradient for every 13 subset updates gave the most efficient
results on the processing hardware used for the experiment.
For different problems, the optimal update frequency may
differ. However, it is noticeable that regardless of the update
frequency, the exemplary OS-SPS algorithm associated with
the method 400 is converging faster than the conventional OS.
As the problem gets larger and the number of subsets
increases, the computational expense required to calculate the
gradient of the regularizer may become much more dominant.
Therefore, relatively substantial benefits can be expected
from the method 400.

The methods and algorithms described herein are used to
iteratively reconstruct an image of an object. The methods
and algorithms may be embodied as a set of instructions that
are stored on a computer and implemented using, for
example, a module 530, shown in FIG. 13, software, hard-
ware, a combination thereof, and/or a tangible non-transitory
computer readable medium. In one embodiment, a tangible
non-transitory computer readable medium excludes signals.

As used herein, the concept of using coefficient maps to
improve the convergence and the image quality (e.g., as dis-
cussed in paragraph [0025]) is not limited to model-based
cost functions, but rather is applicable to all simultaneous
algorithms solving model-based as well as non-model based
cost functions.

FIG. 14 is a pictorial view of an exemplary imaging system
500 that is formed in accordance with various embodiments.
FIG. 15 is a block schematic diagram of a portion of the
multi-modality imaging system 500 shown in FIG. 14. The
imaging system may be embodied as a computed tomography
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(CT) imaging system, a positron emission tomography (PET)
imaging system, a magnetic resonance imaging (MRI) sys-
tem, an ultrasound imaging system, an x-ray imaging system,
a single photon emission computed tomography (SPECT)
imaging system, an interventional C-Arm tomography imag-
ing system, a CT system for a dedicated purpose such as
extremity or breast scanning, and combinations thereof,
among others. In the exemplary embodiment, the method 100
is described with respect to a CT imaging system. Moreover,
in the exemplary embodiment, the cost function is used to
explain the various embodiments described herein.

Although various embodiments are described in the con-
text of an exemplary dual modality imaging system that
includes a computed tomography (CT) imaging system and a
positron emission tomography (PET) imaging system or a
single photon emission computed tomography (SPECT) sys-
tem, it should be understood that other imaging systems
capable of performing the functions described herein are
contemplated as being used.

The multi-modality imaging system 500 is illustrated, and
includes a CT imaging system 502 and a PET imaging system
504. The imaging system 500 allows for multiple scans in
different modalities to facilitate an increased diagnostic capa-
bility over single modality systems. In one embodiment, the
exemplary multi-modality imaging system 500 is a CT/PET
imaging system 500. Optionally, modalities other than CT
and PET are employed with the imaging system 500. For
example, the imaging system 500 may be a standalone CT
imaging system, a standalone PET imaging system, a mag-
netic resonance imaging (MRI) system, an ultrasound imag-
ing system, an x-ray imaging system, and/or a single photon
emission computed tomography (SPECT) imaging system,
interventional C-Arm tomography, CT systems for a dedi-
cated purpose such as extremity or breast scanning, and com-
binations thereof, among others.

The CT imaging system 502 includes a gantry 510 that has
an x-ray source 512 that projects a beam of x-rays toward a
detector array 514 on the opposite side of the gantry 510. The
detector array 514 includes a plurality of detector elements
516 that are arranged in rows and channels that together sense
the projected x-rays that pass through an object, such as the
subject 506. The imaging system 500 also includes a com-
puter 520 that receives the projection data from the detector
array 514 and processes the projection data to reconstruct an
image of the subject 506. In operation, operator supplied
commands and parameters are used by the computer 520 to
provide control signals and information to reposition a motor-
ized table 522. More specifically, the motorized table 522 is
utilized to move the subject 506 into and out of the gantry 510.
Particularly, the table 522 moves at least a portion of the
subject 506 through a gantry opening 524 that extends
through the gantry 510.

The imaging system 500 also includes a module 530 that is
configured to implement various methods and algorithms
described herein. The module 530 may be implemented as a
piece of hardware that is installed in the computer 520.
Optionally, the module 530 may be implemented as a set of
instructions that are installed on the computer 520. The set of
instructions may be stand alone programs, may be incorpo-
rated as subroutines in an operating system installed on the
computer 520, may be functions in an installed software
package on the computer 520, and the like. It should be
understood that the various embodiments are not limited to
the arrangements and instrumentality shown in the drawings.

