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Abstract—This paper analyzes and compares image reconstriarmance [4, 5] and anatomical localization [8]. These attenuation
tion methods based on practical approximations to the exact logaps are usually reprojected to form attenuation correction factors.
likelihood of randoms-precorrectedET measurements. TheUsing the conventional filtered back projection (FBP) method for
methods apply to both emission and transmission tomograptgconstruction of attenuation maps results in biased estimates when
however in this paper we focus on transmission tomography. Time transmission counts are small [9]. Penalized-likelihood meth-
results of experimental PET transmission scans and variance @gs, which incorporate the measurement statistics appropriately,
proximations demonstrate that the “shifted Poisson” (SP) methawbid this bias problem.
avoids the systematic bias of the conventional data-weighted leadh PET, accidental coincidence (AC) events occur when two
squares (WLS) method, and leads to significantly lower varianpghotons that originated in separate annihilations are detected
than conventional statistical methods based on the log-likelihowithin the coincidence timing window [2, 10]. In transmission
of the ordinary Poisson (OP) model. We develop covariance agans, photons that originate from different transmission sources
proximations to analyze the propagation of noise from attenuatigod or ring sources) cause most AC events. The effect of AC
maps into emission images via the attenuation correction factex@nts is most severe for rays with low true coincidence rates [11],
(ACFs). Empirical pixel and region variances from real transuch as those traversing the thorax. Most PET scans are compen-
mission data agree closely with the analytical predictions. Bathted for AC events by real-time subtraction of delayed-window
the approximations and the empirical results show that the perfoeincidences. This precorrection yields the proper ensemble mean,
mance differences between the OP model and SP model are dugndestroys the Poisson measurement statistics [10]. To preserve
larger when considering noise propagation from the transmissi@oisson measurements, one should acquire separate transmission
images into the final emission images than the differences in tired randoms sinograms [5, 12]. Howeveecause of hardware
attenuation maps themselves. and data storage space limitations (and historical momentum),

Index Terms: Penalized maximum likelihood image reconmost PET centers currently collect and archive only the randoms-
struction, randoms-precorrected PET, covariance approximatiom®corrected data.

statistical approximations. The exact log-likelihood for randoms-precorrected data con-
tains infinite summations, so we have previously developed a few
I. INTRODUCTION practical approximations [13—-15]. The three simplest of these ap-

. . . o __proximations are the focus of this paper: the data-weighted least

To obtain accurate images of the radloactlwtydlstnbutlonW|th|£l?ualres (WLS) method, the ordinary Poisson (OP) model (which

a patient using emission CO”FF’“tEd tomogr?ph% one must Gl res the AC corrections), and the “shifted” Poisson (SP) model
rect for the effects of attenuation [1] and accidental coincidenc§fich matches both the first and second-order moments of the
[2]. The measured attenuation correction method is routinely pgta, e o the underlying statistics of the precorrected data [13-15].
formed in positron emission tomography (PET) centers, whagga,q,q 2p computer simulation studies of penalized-likelihood

transmission scans are used to measure the unique attenuation %@ﬂ%a’tors based on these approximations showed that the WLS

acteristic of each patient over the slices of interest [3]. Since PElathod leads to a large systematic negative bias and the SP method
transmission scans are performed essentially to compute atteny

. . . ! R ds attenuation maps with lower reconstructed image variance
tion correction factors rather than being the primary medical int€f;2 - the OP method at matched spatial resolutions [15].

est, it is desirable to minimize their durations. Short scans suffer, this paper, we compare the WLS, OP, and SP methods using
from limited nymber of cognts especially for thg projectilons Pasgno experimental PET transmission scans of an anthropomorphic
ing through high attenuation regions of the patient, which resuffg, . ‘nhantom acquired with a Siemens/CTI 931 PET scanner.
in propagation of unwanted errors and artifacts into emission ifgq empirical results from this study are consistent with the previ-
ages [4, 5]. Smoothing of the transmission data before compyfis simylation results: a large bias for the WLS method, and lower
ing the attenuation correction factors leads to resolution misma iance for the SP method. We also implemented and evaluated
between transmission and emission data [6, 7]. Reconstructife,iremely precise approximation to the exact statistical model
images of attenuation distributions (attenuation maps) from noig¥sey on truncating the infinite summations in the log-likelihood.
transmission scans has desirable properties such as better no'Swﬂéugh the individual images reconstructed by the SP method

