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Abstract—This paper analyzes and compares image reconstruc-
tion methods based on practical approximations to the exact log-
likelihood of randoms-precorrectedPET measurements. The
methods apply to both emission and transmission tomography;
however in this paper we focus on transmission tomography. The
results of experimental PET transmission scans and variance ap-
proximations demonstrate that the “shifted Poisson” (SP) method
avoids the systematic bias of the conventional data-weighted least
squares (WLS) method, and leads to significantly lower variance
than conventional statistical methods based on the log-likelihood
of the ordinary Poisson (OP) model. We develop covariance ap-
proximations to analyze the propagation of noise from attenuation
maps into emission images via the attenuation correction factors
(ACFs). Empirical pixel and region variances from real trans-
mission data agree closely with the analytical predictions. Both
the approximations and the empirical results show that the perfor-
mance differences between the OP model and SP model are even
larger when considering noise propagation from the transmission
images into the final emission images than the differences in the
attenuation maps themselves.

Index Terms: Penalized maximum likelihood image recon-
struction, randoms-precorrected PET, covariance approximations,
statistical approximations.

I. I NTRODUCTION

To obtain accurate images of the radioactivity distributionwithin
a patient using emission computed tomography, one must cor-
rect for the effects of attenuation [1] and accidental coincidences
[2]. The measured attenuation correction method is routinely per-
formed in positron emission tomography (PET) centers, where
transmission scans are used to measure the unique attenuation char-
acteristic of each patient over the slices of interest [3]. Since PET
transmission scans are performed essentially to compute attenua-
tion correction factors rather than being the primary medical inter-
est, it is desirable to minimize their durations. Short scans suffer
from limited number of counts especially for the projections pass-
ing through high attenuation regions of the patient, which results
in propagation of unwanted errors and artifacts into emission im-
ages [4, 5]. Smoothing of the transmission data before comput-
ing the attenuation correction factors leads to resolution mismatch
between transmission and emission data [6, 7]. Reconstructing
images of attenuation distributions (attenuation maps) from noisy
transmission scans has desirable properties such as better noise per-
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formance [4,5] and anatomical localization [8]. These attenuation
maps are usually reprojected to form attenuation correction factors.
Using the conventional filtered back projection (FBP) method for
reconstruction of attenuation maps results in biased estimates when
the transmission counts are small [9]. Penalized-likelihood meth-
ods, which incorporate the measurement statistics appropriately,
avoid this bias problem.

In PET, accidental coincidence (AC) events occur when two
photons that originated in separate annihilations are detected
within the coincidence timing window [2, 10]. In transmission
scans, photons that originate from different transmission sources
(rod or ring sources) cause most AC events. The effect of AC
events is most severe for rays with low true coincidence rates [11],
such as those traversing the thorax. Most PET scans are compen-
sated for AC events by real-time subtraction of delayed-window
coincidences. This precorrection yields the proper ensemble mean,
but destroys the Poisson measurement statistics [10]. To preserve
Poisson measurements, one should acquire separate transmission
and randoms sinograms [5, 12]. However, because of hardware
and data storage space limitations (and historical momentum),
most PET centers currently collect and archive only the randoms-
precorrected data.

The exact log-likelihood for randoms-precorrected data con-
tains infinite summations, so we have previously developed a few
practical approximations [13–15]. The three simplest of these ap-
proximations are the focus of this paper: the data-weighted least
squares (WLS) method, the ordinary Poisson (OP) model (which
ignores the AC corrections), and the “shifted” Poisson (SP) model
which matches both the first and second-order moments of the
model to the underlying statistics of the precorrected data [13–15].
Previous 2D computer simulation studies of penalized-likelihood
estimators based on these approximations showed that the WLS
method leads to a large systematic negative bias and the SP method
yields attenuation maps with lower reconstructed image variance
than the OP method at matched spatial resolutions [15].