As discussed above, the detector 514 includes a plurality of
detector elements 516. Each detector element 516 produces
an electrical signal, or output, that represents the intensity of
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an impinging x-ray beam and hence allows estimation of the
attenuation of the beam as it passes through the subject 506.
During a scan to acquire the x-ray projection data, the gantry
510 and the components mounted thereon rotate about a
center of rotation 540. FIG. 15 shows only a single row of
detector elements 516 (i.e., a detector row). However, the
multislice detector array 514 includes a plurality of parallel
detector rows of detector elements 516 such that projection
data corresponding to a plurality of slices can be acquired
simultaneously during a scan.

Rotation of the gantry 510 and the operation of the x-ray
source 512 are governed by a control mechanism 542. The
control mechanism 542 includes an x-ray controller 544 that
provides power and timing signals to the x-ray source 512 and
a gantry motor controller 546 that controls the rotational
speed and position of the gantry 510. A data acquisition
system (DAS) 548 in the control mechanism 542 samples
analog data from detector elements 516 and converts the data
to digital signals for subsequent processing. For example, the
subsequent processing may include utilizing the module 530
to implement the various methods described herein. An image
reconstructor 550 receives the sampled and digitized x-ray
data from the DAS 548 and performs high-speed image
reconstruction. The reconstructed images are input to the
computer 520 that stores the image in a storage device 552.
Optionally, the computer 520 may receive the sampled and
digitized x-ray data from the DAS 548 and perform various
methods described herein using the module 530. The com-
puter 520 also receives commands and scanning parameters
from an operator via a console 560 that has a keyboard. An
associated visual display unit 562 allows the operator to
observe the reconstructed image and other data from com-
puter.

The operator supplied commands and parameters are used
by the computer 520 to provide control signals and informa-
tion to the DAS 548, the x-ray controller 544 and the gantry
motor controller 546. In addition, the computer 520 operates
a table motor controller 564 that controls the motorized table
522 to position the subject 506 in the gantry 510. Particularly,
the table 522 moves at least a portion of the subject 506
through the gantry opening 524 as shown in FIG. 14.

Referring again to FIG. 15 in one embodiment, the com-
puter 520 includes a device 570, for example, a floppy disk
drive, CD-ROM drive, DVD drive, magnetic optical disk
(MOD) device, or any other digital device including a net-
work connecting device such as an Ethernet device for read-
ing instructions and/or data from a computer-readable
medium 572, such as a floppy disk, a CD-ROM, a DVD or an
other digital source such as a network or the Internet, as well
as yet to be developed digital means. In another embodiment,
the computer 520 executes instructions stored in firmware
(not shown). The computer 520 is programmed to perform
functions described herein, and as used herein, the term com-
puter is not limited to just those integrated circuits referred to
in the art as computers, but broadly refers to computers,
processors, microcontrollers, microcomputers, program-
mable logic controllers, application specific integrated cir-
cuits, and other programmable circuits, and these terms are
used interchangeably herein.

Inthe exemplary embodiment, the x-ray source 512 and the
detector array 514 are rotated with the gantry 510 within the
imaging plane and around the subject 506 to be imaged such
that the angle at which an x-ray beam 574 intersects the
subject 506 constantly changes. A group of x-ray attenuation
measurements, i.e., projection data, from the detector array
514 at one gantry angle is referred to as a “view”. A “scan” of
the subject 506 comprises a set of views made at different
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gantry angles, or view angles, during one revolution of the
x-ray source 512 and the detector 514. In a CT scan, the
projection data is processed to reconstruct an image that
corresponds to a two dimensional slice taken through the
subject 506.

Exemplary embodiments of a multi-modality imaging sys-
tem are described above in detail. The multi-modality imag-
ing system components illustrated are not limited to the spe-
cific embodiments described herein, but rather, components
of' each multi-modality imaging system may be utilized inde-
pendently and separately from other components described
herein. For example, the multi-modality imaging system
components described above may also be used in combina-
tion with other imaging systems.