This work was supported in part by NIH grants CA-60711 and CA-54362. Tta1d theruncatedexact log-likelihood method differed slightly, the
first author was supported by TUBITAK-NATO Science Fellowship for doctoralifferences in the ensemble means and variances were insignifi-

studies. cant. We also investigated the reconstruction results for the saddle-
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point (SD) approximation that we introduced previously [14, 15),4¢1% are statistically independent Poisson random variables with
We observed very close agreement between the SD method arednsy? andyd respectively as:

truncatedexact log-likelihood for each reconstruction in our simu- rom _ _

lations. However, for the transmission scans reported here the dif- E{ypomety = gh(u) =bpe W 4, 2)
ference between the SD and the SP method were not statistically E{ydd>l = g =r,, Q)
significant, so we did not include the SD reconstruction results in M , )
this paper. Thus the simple and practical SP approximation appddh€eln (1) = >_j— an;u; is the total attenuation betweeith
adequate for routine use on randoms-precorrected PET transiifi€ctor pair. The,,; > 0 factors have units of length and describe
sion data. the tomographic system geometry. Thg > 0 factors denote the

In addition to evaluating the attenuation maps themselves, Nk scan counts and the > 0 factors denote the mean of AC
also investigated the propagation of noise from the reconstruc®gnts- . el N ,
attenuation maps into emission images reconstructed using thg "ceYx > andY; < are statistically independent and Pois-
FBP method. Again the SP method leads to lower variance thah"
the OP method. Interestingly, the difference in variances in the E{Y,} = ) —7% =ben® 2 o), @
emission images was even greater than in the attenuation maps. Var (Y.} — P oy o) 4o 5

To corroborate thempirical studies described above, we have ar{Yn} = p(u)+ 7, =bne + 2rn. ()
also developednalyticalapproximations to the reconstructed imtety = [y, ..., yn] be an observed realization Bfin (1). Since
age covariance based on the techniques developed in [16]. Themeasurements are independent, one can express the exact log-
covariance approximations for the OP and SP methods, which higdlihood as follows [15]:
previously been evaluated only with simulated data in [16], were N
found.to agree well with th_e e_mplrlcal variance computed from the L) = Z B (L (12), ) (6)
experimental PET transmission scans. ot

In this paper we also develop analytical approximations for . . .
the propagation of noise from attenuatign mapsf)ipnto reconstruc%laere' ignoring constants independeng.diroughout:
emission images. To isolate the effect of transmission noise inthe (U (1), ) 2
resultant emission image, we consider noise-free emission mea- " 77"

surements and develop approximations for the covariance of emis- ) 72 (M)]ynm m
sion images reconstructed using ACFs computed from noisy atten- log Z ﬁ i' — (@) +r), (@)
uation maps. These approximations describe the propagation of m=|—yn]+ LA

noise from attenuation maps into emission reconstruction. We a|$Qere |z|4 =z if z > 0 and is0 otherwise.

show that the predicted variances agree with the empirical resultgince image reconstruction is ill conditioned, we combine

from the experimental PET transmission scans. a roughness penalty(x) with the log-likelihood to form a
Section Il reviews the measurement model and exact Iqgsnalized-likelihood objective function:

likelihood, and Section IIl describes the log-likelihood approxi-

mations. Section IV describes the empirical results for attenuation ®(u) = L(p) — R(p). (8)

map reconstruction. Sections V and VI describe the covariance g goal is to estimate by maximizing® (1)

proximations and examine the propagation of noise into the emjig;,q.

sion images.

over the nonnegative

i = argmax P(u). (9)