In this paper, we compare the WLS, OP, and SP methods using
100 experimental PET transmission scans of an anthropomorphic
thorax phantom acquired with a Siemens/CTI 931 PET scanner.
The empirical results from this study are consistent with the previ-
ous simulation results: a large bias for the WLS method, and lower
variance for the SP method. We also implemented and evaluated
an extremely precise approximation to the exact statistical model
based on truncating the infinite summations in the log-likelihood.
Although the individual images reconstructed by the SP method
and thetruncatedexact log-likelihood method differed slightly, the
differences in the ensemble means and variances were insignifi-
cant. We also investigated the reconstruction results for the saddle-
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point (SD) approximation that we introduced previously [14, 15].
We observed very close agreement between the SD method and
truncatedexact log-likelihood for each reconstruction in our simu-
lations. However, for the transmission scans reported here the dif-
ference between the SD and the SP method were not statistically
significant, so we did not include the SD reconstruction results in
this paper. Thus the simple and practical SP approximation appears
adequate for routine use on randoms-precorrected PET transmis-
sion data.

In addition to evaluating the attenuation maps themselves, we
also investigated the propagation of noise from the reconstructed
attenuation maps into emission images reconstructed using the
FBP method. Again the SP method leads to lower variance than
the OP method. Interestingly, the difference in variances in the
emission images was even greater than in the attenuation maps.

To corroborate theempirical studies described above, we have
also developedanalyticalapproximations to the reconstructed im-
age covariance based on the techniques developed in [16]. The
covariance approximations for the OP and SP methods, which had
previously been evaluated only with simulated data in [16], were
found to agree well with the empirical variance computed from the
experimental PET transmission scans.

In this paper we also develop analytical approximations for
the propagation of noise from attenuation maps into reconstructed
emission images. To isolate the effect of transmission noise in the
resultant emission image, we consider noise-free emission mea-
surements and develop approximations for the covariance of emis-
sion images reconstructed using ACFs computed from noisy atten-
uation maps. These approximations describe the propagation of
noise from attenuation maps into emission reconstruction. We also
show that the predicted variances agree with the empirical results
from the experimental PET transmission scans.

Section II reviews the measurement model and exact log-
likelihood, and Section III describes the log-likelihood approxi-
mations. Section IV describes the empirical results for attenuation
map reconstruction. Sections V and VI describe the covariance ap-
proximations and examine the propagation of noise into the emis-
sion images.

II. M EASUREMENT MODEL AND EXACT LOG-LIKELIHOOD

In conventional PET scans the system detects coincidence events
during two time windows: “prompt” window and “delayed” win-
dow, and the data are precorrected for AC events byreal-timesub-
traction of delayed window coincidences [10]. Each such precor-
rected measurement is the difference of two independent Poisson
random variables, which compensates in mean for AC events, but
which also increases the measurement variance.

Let Y = [Y1, . . . , YN ]′ denote the vector ofprecorrectedmea-
surements, where “′ ” denotes vector and matrix transpose. The
precorrected measurement for thenth coincidence detector pair is:

Yn = Y
prompt
n − Y delayn , (1)

where Y promptn and Y delayn are the number of coincidences
within the prompt and delayed windows, respectively. Letµ =
[µ1, . . . , µM ]

′ denote the vector of unknown linear attenuation co-
efficients. For transmission scans, we assume thatY promptn and

Y delayn are statistically independent Poisson random variables with
means̄ypn andȳdn respectively as:

E
{
Y promptn

}
= ȳpn(µ) = bne

−ln(µ) + rn (2)

E
{
Y delayn

}
= ȳdn = rn, (3)

whereln(µ) =
∑M
j=1 anjµj is the total attenuation betweennth

detector pair. Theanj ≥ 0 factors have units of length and describe
the tomographic system geometry. Thebn > 0 factors denote the
blank scan counts and thern ≥ 0 factors denote the mean of AC
events.

SinceY promptn andY delayn are statistically independent and Pois-
son:

E {Yn} = ȳpn(µ) − ȳ
d
n = bne

−ln(µ) 4= ȳn(µ), (4)

Var {Yn} = ȳpn(µ) + ȳ
d
n = bne

−ln(µ) + 2rn. (5)

Let y = [y1, . . . , yN ]
′ be an observed realization ofY in (1). Since

the measurements are independent, one can express the exact log-
likelihood as follows [15]:

L(µ) =

N∑
n=1

hn(ln(µ), yn), (6)

where, ignoring constants independent ofµ throughout:

hn(ln(µ), yn)
4
=

log


 ∞∑
m=b−ync+

[ȳpn(µ)]
yn+m

(yn +m)!

rmn
m!