It should be noted that the various embodiments may be
implemented in hardware, software or a combination thereof.
The various embodiments and/or components, for example,
the modules, or components and controllers therein, also may
be implemented as part of one or more computers or proces-
sors. The computer or processor may include a computing
device, an input device, a display unit and an interface, for
example, for accessing the Internet. The computer or proces-
sor may include a microprocessor. The microprocessor may
be connected to a communication bus. The computer or pro-
cessor may also include a memory. The memory may include
Random Access Memory (RAM) and Read Only Memory
(ROM). The computer or processor further may include a
storage device, which may be a hard disk drive or a removable
storage drive such as a solid state drive, optical drive, and/or
the like. The storage device may also be other similar means
for loading computer programs or other instructions into the
computer or processor.

As used herein, the term “computer” may include any
processor-based or microprocessor-based system including
systems using microcontrollers, reduced instruction set com-
puters (RISC), application specific integrated circuits
(ASICs), logic circuits, GPUs, FPGAs, and any other circuit
or processor capable of executing the functions described
herein. The above examples are exemplary only, and are thus
notintended to limit in any way the definition and/or meaning
of the term “computer”. The computer or processor executes
a set of instructions that are stored in one or more storage
elements, in order to process input data. The storage elements
may also store data or other information as desired or needed.
The storage element may be in the form of an information
source or a physical memory element within a processing
machine.

The set of instructions may include various commands that
instruct the computer or processor as a processing machine to
perform specific operations such as the methods and pro-
cesses of the various embodiments of the invention. The set of
instructions may be in the form of a software program. The
software may be in various forms such as system software or
application software, which may be a non-transitory com-
puter readable medium. Further, the software may be in the
form of a collection of separate programs, a program module
within a larger program or a portion of a program module. The
software also may include modular programming in the form
of'object-oriented programming. The processing of input data
by the processing machine may be in response to user com-
mands, or in response to results of previous processing, or in
response to a request made by another processing machine.

As used herein, an element or step recited in the singular
and proceeded with the word “a” or “an” should be under-
stood as not excluding plural of said elements or steps, unless
such exclusion is explicitly stated. Furthermore, references to
“one embodiment™ of the present invention are not intended
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to be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features. More-
over, unless explicitly stated to the contrary, embodiments
“comprising” or “having” an element or a plurality of ele-
ments having a particular property may include additional
elements not having that property.

Also as used herein, the phrase “reconstructing an image”
is not intended to exclude embodiments of the present inven-
tion in which data representing an image is generated, but a
viewable image is not. Therefore, as used herein the term
“image” broadly refers to both viewable images and data
representing a viewable image. However, many embodiments
generate, or are configured to generate, at least one viewable
image.

As used herein, the terms “software” and “firmware” are
interchangeable, and include any computer program stored in
memory for execution by a computer, including RAM
memory, ROM memory, EPROM memory, EEPROM
memory, and non-volatile RAM (NVRAM) memory. The
above memory types are exemplary only, and are thus not
limiting as to the types of memory usable for storage of a
computer program.

Itis to be understood that the above description is intended
to be illustrative, and not restrictive. For example, the above-
described embodiments (and/or aspects thereof) may be used
in combination with each other. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the invention without departing from its
scope. While the dimensions and types of materials described
herein are intended to define the parameters of the invention,
they are by no means limiting and are exemplary embodi-
ments. Many other embodiments will be apparent to those of
skill in the art upon reviewing the above description. The
scope of the invention should, therefore, be determined with
reference to the appended claims, along with the full scope of
equivalents to which such claims are entitled. In the appended
claims, the terms “including” and “in which” are used as the
plain-English equivalents of the respective terms “compris-
ing” and “wherein.” Moreover, in the following claims, the
terms “first,” “second,” and “third,” etc. are used merely as
labels, and are not intended to impose numerical require-
ments on their objects. Further, the limitations of the follow-
ing claims are not written in means-plus-function format and
are not intended to be interpreted based on 35 U.S.C. §112,
sixth paragraph, unless and until such claim limitations
expressly use the phrase “means for” followed by a statement
of function void of further structure.

This written description uses examples to disclose the vari-
ous embodiments of the invention, including the best mode,
and also to enable any person skilled in the art to practice the
various embodiments of the invention, including making and
using any devices or systems and performing any incorpo-
rated methods. The patentable scope of the various embodi-
ments of the invention is defined by the claims, and may
include other examples that occur to those skilled in the art.
Such other examples are intended to be within the scope of the
claims if the examples have structural elements that do not
differ from the literal language of the claims, or if the
examples include equivalent structural elements with insub-
stantial differences from the literal languages of the claims.