II. MEASUREMENT MODEL AND EXACT LOG-LIKELIHOOD #20

In conventional PET scans the system detects coincidence evelifg® the exact log-likelihood function (7) is complicated, we de-
during two time windows: “prompt” window and “delayed” win-SCTiP€ approximations to the exact log-likelihood.
dow, and the data are precorrected for AC eventsehirtimesub-
traction of delayed window coincidences [10]. Each such precor-
rected measurement is the difference of two independent Poissolft this section, we review three practical approximations to
random variables, which compensates in mean for AC events, blr): the WLS model, the conventional OP model, and the SP
which also increases the measurement variance. model appI’OXimation that we introduced preVioUSIy [13—15] All

LetY = [3,...,Yn]’ denote the vector girecorrectedmea- three log-likelihood approximations have the form (6) for different
surements, where *” denotes vector and matrix transpose. Thehoices forhu, (I, yn).
precorrected measurement for thil coincidence detector pair is:

I11. APPROXIMATIONS TO THEEXACT LOG-LIKELIHOOD

A. Quadratic Approximations

Y, = yprompt _ ydelay (1) A quadratic approximation to the exact log-likelihood function

[9,17] leads to the data-weighted least squares objective function
where YProrpt and Y% are the number of coincidencesyWLS(,,) of the form (6) with

within the prompt and delayed windows, respectively. Let
[u1, - .., par]’ denote the vector of unknown linear attenuation co- yn > 0

WLS _ ’
efficients. For transmission scans, we assume Yat™r* and h (L yn) = . 2 o3 0 (10)
) Yn )
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wherel,, = log(%) is the method-of-moments estimatel pfy).
The weighting facto? = % is an estimate of the variance

of I, (y, ) based on a second-order Taylor expansiok{-0faround

Jn. The residuals corresponding to projections with large values
of y,, are weighted more heavily in (10). These rays pass through
less dense objects and consequently have higher SNR values. Al- *
ternatively, the choice af2 = 1 would result in the unweighted
least-squares (ULS) approach, which would lead to estimates with
much higher variance.

B. Ordinary Poisson (OP) Approximation

The conventional approach is to ignore the random coincidences
by assuming tha{Y,,})"_, are distributed as independent Pois-
son random variables with meags(x) given by (2). The log-
likelihood LOF (1) corresponding to this OP approximation is of
the form (6) with

hOP (1, yn) = yn log(bpe™) — bpet. (11)

C. Shifted Poisson (SP) Approximation _ . _ _ _
] ) Fig. 1. Reconstruction of attenuation map for the slice of interest from 5 hour
A better approach is to match both the first and second momentsransmission scan.

by approximating the random variabl€¥, + 2r,,}2_, as having
Poisson distributions with meadg, () + 2r,}. This idea leads

0 the SP approximatiohS () [13—15] of the form (6) with Previously we have shown that a time-scaled version of delayed-

coincidence events acquired during the blank scan is a good esti-
SP _ -1 _ -1 mate for ther,, factors. (Even using a single scalar constant works
i (L yn) = (yn o+ 2ra) log(bre™ 4 2rn) = (bue™ +2rw). (12) fairly well [15].) Note that these estimates of the factors are
Although bothZ VS and LSP match two moments of the measureused essentially for estimating the variance of the randoms precor-
ment distribution, in WLS the second momentfy,,) is “fixed” rected data in (5), not for performing randoms precorrection. In
to 52 independently of:, whereas in the SP model the momentgur experiments the,, factors were unavailable for both the trans-
vary with,, (1) appropriately. mission and blank scans, because the data was precorrected for
We have previously shown both analytically and empirically ifRndoms. Thus, to estimate thgfactors for use in (12), we sim-
simulations that the SP model better agrees with the exact |®d scaled the blank scan so that its sum corresponded to the total
likelihood than either the WLS or OP model [13] and results ifumber of AC events (this scalar is available in the transmission
lower variance [14, 15]. Next we present experimental results §&2an file header) with no additional processing. Despite this possi-

ing estimators based on the above approximations. bly being a suboptimal approach, the SP method still yielded lower
variance attenuation maps than the OP method.
IV. EXPERIMENTAL RESULTS For each transmission scan an estimate of the attenuation map