− (ȳpn(µ) + rn), (7)

wherebxc+ = x if x > 0 and is0 otherwise.
Since image reconstruction is ill conditioned, we combine

a roughness penaltyR(µ) with the log-likelihood to form a
penalized-likelihood objective function:

Φ(µ) = L(µ) − R(µ). (8)

The goal is to estimateµ by maximizingΦ(µ) over the nonnegative
cone:

µ̂ = argmax
µ≥0

Φ(µ). (9)

Since the exact log-likelihood function (7) is complicated, we de-
scribe approximations to the exact log-likelihood.

III. A PPROXIMATIONS TO THEEXACT LOG-LIKELIHOOD

In this section, we review three practical approximations to
L(µ): the WLS model, the conventional OP model, and the SP
model approximation that we introduced previously [13–15]. All
three log-likelihood approximations have the form (6) for different
choices forhn(l, yn).

A. Quadratic Approximations

A quadratic approximation to the exact log-likelihood function
[9, 17] leads to the data-weighted least squares objective function
LWLS(µ) of the form (6) with

hWLSn (l, yn) =



−
1

2
(l − l̂n)

2 1

σ̂2n
, yn > 0

0, yn ≤ 0,
(10)
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wherel̂n = log
(
bn
yn

)
is the method-of-moments estimate ofln(µ).

The weighting factor̂σ2n =
yn+2rn
y2n

is an estimate of the variance

of l̂n(yn) based on a second-order Taylor expansion ofl̂(·) around
ȳn. The residuals corresponding to projections with large values
of yn are weighted more heavily in (10). These rays pass through
less dense objects and consequently have higher SNR values. Al-
ternatively, the choice of̂σ2n = 1 would result in the unweighted
least-squares (ULS) approach, which would lead to estimates with
much higher variance.

B. Ordinary Poisson (OP) Approximation

The conventional approach is to ignore the random coincidences
by assuming that{Yn}Nn=1 are distributed as independent Pois-
son random variables with meansȳn(µ) given by (2). The log-
likelihoodLOP(µ) corresponding to this OP approximation is of
the form (6) with

hOPn (l, yn) = yn log(bne
−l)− bne

−l. (11)

C. Shifted Poisson (SP) Approximation

A better approach is to match both the first and second moments
by approximating the random variables{Yn + 2rn}Nn=1 as having
Poisson distributions with means{ȳn(µ) + 2rn}. This idea leads
to the SP approximationLSP(µ) [13–15] of the form (6) with

hSPn (l, yn) = (yn+2rn) log(bne
−l+2rn)−(bne

−l+2rn). (12)

Although bothLWLS andLSP match two moments of the measure-
ment distribution, in WLS the second moment ofl̂n(yn) is “fixed”
to σ̂2n independently ofµ, whereas in the SP model the moments
vary with ȳn(µ) appropriately.

We have previously shown both analytically and empirically in
simulations that the SP model better agrees with the exact log-
likelihood than either the WLS or OP model [13] and results in
lower variance [14, 15]. Next we present experimental results us-
ing estimators based on the above approximations.

IV. EXPERIMENTAL RESULTS

We applied penalized-likelihood estimators based on the above
approximations to reconstruct attenuation maps from transmission
scans acquired with a Siemens/CTI 931 PET scanner. To study
the bias and variance properties of these estimators, we collected
100 two-minute transmission scans of an anthropomorphic thorax
phantom (Data Spectrum, North Carolina). Fig. 1 shows the re-
constructed attenuation map of the slice of interest from a 5 hour
transmission scan. In each two-minute scan there were about 4.5M
prompt coincidence events and 0.7M delayed events for the slice
of interest. The sinograms had 192 radial bins and 256 angles uni-
formly sampled over 180 degrees. We approximated the system
geometry with 3.1 mm wide strip integrals and 3.1 mm ray spac-
ing. The reconstructed images were 128 by 128 with 4.7 mm pix-
els. For regularization, we used the modified quadratic penalty as
described by (30) and (35) in [18]. This penalty improves the reso-
lution uniformity and enables matching of the spatial resolutions of
different methods. We matched the resolution of the reconstructed
transmission images for all methods to 2.65 pixels FWHM.
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Fig. 1. Reconstruction of attenuation map for the slice of interest from 5 hour
transmission scan.

