
IEEE TRANSACTIONS ON MEDICAL IMAGING. TO APPEAR. 1

Fast Monotonic Algorithms for Transmission Tomography
Hakan Erdo˘gan and Jeffrey A. Fessler

Department of EECS, University of Michigan
4415 EECS Bldg., 1301 Beal Ave. Ann Arbor, MI 48109-2122

email: erdogan@umich.edu, Voice:(734) 647 8390, FAX:(734) 764 8041

Abstract

We present a framework for designing fast and monotonic algorithms for transmission tomography penalized-likelihood image reconstruction. The new
algorithms are based on paraboloidal surrogate functions for the log-likelihood. Due to the form of the log-likelihood function, it is possible to find low
curvature surrogate functions that guarantee monotonicity. Unlike previous methods, the proposed surrogate functions lead to monotonic algorithms even for
the nonconvex log-likelihood that arises due to background events such as scatter and random coincidences. The gradient and the curvature of the likelihood
terms are evaluated only once per iteration. Since the problem is simplified at each iteration, the CPU time is less than that of current algorithms which
directly minimize the objective, yet the convergence rate is comparable. The simplicity, monotonicity and speed of the new algorithms are quite attractive.
The convergence rates of the algorithms are demonstrated using real and simulated PET transmission scans.

I. I NTRODUCTION

Attenuation correction is required for quantitativelyaccurate image reconstruction in emission tomography. The accuracy of this
correction is very important in both PET and SPECT [1]. Transmission scans are performed to measure the attenuation characteristics of
the object and to determine attenuation correction factors (ACFs) for emission image reconstruction. Conventional smoothing methods
for ACF computation are simple and fast, but suboptimal [2, 3]. For low-count transmission scans, statistical reconstruction methods
provide lower noise ACFs. However, a drawback of statistical methods is the slow convergence (or possible divergence) of current
reconstruction algorithms. This paper describes fast and monotonic algorithms for penalized-likelihood reconstruction of attenuation
maps from transmission scan data. These reconstructed attenuation maps can be reprojected to calculate lower noise ACFs for improved
emission image reconstruction.

Statistical methods for reconstructing attenuation maps from transmission scans are becoming increasingly important in thorax and
whole-body PET imaging, where lower counts and short scan times are typical. 3-D PET systems also require attenuation correction,
which can be done by reprojecting 2-D attenuation maps. SPECT systems with transmission sources are becoming increasingly available
where statistical algorithms can be efficiently used for attenuation map reconstructions. For low-count transmission scans, the non-
statistical FBP reconstruction method systematically overestimates attenuation map coefficients, whereas data-weighted least squares
methods (WLS) for transmission reconstruction are systematically negatively biased [4]. Byaccurate statistical modeling, penalized-
likelihood reconstruction of attenuation maps eliminates the systematic bias and yields lower variance relative to linear methods. Hence,
we focus on penalized-likelihood image reconstruction rather than WLS in this paper.

There are many reconstruction algorithms based on the Poisson model for transmission measurements. The expectation maximization
(EM) algorithm [5], which led to a simple M-step for the emission problem, does not yield a closed form expression for the M-step in
the transmission case [6]. Modifications of the transmission ML-EM algorithm [7–9] as well as algorithms that directly optimize the
penalized-likelihood objective [3,10–13] have been introduced. Some of these algorithms seem to converge rapidly in the convex case.

However, up to now, no practically realizable monotonic (or convergent) algorithm has been found for the penalized-likelihood
problem when the objective is not convex. The negative log-likelihood is nonconvex when there are “background” counts in the data.
This is unavoidable in PET and SPECT, due to the accidental coincidences in PET and emission crosstalk1 in SPECT. The assumption
of no background counts may be valid in X-ray CT.

In this paper, we present a new algorithm which is guaranteed to be monotonic even when the objective function is nonconvex. This
algorithm depends on paraboloidal surrogate functions for the log-likelihood which transform the problem into a simpler quadratic
optimization problem at each iteration. The transformed problem at each iteration is similar to a Penalized Weighted Least Squares
(PWLS) problem, and thus has a familiar and simple form. This quadratic problem need not be solved exactly; an algorithm that
monotonically decreases the surrogate function suffices. Since evaluating the gradient and Hessian of the surrogate function is much less
costly, the CPU time per iteration is greatly reduced as compared to algorithms that directly attempt to minimize the objective function,
such as coordinate descent. Remarkably, the convergence rate is comparable to other direct algorithms. For nonconvex objective
functions, monotonicity alone does not guarantee convergence to the global minimizer when local minima exist, but it does ensure that
the estimates cannot diverge since the likelihood is bounded. Whether the transmission log likelihood has multiple local minima is an
open question.

The “surrogate” or “substitute” function idea is not new to the tomographic reconstruction area. EM algorithms can be viewed as
providing a surrogate function for the log-likelihood function by means of a statistically more informative “complete” data set which is
unobservable [5]. The conditional expectation of the log-likelihood function for this new space is often easier to maximize, having a
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1Even though different photon energies are used in simultaneous emission/transmission SPECT imaging, some emission events are recorded in the transmission energy

window due to Compton scatter and finite energy resolution.
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closed form for the emission case. This statistical construction of surrogate functions is somewhat indirect and seems to yield a limited
selection of choices. De Pierro has developed surrogate functions for nonnegative least squares problems based solely on convexity
arguments, rather than statistics [14]. Our proposed approach is similar in spirit.