We applied penalized-likelihood estimators based on the abd¥@S reconstructed using 20 iterations of the grouped-coordinate
approximations to reconstruct attenuation maps from transmissfagent algorithms [15, 19] applied to the objective funPct|on§ (10),
scans acquired with a Siemens/CTI 931 PET scanner. To stéd) and (12). Althougi.%% (u) is globally convex,L" () is
the bias and variance properties of these estimators, we colle@8ty locally convex [9]. This problem is not unique to the SP
100 two-minute transmission scans of an anthropomorphicthofﬁﬁ_th‘)d? it is a general problem with transmission reconstruction
phantom (Data Spectrum, North Carolina). Fig. 1 shows the f&ith nonzero background), even when prompt and delayed events
constructed attenuation map of the slice of interest from a 5 h@if available separately [9]. Recently amotonic algorithm has
transmission scan. In each two-minute scan there weetat.5M Peen developed that is also suitable for the SP objective func-
prompt coincidence events and 0.7M delayed events for the sk [20]. In our simulations, we initialized the iterations with a
of interest. The sinograms had 192 radial bins and 256 angles Gig°lution-matched FBP image and always observed monotonicin-

formly sampled over 180 degrees. We approximated the systefase ind for all cases. _
geometry with 3.1 mm wide strip integrals and 3.1 mm ray spac-We computed both the sample mean and sample standard devia-

ing. The reconstructed images were 128 by 128 with 4.7 mm pgpn images for all methods. Fig. 2 ;hows horizontal prqfiles qfthe
els. For regularization, we used the modified quadratic penaltySnPle mean images. These profiles show that Wisystemati-
described by (30) and (35) in [18]. This penalty improves the resg@lly negatively biased [9], whereas the OP and SP models appear
lution uniformity and enables matching of the spatial resolutions € Of such systematic bias. As explained in Appendix A of [9],

different methods. We matched the resolution of the reconstructB§ 'ogarithm required by the WLS method negatively biases the
transmission images for all methods to 2.65 pixels FWHM. reconstructed transmission images and this bias increases as counts
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Profile through sample means from 100 2 minute scans Ratio of standard deviation of OP method to SP method
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Fig. 2. Horizontal profile 66 through the sample mean images for abdomen phan-
tom. The WLS method has a systematic negative bias. The ordinary Poisson
(OP) and shifted Poisson (SP) methods appear free of this systematic negative
bias. Fig. 4. Ratio of sample standard deviation images of OP method to SP method

from 100 transmission scans.

decrease. Since the rays traversing the center of the transmission Histogram of he fatio of standard deviation of OPmethod to SP method
phantom have the lowest counts, these regions show the largest
negative bias.

Standard deviation image of SP method
0.0125

Fig. 5. Histogram of the ratio of standard deviations in reconstructed attenuation
maps. The ordinary Poisson (OP) method yields, on the average, about 11%
higher standard deviation than the proposed shifted Poisson (SP) method.

counts, and these approximations predict that the ratio of standard
Fig. 3. Sample standard deviation image of SP method from 100 ransmisdifaviation of different estimators remains constant independent of
scans. total counts.

Fig. 3 shows the sample standard deviation image for the SPV. COVARIANCE APPROXIMATIONS FORTRANSMISSION

method. To study the variance, we computedrdte of sample TOMOGRAPHY

standard deviation image of OP method to SP method, shown ifone can use analytic approximations proposed in [16] to pre-
Fig. 4. Fig. 5 shows the histogram of the standard deviation it the covariance of penalized-likelihood reconstruction meth-
tios over all interior pixels. The OP model yields, on the averagggs without exhaustive simulations. In [16] these approximations
about 11% higher standard deviation than the SP model. Althougsre shown to agree with empirical results from simulated PET
the absolute standard deviation values could be decreased by us#gs (without randoms precorrection) even for the highly nonlin-
longer scan durations, we expeetative standard deviations of ear transmission reconstruction methods. Here, we apply the co-
OP and SP estimators to remain approximately constant for highgfiance approximation presented in [16] to the OP and SP meth-