Previously we have shown that a time-scaled version of delayed-
coincidence events acquired during the blank scan is a good esti-
mate for thern factors. (Even using a single scalar constant works
fairly well [15].) Note that these estimates of thern factors are
used essentially for estimating the variance of the randoms precor-
rected data in (5), not for performing randoms precorrection. In
our experiments thern factors were unavailable for both the trans-
mission and blank scans, because the data was precorrected for
randoms. Thus, to estimate thern factors for use in (12), we sim-
ply scaled the blank scan so that its sum corresponded to the total
number of AC events (this scalar is available in the transmission
scan file header) with no additional processing. Despite this possi-
bly being a suboptimal approach, the SP method still yielded lower
variance attenuation maps than the OP method.

For each transmission scan an estimate of the attenuation map
was reconstructed using 20 iterations of the grouped-coordinate
ascent algorithms [15, 19] applied to the objective functions (10),
(11), and (12). AlthoughLOP(µ) is globally convex,LSP(µ) is
only locally convex [9]. This problem is not unique to the SP
method; it is a general problem with transmission reconstruction
(with nonzero background), even when prompt and delayed events
are available separately [9]. Recently a monotonic algorithm has
been developed that is also suitable for the SP objective func-
tion [20]. In our simulations, we initialized the iterations with a
resolution-matched FBP image and always observed monotonic in-
crease inΦ for all cases.

We computed both the sample mean and sample standard devia-
tion images for all methods. Fig. 2 shows horizontal profiles of the
sample mean images. These profiles show that WLS issystemati-
cally negatively biased [9], whereas the OP and SP models appear
free of such systematic bias. As explained in Appendix A of [9],
the logarithm required by the WLS method negatively biases the
reconstructed transmission images and this bias increases as counts
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Fig. 2. Horizontal profile 66 through the sample mean images for abdomen phan-
tom. The WLS method has a systematic negative bias. The ordinary Poisson
(OP) and shifted Poisson (SP) methods appear free of this systematic negative
bias.

decrease. Since the rays traversing the center of the transmission
phantom have the lowest counts, these regions show the largest
negative bias.

Standard deviation image of SP method

0.0125

0.0

Fig. 3. Sample standard deviation image of SP method from 100 transmission
scans.

Fig. 3 shows the sample standard deviation image for the SP
method. To study the variance, we computed theratio of sample
standard deviation image of OP method to SP method, shown in
Fig. 4. Fig. 5 shows the histogram of the standard deviation ra-
tios over all interior pixels. The OP model yields, on the average,
about 11% higher standard deviation than the SP model. Although
the absolute standard deviation values could be decreased by using
longer scan durations, we expectrelative standard deviations of
OP and SP estimators to remain approximately constant for higher
counts [15, 16]. This follows from the fact that analytic approx-
imations (15)-(16) in [15] become more accurate with increasing

Ratio of standard deviation of OP method to SP method

1.3
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Fig. 4. Ratio of sample standard deviation images of OP method to SP method
from 100 transmission scans.
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Fig. 5. Histogram of the ratio of standard deviations in reconstructed attenuation
maps. The ordinary Poisson (OP) method yields, on the average, about 11%
higher standard deviation than the proposed shifted Poisson (SP) method.

counts, and these approximations predict that the ratio of standard
deviation of different estimators remains constant independent of
total counts.

V. COVARIANCE APPROXIMATIONS FORTRANSMISSION

TOMOGRAPHY

One can use analytic approximations proposed in [16] to pre-
dict the covariance of penalized-likelihood reconstruction meth-
ods without exhaustive simulations. In [16] these approximations
were shown to agree with empirical results from simulated PET
scans (without randoms precorrection) even for the highly nonlin-
ear transmission reconstruction methods. Here, we apply the co-
variance approximation presented in [16] to the OP and SP meth-
ods and compare the results with experimental randoms precor-
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rected transmission data.
We can express both the OP (11) and SP (12) log-likelihood ap-

proximations in the form (6) with

hn(l, yn) = (yn + dn) log(bne
−l + dn)− (bne

−l + dn) (13)

and

dn
4
=

{
0, OP
2rn, SP.

(14)

Combining the log-likelihood approximation with a roughness
penalty forms the penalized log-likelihoodobjective functionΦ(µ)
as in (8).