What is claimed is:

1. A method for iteratively reconstructing an image of an
object, the method comprising:

accessing measurement data associated with the image, the

measurement data obtained from a detector array; and
using, with a computer operably coupled to the detector
array, a simultaneous algorithm to reconstruct the
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image, wherein using the simultaneous algorithm to
reconstruct the image comprises:

determining, with the computer, a scaling factor that is

voxel-dependent; and

applying, with the computer, the voxel-dependent scaling

factor to a gradient of an objective function to recon-
struct the image.

2. The method of claim 1, wherein determining a scaling
factor that is voxel-dependent comprises computing the scal-
ing factor directly based on acquisition geometry.

3. The method of claim 1, wherein determining a scaling
factor that is voxel-dependent comprises computing the scal-
ing factor directly based on acquisition geometry, the mea-
surement data being non-uniformly sampled in a three-di-
mensional (3D) acquisition geometry.

4. The method of claim 1, wherein determining a scaling
factor that is voxel-dependent comprises generating an coef-
ficient map and using the coefficient map to compute the
voxel-dependent scaling factor.

5. The method of claim 4, wherein generating an coeffi-
cient map comprises transforming an update obtained from a
difference of one of at least two iterations or at least two
sub-iterations.

6. The method of claim 4, wherein generating an coeffi-
cient map comprises generating an coefficient map that is
locally smooth and is capable of being low-pass filtered.

7. The method of claim 4, wherein generating an coeffi-
cient map comprises obtaining the coefficient map from an
initial image.

8. The method of claim 4, wherein generating an coeffi-
cient map comprises augmenting the coefficient map with at
least one of prior information about an initial image, a feature
of a current image, or acquisition geometry.

9. The method of claim 1, wherein applying the voxel-
dependent scaling factor to a gradient of an objective function
to reconstruct the image comprises scaling the gradient using
the voxel-dependent scaling factor.

10. The method of claim 9, wherein the scaling is at least
one of obtained using A”WA or linked to contribution of
subsets to every voxel.

11. The method of claim 1, wherein applying the voxel-
dependent scaling factor to a gradient of an objective function
to reconstruct the image comprises computing a relaxation
factor for each slice of the measurement data, the measure-
ment data being non-uniformly sampled in a three-dimen-
sional (3D) acquisition geometry wherein slices inside a
region of interest (ROI) are sampled by a different number of
views compared to slices outside the ROL.
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12. The method of claim 1, wherein applying the voxel-
dependent scaling factorto a gradient of an objective function
to reconstruct the image comprises updating the voxel-depen-
dent scaling factor at a frequency that is reduced to every n-th
iteration instead of every iteration.

13. The method of claim 4, wherein the coefficient map is
down-sampled.

14. An imaging system comprising:

a detector array; and

a computer coupled to the detector array, the computer

configured to:

access measurement data associated with an image of an

object; and

use a simultaneous algorithm to reconstruct the image,

wherein the computer is configured to use the simulta-
neous algorithm to reconstruct the image by determining
a scaling factor that is voxel-dependent and applying the
voxel-dependent scaling factor to a gradient of an objec-
tive function to reconstruct the image.

15. The imaging system of claim 14, wherein the computer
is configured to determine the scaling factor that is voxel-
dependent by computing the scaling factor directly based on
acquisition geometry.

16. The imaging system of claim 14, wherein the computer
is configured to determine the scaling factor that is voxel-
dependent by generating an coefficient map and using the
coefficient map to compute the voxel-dependent scaling fac-
tor.

17. The imaging system of claim 16, wherein the computer
is configured to generate the coefficient map by transforming
an update obtained from a difference of one of at least two
iterations or at least two sub-iterations, the transformation
being one of discrete or continuous.

18. The imaging system of claim 14, wherein the computer
is configured to apply the voxel-dependent scaling factor to
the gradient of the objective function by scaling the gradient
using the voxel-dependent scaling factor.

19. The imaging system of claim 14, wherein the computer
is configured to apply the voxel-dependent scaling factor to
the gradient of the objective function by computing a relax-
ation factor for each slice of the measurement data, the mea-
surement data being non-uniformly sampled in a three-di-
mensional (3D) acquisition geometry wherein slices inside a
region of interest (ROI) are sampled by a different number of
views compared to slices outside the ROL.
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