counts [15, 16]. This follows from the fact that analytic approgds and compare the results with experimental randoms precor-
imations (15)-(16) in [15] become more accurate with increasing
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rected transmission data. (21). Overall computation for computing the variance of each pixel
We can express both the OP (11) and SP (12) log-likelihood apas roughly equivalent to one maximization®f.). Fig. 6 and
proximations in the form (6) with Fig. 7 show the comparison of the empirical standard deviation and

z z the approximate standard deviation of pixels through a horizontal
hn(lsyn) = (Yn + dn) log(bne™" +dn) — (bne™ +dn)  (13) cross section through the attenuation map for OP method and SP
method. The predicted variance agrees well with the empirical re-

and sults both for OP and SP methods. These results show that even
A (0, oP for two-minute transmission scans analytical approximations can
dn = { 9, SP (14)  pe used reliably. For longer scans with higher transmission counts

the agreement should be even better [16].
Combining the log-likelihood approximation with a roughness
penalty forms the penalized log-likelihood objective functiaiu) | Standard deviaton of OP estmator for ransmission reconstruction
asin (8) 0.012
A first-order Taylor expansion gi(Y) = arg 1,513()){ D(p,Y)

around? 2 E{Y} leads to the following approximation for the
covariance ofi [16]:
Cov {ji} ~ [-V2®(,¥)] " V'@ (i, ¥)Cov {¥}

0.006 -

! [vllq)(ﬂ:Y)]/ [—VQO(I)([L,Y)]_l, (15)
0.004 - -
where —
AN o B U
i = argmax ®(u,Y). (16)
N 0.002F B
Following [16]:
) R e
~-V¥*%(i,Y) = H=A diag{u,} A+ BR(1) (17)
11 ~ N /7.
Vie(n,Y) = —A' diag{c,} (18) Fig. 6. Empirical standard deviation (with error bars) and the approximate stan-
) . dard deviation of OP method for pixels along horizontal profile 90 through the
whereA = {a,;} is the sparse system matrix, and attenuation map.
JAN dn (Jn (/v‘true) +dn)\ .
U;n = <1 - (gn (/:L) + dn)Q yn (M) ’ (19) ‘ Standard devi‘a!ion of SP es!ir‘nator for transm‘\ssion recons!rL:c!ion
A UYn (ﬂ) 0.012 B
c = TN g (20)
" Un () +dn

0.01

and R(n) = V2R(p). Substituting (17), (18) an@ov {Y} =
diag{y, (u*™"¢) + 27, } into (15) yields the following approxima-
tion for the estimator covariance:

0.008 -

Cov{i} ~ H'A diag{v,} AH™ (21) 1
with P true 0.004 B
Un é yn (/’L) Eyn (M ) + QTn) . ;é; épﬂp;ﬁéiarration
(Gn (1) + dn)? 0.002}- R
For the experimental transmission data we predicted the vari-
ance ofi°F and 5P using the above approximations. Follow- 0 ; ‘ ‘ ‘ L LBeersq
ing the “plug-in” approach of [16], we replaced eagh(j:) and ° * © Pl . 0

¥ (7€) in (21) with the corresponding sample mean of the 100
transmission sinograrhs We used the preconditioned Conjugatéig. 7. Empirical standard deviation (with error bars) and the approximate stan-

gradient method [21 22] to compute selected diagonal elements 0]«dard deviation of SP method for pixels along horizontal profile 90 through the
’ attenuation map.