A first-order Taylor expansion of̂µ(Y ) = argmax
µ≥0

Φ(µ, Y )

aroundȲ
4
= E {Y } leads to the following approximation for the

covariance of̂µ [16]:

Cov {µ̂} ≈
[
−∇20Φ(µ̌, Ȳ )

]−1
∇11Φ(µ̌, Ȳ )Cov {Y }

·
[
∇11Φ(µ̌, Ȳ )

]′
[−∇20Φ(µ̌, Ȳ )]−1, (15)

where
µ̌
4
= argmax

µ
Φ(µ, Ȳ ). (16)

Following [16]:

−∇20Φ(µ̌, Ȳ ) = H
4
= A′ diag{un}A+ βR(µ̌) (17)

∇11Φ(µ̌, Ȳ ) = −A′ diag{cn} (18)

whereA = {anj} is the sparse system matrix, and

un
4
=

(
1−
dn (ȳn(µ

true) + dn)

(ȳn(µ̌) + dn)2

)
ȳn(µ̌), (19)

cn
4
=

ȳn(µ̌)

ȳn(µ̌) + dn
, (20)

andR(µ) = ∇2R(µ). Substituting (17), (18) andCov {Y } =
diag{ȳn(µtrue) + 2rn} into (15) yields the following approxima-
tion for the estimator covariance:

Cov {µ̂} ≈H−1A′ diag{vn}AH
−1 (21)

with

vn
4
=
ȳ2n(µ̌)(ȳn(µ

true) + 2rn)

(ȳn(µ̌) + dn)2
.

For the experimental transmission data we predicted the vari-
ance ofµ̂OP and µ̂SP using the above approximations. Follow-
ing the “plug-in” approach of [16], we replaced eachȳn(µ̌) and
ȳn(µ

true) in (21) with the corresponding sample mean of the 100
transmission sinograms1. We used the preconditioned conjugate
gradient method [21,22] to compute selected diagonal elements of

1Although replacinḡyn(µ̌) andȳn(µtrue) in (21) with the sample mean of the
transmission sinograms is impractical, it enables us to compute quickly the approx-
imations for many pixels in the reconstructed image. In Section VI we present the
results of variance approximations for a set of pixels for noise propagation into
emission images using thetrue plug-in approach (where we replacēyn(µ̌) and
ȳn(µtrue) with noisy measurements). There we show that the predictions again
agree well with empirical standard deviation values.

(21). Overall computation for computing the variance of each pixel
was roughly equivalent to one maximization ofΦ(µ). Fig. 6 and
Fig. 7 show the comparison of the empirical standard deviation and
the approximate standard deviation of pixels through a horizontal
cross section through the attenuation map for OP method and SP
method. The predicted variance agrees well with the empirical re-
sults both for OP and SP methods. These results show that even
for two-minute transmission scans analytical approximations can
be used reliably. For longer scans with higher transmission counts
the agreement should be even better [16].
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Fig. 6. Empirical standard deviation (with error bars) and the approximate stan-
dard deviation of OP method for pixels along horizontal profile 90 through the
attenuation map.
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Fig. 7. Empirical standard deviation (with error bars) and the approximate stan-
dard deviation of SP method for pixels along horizontal profile 90 through the
attenuation map.

VI. N OISE PROPAGATION INTO EMISSION RECONSTRUCTION

In this section we derive approximate expressions to analyze the
propagation of noise from the attenuation maps through the ACFs
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into reconstructed emission images. This analysis describes the
effects of transmission noise on the final emission images, which
may assist studies of the tradeoff between emission and transmis-
sion scan times,e.g. [23, 24]. Dahlbom and Hoffman [11] have
analyzed emission image noise for the special case of uniform
density disk phantom (assuming both emission and transmission
images are reconstructed using FBP method). The covariance ap-
proximations presented here apply to arbitrary objects, for attenu-
ation maps reconstructed by penalized-likelihood estimators with
quadratic regularization.

A. Theory

To isolate the effects of transmission noise on the resultant emis-
sion images, we consider noiseless emission measurements and we
consider the FBP method for reconstructing emission images after
correcting for attenuation using noisy attenuation maps. We as-
sume the noiseless emission measurements are:

zn = e
−ln(µ

true)pn, (22)

where

pn =

M∑
k=1

gnkλk

is the attenuation-free projection of the emission image and where
λ = [λ1 . . . λP ]

′ denotes the vector of radio-isotope concentration.
G = {gnk} represents the tomographic system response includ-
ing the geometric system model, ray dependent factors (e.g. de-
tector efficiency factors, dead-time, radio-isotope decay) and pixel
dependent factors such as spatial variations in sensitivity. And
e−ln(µ

true) (with l(µtrue) = Aµtrue) represents the survival proba-
bility for thenth ray. The noiseless emission measurementszn (22)
are corrected for attenuation using ACFs based on the attenuation
map estimateŝµ. If one directly corrects the emission measure-
ments for attenuation by multiplication, the resultant images have
some artifacts because of the resolution mismatch between emis-
sion and transmission sinograms [6,7]. Thus, one needs to smooth
the emission sinogram to the same resolution as the survival proba-
bilities. We can write the attenuation-corrected emission sinogram
as follows:

ẑn = e
ln(µ̂) smooth

{
e−ln(µ

true)pn

}
, (23)

For FBP reconstruction of the emission images we consider the
constrained least-squares (CLS) window corresponding to (50) of
[25]

sinc(ku) / sinc(u)

sinc2(ku) + αu3
, u ∈

[
0,
1

2

]
, (24)

whereu denotes spatial frequency in cycles per radial sample,k is
the ratio of the strip width to the pixel size of the system model,
andα is linearly related toβ below [25]. (The detector response
is a rectangular function with frequency responsesinc(ku).) Di-
viding by sinc(u) in the numerator compensates for the linear in-
terpolation step of the FBP method. The FBP algorithm with the
above smoothing window (24) is essentially equivalent to quadrati-
cally penalized unweighted least-squares (QPULS) estimator with-

out the nonnegativity constraint [25]. The QPULS estimator is de-
fined as [26]:

λ̂QPULS = argmin
λ
‖ẑ −Gλ‖2 + βλ′Roλ

=
[
G′G+ βRo

]−1
G′ẑ, (25)

with

Ro[j, k] =

{ ∑
lwjl, k = j

−wjk, k 6= j,
(26)

wherewjk = 1 for horizontal and vertical neighboring pixels and
0 otherwise. Since this estimator is linear, its covariance is:

Cov
{
λ̂QPULS

}
=

[
G′G+ βRo

]−1
G′Cov {ẑ}G

[
G′G+ βRo

]−1
. (27)

We must findCov {ẑ} to complete the above approximation. For
simplicity we first make the following approximation:

smooth
{
e−ln(µ

true)pn

}
≈ e−ln(µ̌)smooth {pn} , (28)

whereµ̌ is defined in (16). We plug this into (23):

ẑn ≈ e
ln(µ̂)e−ln(µ̌)smooth {pn} , (29)

and approximateCov {ẑ} as:

Cov {ẑ} ≈ D Cov {t(µ̂)} D′ , (30)

wheret(µ̂)
4
= [t1(µ̂) . . . tN (µ̂)]

′ with tn(µ̂) = eln(µ̂)−ln(µ̄) and

µ̄
4
= E {µ̂} andD

4
= diag{smooth {pn}}.

Using first-order Taylor expansion around̄µ, we approximate
Cov {t(µ̂)} as:

Cov {t(µ̂)} ≈ A Cov {µ̂} A′. (31)

Finally, plugging (30) and (31) into (27) yields

Cov
{
λ̂QPULS

}
≈

[
G′G+ βRo

]−1
G′DACov {µ̂}A′DG

[
G′G+ βRo

]−1
. (32)

The variance of the estimated total activity within a region of in-
terest (ROI),i.e. θ̂e = e′ λ̂QPULS, is simply:

Var
{
θ̂e

}
= e′Cov

{
λ̂QPULS

}
e, (33)

wheree is a column vector of lengthM that equals unity for the
pixels in the region of interest and zero elsewhere. To within
the accuracy of the preceding approximations, (32) shows the first-
order propagation of the noise from the attenuation mapµ̂ into
the emission reconstruction, and (30) also shows thatCov{µ̂} is
scaled quadratically by the attenuation-free emission projections
pn (22) before propagating into emission image covariance (since
it is sandwiched betweenD matrices).
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Fig. 8. Emission phantom with several rectangular regions for noise computation.