L Although replacingy, (1) andg, (utt¢) in (21) with the sample mean of the
transmission sinograms is impractical, it enables us to compute quickly the approx-
imations for many pixels in the reconstructed image. In Section VI we presentthd. N OISE PROPAGATION INTO EMISSION RECONSTRUCTION
results of variance approximations for a set of pixels for noise propagation into . . . . .
emission images using theue plug-in approach (where we replags (/1) and In this section we derive approximate expressions to analyze the

n (u*r2°) with noisy measurements). There we show that the predictions agﬁl“opagation of noise from the attenuation maps through the ACFs
agree well with empirical standard deviation values.
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into reconstructed emission images. This analysis describes dhieéthe nonnegativity constraint [25]. The QPULS estimator is de-

effects of transmission noise on the final emission images, whiiied as [26]:

may assist studies of the tradeoff between emission and transmis- .

sion scan timese.g. [23, 24]. Dahlbom and Hoffman [11] have AQPULS = arg mAinHé — GA|I> + BN R,

analyzed emission image noise for the special case of uniform

density disk phantom (assuming both emission and transmission

images are reconstructed using FBP method). The covariance art)ﬁ
AN . . Wi

proximations presented here apply to arbitrary objects, for attenu- » S wi, k=j

ation maps reconstructed by penalized-likelihood estimators with R,[j, k] = { IR iy (26)

quadratic regularization. ik I

- [G'G+PR,) 7 Gz, (25)

wherew;, = 1 for horizontal and vertical neighboring pixels and

A. Theory 0 otherwise. Since this estimator is linear, its covariance is:
Toisolate the effects of transmission noise on the resultant emis- < QPULS
sion images, we consider noiseless emission measurements and we Cov {)‘ } =
con5|d§r the FBP meth_od for.recon.structmg emission images after [G’G n ﬁRo] <1 & Cov e [G’G n ﬁRo] -1 @7)
correcting for attenuation using noisy attenuation maps. We as-
sume the noiseless emission measurements are: We must findCov {2} to complete the above approximation. For
(e 29 simplicity we first make the following approximation:
Zn — € Pns ( )
where smooth {6_1”’(”“‘)9)%} ~ e~ " (Wsmooth {p,} , (28)
M
Pn = gk wherejz is defined in (16). We plug this into (23):
k=1 N .
%, ~ et (M e=ln(Mgmooth {pn}, (29)

is the attenuation-free projection of the emission image and where
N , . :
A = [A1...Ap] denotes the vector of rqdlo isotope concentration, | approximat€ov {2} as:
G = {gni} represents the tomographic system response includ-
ing the geometric system model, ray dependent facers de- Cov{z} ~ D Cov{t()} D', (30)
tector efficiency factors, dead-time, radio-isotope decay) and pixel
dependent factors such as spatial variations in sensitivity. Ang A . ANV i N Lo (2)—1n (&
truey ;- . eret(pn) = [t1(@)...t with ¢ = ()= (R) and
e~ (™) (with 1(pt1e) = Aptue) represents the survival proba- A (AM) [ 1%) ) N ()] n(i) = e
bility for the nth ray. The noiseless emission measuremen(@2) # = E {F‘}_ andD = diag{smooth {_pn}}- - .
are corrected for attenuation using ACFs based on the attenuatiofSInd first-order Taylor expansion arouid we approximate
map estimateg. If one directly corrects the emission measurd=ov {t(i)} as:
ments for attenuation by multiplication, the resultant images have N N p
some artifacts because of the resolution mismatch between emis- Cov {t(j1)} ~ A Cov {ji} A'. (31)
sion aqd t.rans.mlssmn sinograms [6, 7]. Th'us, one needs.to quﬁiﬂhlly, plugging (30) and (31) into (27) yields
the emission sinogram to the same resolution as the survival proba-
bilities. We can write the attenuation-corrected emission sinogram Cov {S\QPULS} ~
as follows:
) G'G + BR,] " G'DACov {ji} A'DG [G'G + SR, . (32
%, = (" smooth {e_l"(” )pn} , (23) [ & O] ) [ b o] (32)
The variance of the estimated total activity within a region of in-
For FBP reconstruction of the emission images we consider tagest (ROl)j.e.§, = ¢/ AQPULS is simply:
constrained least-squares (CLS) window corresponding to (50) of
[25] Var {é } = ¢e'Cov {XQPULS} e 33
sinc(ku) / sinc(u) [0 1] (24) ‘ ’ (33)
. y U [P )
sinc® (ku) + au? 2 wheree is a column vector of length/ that equals unity for the