B. Results

We simulated noiseless emission measurements (22) for the
emission phantom shown in Fig. 8, using the same system spec-
ifications as the experimental transmission data. (The rectangular
regions numbered 1 through 5 are regions of interest used at the
end of this section). The spine, lungs, soft tissue, and heart had
relative radioactivity concentrations of 0, 1, 2 and 4 respectively.
The effects of attenuation were included in thepn’s by calculat-
ing survival probabilities from an attenuation map reconstructed
from a five-hour transmission scan. To reconstruct this attenuation
map we used the very precise saddle-point (SD) approximation that
we introduced previously [14, 15] along with an edge-preserving
penalty function [19].

After smoothing the noiseless emission measurements to match
the resolution of the transmission data [6, 7], we applied ACFs
computed from the noisy attenuation map estimatesµ̂OP andµ̂SP

that were reconstructed from each experimental transmission scan.
We reconstructed emission images using FBP with the CLS win-
dow (24). Fig. 9 shows the sample mean emission image with
ACFs based on the SP method computed from 100 two-minute
transmission scans as explained in Section V. (The mean image
of OP method is not shown since it was very similar to that of the
SP method.)

Fig. 10 shows the sample standard deviation image of the 100
emission reconstructions with ACFs based on the SP method. To
study the noise due to different methods, we computed theratio of
sample standard deviation images of emission reconstruction with
ACFs based on the OP method and SP method, shown in Fig. 11.
Fig. 12 shows the histogram of the standard deviation ratios, over
all interior pixels. Attenuation correction based on the OP model
yielded about 20% higher standard deviation than the SP model on
average.

To assess the accuracy of our analytical approximations, we

Fig. 9. Empirical sample mean of emission images reconstructed with ACFs based
on 100 different estimates of̂µSP.

Standard deviation image of SP method

0.0

0.7

Fig. 10. Sample standard deviation image of emission reconstruction with ACFs
based on SP method.

compared to empirical variances described above to the variances
predicted by (33). We used the preconditioned conjugate gradi-
ent method to compute (33) for a set of pixels in the reconstructed
emission image. We determined the elements ofCov {µ̂} in (32)
two different ways: one way used the approximation (21); the other
way used the empirical covariance of the 100 independent attenu-
ation map reconstructions2. Although replacingCov {µ̂} with an

2Instead of computing the empirical covariance directly from the independent
attenuation map reconstructions, we used the following computationally more effi-
cient method. It can be seen from (32) and (33) thatVar

{
θ̂e
}
= Var {S} where

S
4
= c′µ̂ andc′

4
= e′ [G′G+ βRo]

−1G′DA. Using the preconditioned conju-
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Ratio of standard deviation of OP method to SP method

1.6

1.0

Fig. 11. Ratio of sample standard deviation images of emission reconstruction with
ACFs based on OP method and SP method.
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Fig. 12. Histogram of the ratio of standard deviations in the reconstructed emission
images with ACFs based on OP model and SP model. Attenuation correction
factors based on the OP model yielded, about 20% higher standard deviation
than the SP model on average.

empirical covariance is impractical for routine use, it helps estab-
lish the accuracy of approximation (33). Figures 13 and 14 com-
pare the empirical standard deviations and the approximate stan-
dard deviations of pixels along a horizontal profile through the
emission images. The analytical approximations for transmission
noise propagation agree well with the empirical results, and con-
firm the reduction in noise for SP method compared to OP method.

Table I shows the percent standard deviation of the activity
within the five different 3 by 3 pixel ROIs shown in Fig. 8 for the
reconstructed images, with ACFs based on the OP method and SP
method. Foreach ROI, we also implemented the practical plug-in

gate gradient method [21,22], we pre-compute the row vectorc′ only once and then
compute the scalarS for each independent attenuation map reconstruction. And
then finally the sample variance ofS is computed.
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0
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0.4
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0.6

0.7
Standard deviation of OP estimator for emission reconstruction

Pixels

Using approx. trans. var.
Using emprical trans. var.
Emprical

Fig. 13. Empirical standard deviation (with error bars) and the approximate
standard deviation of OP method (using both empirical transmission variance
and approximate transmission variance) for pixels along horizontal profile 90
through the reconstructed emission images.
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Fig. 14. Empirical standard deviation (with error bars) and the approximate stan-
dard deviation of SP method (using both empirical transmission variance and
approximate transmission variance) for pixels along a horizontal profile 90
through the reconstructed emission images.

approach for computing (21), in which we replaced eachȳn(µ̌) and
ȳn(µ

true) in (21) with the corresponding noisy sinogram element
yn. We computed variance approximation (33) for each of the 100
sinograms. Table I shows the sample means (and standard errors)
of the plug-in predicted variances for each ROI. The OP model
yields8% to23% higher standard deviation than SP model, and all
the analytical approximations agree well with empirical standard
deviation values.