whereu denotes Spatia| frequency in Cyc|es per radial San}‘pile, piXElS in the region of interest and zero elsewhere. To within
the ratio of the strip width to the pixel size of the system moddf)e accuracy of the preceding approximations, (32) shows the first-
anda is linearly related tg3 below [25]. (The detector responsefder propagation of the noise from the attenuation mapto

is a rectangular function with frequency resposise:(ku).) Di- the emission reconstruction, and (30) also shows that{/} is
viding by sinc(u) in the numerator compensates for the linear ificaled quadratically by the attenuation-free emission projections
terpolation step of the FBP method. The FBP algorithm with tte (22) before propagating into emission image covariance (since
above smoothing window (24) is essentially equivalent to quadratiis sandwiched betweeP matrices).

cally penalized unweighted least-squares (QPULS) estimator with-
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) o ) ) ) _Fig. 9. Empirical sample mean of emission images reconstructed with ACFs based
Fig. 8. Emission phantom with several rectangular regions for noise computation. on 100 different estimates ¢f¥.

Standard deviation image of SP method

B. Results

We simulated noiseless emission measurements (22) for the
emission phantom shown in Fig. 8, using the same system spec-
ifications as the experimental transmission data. (The rectangular
regions numbered 1 through 5 are regions of interest used at the
end of this section). The spine, lungs, soft tissue, and heart had
relative radioactivity concentrations of 0, 1, 2 and 4 respectively.
The effects of attenuation were included in fhgs by calculat-
ing survival probabilities from an attenuation map reconstructed
from a five-hour transmission scan. To reconstruct this attenuation
map we used the very precise saddle-point (SD) approximation that
we introduced previously [14, 15] along with an edge-preserving
penalty function [19].

After smoothing the noiseless emission measurements to match
the resolution of the transmission data [6, 7], we applied ACFs
computed from the noisy attenuation map estimat&s and 5"
that were reconstructed from each experimental transmission scan.
We reconstructed emission images using FBP with the CLS win-
dow (24). Fig. 9 shows the sample mean emission image Wi§. 10. Sample standard deviation image of emission reconstruction with ACFs
ACFs based on the SP method computed from 100 two-minute based on SP method.
transmission scans as explained in Section V. (The mean image

of OP method is not shown since it was very similar to that of ﬂ}:%mpared to empirical variances described above to the variances
SP method.) L predicted by (33). We used the preconditioned conjugate gradi-
Fig. 10 shows the sample standard deviation image of the method to compute (33) for a set of pixels in the reconstructed
emission reconstructions with ACFs based on the SP method.emission image. We determined the element&f {/i} in (32)
study the noise due to d'|f'fer.ent methods, we computedtie Pf two different ways: one way used the approximation (21); the other
sample standard deviation images of emission reconstruction ngy used the empirical covariance of the 100 independent attenu-

ACFs based on the OP method and SP method, shown in Fig. ddon map reconstructioAsAlthough replacingCov {4} with an
Fig. 12 shows the histogram of the standard deviation ratios, over

all interior pixels. Attenuation correction based on the OP modetinstead of computing the empirical covariance directly from the independent
yielded about 20% higher standard deviation than the SP modeP§pnuation map reconstructions, we used the following computationally more effi-
average cient method. It can be seen from (32) and (33) ¥att {6 } = Var {S} where

. . . JAN “ A _ . . .
To assess the accuracy of our analytical approximations, Weé c'fiandc’ = ¢ [G'G + BR,] ' G’ DA. Using the preconditioned conju-
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Ratio of standard deviation of OP method to SP method Standard deviation of OP estimator for emission reconstruction
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Fig. 13. Empirical standard deviation (with error bars) and the approximate
standard deviation of OP method (using both empirical transmission variance

Fig. 11. Ratio of sample standard deviation images of emission reconstruction with @nd approximate transmission variance) for pixels along horizontal profile 90
ACFEs based on OP method and SP method. through the reconstructed emission images.

Histogram of the ratio of standard deviation of OP method to SP method Standard deviation of SP estimator for emission reconstruction
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Fig. 12. Histogram of the ratio of standard deviations in the reconstructed emission . . ) )
images with ACFs based on OP model and SP model. Attenuation correctidg: 14. Empirical standard deviation (with error bars) and the approximate stan-

factors based on the OP model yielded, about 20% higher standard deviation dard deviation of SP method (using both empirical transmission variance and
than the SP model on average. approximate transmission variance) for pixels along a horizontal profile 90

through the reconstructed emission images.

empirical covariance is impractical for routine use, it helps estab- . : . .
lish the accuracy of approximation (33). Figures 13 and 14 Cor%:_)pr?ach.for comp.utmg (21), |nwh|ch we replacgd epel) and
(ut1€) in (21) with the corresponding noisy sinogram element

pare the empirical standard deviations and the approximate stin : L
dard deviations of pixels along a horizontal profile through the: We computed variance approximation (33) for each of the 100

Qinograms. Table | shows the sample means (and standard errors)

emission images. The analytical approximations for transmissi . . .
noise propagation agree well with the empirical results, and coc%fthe plug-in predicted variances for each ROI. The OP model

firm the reduction in noise for SP method compared to OP meth heék;i? tticc):zlg? h'%iii;?:::? (rjeegl\?vtle(ljlnvt/ri]t?]ne?np inrqiggle\le,,t:;]g;rlcli
Table | shows the percent standard deviation of the activi y bp 9 P

within the five different 3 by 3 pixel ROIs shown in Fig. 8 for the viation values.

reconstructed images, with ACFs based on the OP method and ?E?}rscﬁglﬁ)ﬁr'sa%n;\ferfaoseeso}lvzel\i'iqgﬁt;d t?oszglr?yaer:gssgfnoﬂrr:gc-j
method. Foreach ROI, we also implemented the practical plug- g 9 P ' P

BP reconstruction of the emission images. For the ACFs we used
gate gradient method [21,22], we pre-compute the row vetimnly once and then the empirical mean of the transmission scans, to ensure that only

compute the scala$ for each independent attenuation map reconstruction. Aginission noise affected the reconstructions. (Since the emission
then finally the sample variance Sfis computed.
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noise is inversely proportional to the square root of the total couimisemission studies.
per scan, one could also predict emission noise for other count lev-
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Region OP Method SP Method Emission Noise

Empr. Std.| App. Std. App. Std. Appx. Std. | Empr. Std. | Appx Std. App. Std. App. Std.
(emp trvar) | (apptrvar) (plug-in) (emptrvar) | (app trvar) (plug-in)

1 11.35 11.56 12.28 12.234+0.14 10.20 10.39 11.34 10.88+0.10 2.60

2 12.04 12.14 10.82 10.74+0.14 10.93 10.98 9.80 9.39+0.09 212

3 16.87 17.09 14.74 15.07+0.22 15.68 15.91 14.32 13.99+0.16 2.79

4 25.55 25.72 23.86 23.5940.27 24.85 25.34 23.53 22.5440.20 4.66

5 8.89 8.89 9.63 9.74+0.10 7.30 7.35 7.61 7.49+0.07 247

TABLE |

EMPIRICAL PERCENT STANDARD DEVIATION AND THE APPROXIMATE ANALYTICAL PERCENT STANDARD DEVIATION OF EMISSION RECONSTRUCTION USING
ACFs BASED ON THEOPMETHOD AND SPMETHOD (USING BOTH EMPIRICAL TRANSMISSION VARIANCE AND APPROXIMATE TRANSMISSION VARIANCE AND
PLUG-IN TRANSMISSION VARIANCE) FOR DIFFERENT REGIONS SHOWN INFIG. 8. LAST COLUMN SHOWS THE EMPIRICAL PERCENT NOISE OF THE REGIONS DUE
TO ONLY EMISSION NOISE FOR TWO MILLION COUNTS PER EMISSION SCAN
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