For comparison purposes we simulated 100 noisy emission sino-
grams having an average of 2M counts per scan, and performed
FBP reconstruction of the emission images. For the ACFs we used
the empirical mean of the transmission scans, to ensure that only
emission noise affected the reconstructions. (Since the emission
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noise is inversely proportional to the square root of the total counts
per scan, one could also predict emission noise for other count lev-
els.) Table I shows the empirical standard deviations for different
ROIs due to emission noise. These simulations illustrate the rela-
tive effects of emission and transmission noise.

VII. C ONCLUSIONS

AC events are a primary source of background noise in positron
emission tomography. After the AC events are precorrected, the
measurement statistics are no longer Poisson and the exact log-
likelihood is complicated. We compared different approximations
for the exact log-likelihood using experimental PET transmission
scans. The WLS method leads to systematic bias and penalized-
likelihood methods based on the ordinary Poisson (OP) model lead
to higher standard deviation (on the average about 11%) than our
proposed shifted Poisson (SP) model which matches both the first
and second moments of the measurement statistics.

We also investigated the reconstruction results for saddle-point
(SD) approximation that we introduced previously [14, 15]. We
observed very close agreement between the SD method andtrun-
catedexact log-likelihood foreach reconstruction in our simula-
tions. However, for the transmission scans reported here the dif-
ference between the SD and the SP method were not statistically
significant. Thus we did not include the reconstruction results from
the SD method in this paper. The SP method is particularly attrac-
tive since it requires comparable computation to the OP method but
has reduced variance. We plan to compare the SD and SP methods
to the uniform Cramer-Rao bounds [27].

We applied the covariance approximations to the attenuation
map estimates from OP method and SP method and demonstrated
that these approximations agree with the empirical results from ex-
perimental PET transmission scans. These approximations can be
used to determine the variance of transmission reconstruction to
investigate parameters of interest (e.g. regularization parameters)
and can supplement simulations.

We also developed approximations to analyze the propagation of
noise from attenuation maps into emission reconstruction. For this
purpose we assumed noiseless emission measurements and devel-
oped approximations for the covariance of emission reconstruction
with ACFs computed from noisy attenuation maps. The approxi-
mations agree with the empirical results and describe the propaga-
tion of noise from attenuation maps into emission reconstruction.

Both approximations and empirical results showed the interest-
ing property that when the transmission scan noise was propagated
into the emission images, the relative differences in variances be-
tween the OP model and SP model can be even greater than when
one considers the noise in the attenuation maps alone. The ACFs
computed from the OP model yielded, on the average, about 20%
higher standard deviation than the SP model, in the reconstructed
emission images, compared with 11% differences in the attenua-
tion maps.

We plan to apply the proposed methods to emission tomography,
where even higher AC rates than the transmission tomography are
common, particularly in 3D PET. Moreover, in 3D PET, very large
data sets may deter separate acquisition of prompt and delayed co-
incidences, so the real-time subtraction methods are usually used.
The potential benefit of the proposed models may be even greater

in emission studies.
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[24] H. Erdoğan and J. A. Fessler, “Scan time optimization for post-injection PET
scans,” inProc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 3, pp. 1842–6,
1998.

[25] J. A. Fessler, “Resolution properties of regularized image reconstruction
methods,” Technical Report 297, Comm. and Sign. Proc. Lab., Dept. of EECS,
Univ. of Michigan, Ann Arbor, MI, 48109-2122, August 1995.

[26] J. A. Fessler, “Approximate variance images for penalized-likelihood image
reconstruction,” inProc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pp.
949–52, 1997.

[27] A. O. Hero, J. A. Fessler, and M. Usman, “Exploring estimator bias-variance
tradeoffs using the uniform CR bound,”IEEE Tr. Sig. Proc., vol. 44, no. 8, pp.
2026–41, August 1996.