The EM algorithm did not result in a closed form M-step for the transmission case [6], so direct minimization of the objective function
became more attractive. Cyclic Newtonian coordinate descent (CD,NR) [11] has been used effectively in transmission tomography.
However, coordinate descent based on Newton’s iteration for each pixel is not guaranteed to be monotonic. Furthermore, an iteration
of Newton-based coordinate descent requires at leastM exponentiations and17M floating point operations2 , whereM is the (very
large) number of nonzero elements in the system matrixA in (1) below. These exponentiations and floating point operations constitute
a significant fraction of the CPU time per iteration. Recently, Zhenget al. introduced a “functional substitution” (FS) method [15,16]
which is proven to be monotonic for transmission scans with no background counts (ri = 0 in (1) below). Like coordinate descent,
FS algorithm cyclically updates the coordinates of the image vector,i.e. the attenuation map values for each pixel. However, instead of
minimizing the original complex objective function with respect to each parameter, FS algorithm minimizes a 1-D parabolic surrogate
function. The minimization of the surrogate is guaranteed to monotonically decrease the original objective function if the derivative of
the negative log-likelihood is concave (which is true whenri = 0) [15,16]. On the other hand, the FS algorithm requires at least2M
exponentiations and17M floating point operations3 per iteration, which means that the guarantee of monotonicity comes at a price of
significantly increased computation time per iteration for that method. Furthermore, the FS algorithm is not monotonic in the nonconvex
case of interest in PET and SPECT, whereri 6= 0.

De Pierro [17] has used a surrogate function for the penalty part of the penalized-likelihood problem for convex penalties. The
surrogate function idea was also used in several algorithms which update a group of pixel values at a time instead of sequential update
of each pixel. Examples of these types of algorithms are the convex algorithm of [18] whichupdates all pixels simultaneously and the
grouped coordinate ascent (GCA) algorithm of [12, 15] which updates a subset of pixels at a time. The surrogate functions used in
these algorithms were obtained using De Pierro’s convexity trick [17] to form a separable function that is easier to minimize than the
non-separable original objective function. The convergence rates per iteration decrease due to the higher curvature of these surrogate
functions, but these algorithms require less computation per iteration as compared to single coordinate descent [11] and are parallelizable.
Furthermore, it is trivial to impose the nonnegativity constraint with an additively separable surrogate function [12].

In this paper, we propose to use a global surrogate function for the original objective function. This global surrogate function isnot
separable, but has a simple quadratic form. The method is based on finding 1-D parabolic functions that are tangent to and lie above
each of the terms in the log-likelihood, similar to Huber’s method for robust linear regression [19]. Whereas Huber considered strictly
convex cost functions, we extend the method to derive provably monotonic algorithms even for nonconvex log-likelihood functions.
Remarkably, these algorithms requirelessCPU time to converge than the fastest algorithm introduced before (GCA of [12]) and as an
additional advantage, they are proven to be monotonic. We call the new approach to image reconstruction the “Paraboloidal Surrogates”
(PS) method.

In the rest of this paper, we describe the problem, develop the new algorithm, and present representative performance results on real
PET transmission data.

II. THE PROBLEM

The measurements in a photon-limited application such as PET or SPECT are modeled appropriately as Poisson random variables.
In transmission tomography, the means of the prompt coincidences are related exponentially to the projections (or line integrals) of the
attenuation map through Beer’s Law [6]. In addition, the measurements are contaminated by extra “background” counts due mostly to
random coincidences and scatter in PET and emission crosstalk in SPECT. Thus, it is realistic to assume the following model:

yi ∼ Poisson{bie−[Aµ]i + ri}, i = 1, . . . , N, (1)

whereN is the number of measurements,µj is the average linear attenuation coefficient in voxelj for j = 1, . . . , p, andp denotes
the number of voxels. The notation[Aµ]i =

∑p
j=1 aijµj represents theith “line integral” of the attenuation mapµ, andA = {aij}

is theN × p system matrix. We assume that{bi}, {ri} and{aij} are known nonnegative constants4, whereri is the mean number
of background events,bi is the blank scan factor, andyi represents the number of transmission events counted by theith detector (or
detector pair in PET).

We seek to find a statistical estimate of the attenuation mapµ which “agrees” with the data and is anatomically reasonable. For this
purpose, a natural approach is to use a likelihood-based estimation strategy. The log-likelihood function for the independent transmission
data is:

L(µ) =

N∑
i=1

{
yi log(bie

−[Aµ]i + ri)− (bie
−[Aµ]i + ri)

}
,

2This can be reduced to9M floating point operations if the denominator terms are precomputed similar to section 3-F in this paper.
3Precomputation of the denominator terms in FSCD would destroy monotonicity.
4The assumption that the background countsri are known nonnegative constants is an approximation. In PET, we estimate theri’s by smoothing the delayed coinci-

dences from the transmission scan [20]. Alternatively, one can use time scaled delayed coincidences from a blank scan (which are less noisy due to longer scan times) as
theri factors [21] or use Bayesian estimation techniques to estimateri’s from delayed coincidences [3,20].
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ignoring constant terms. The log-likelihood depends on the parameter vectorµ through only its projections[Aµ]i and can be expressed
in the following form:

−L(µ) =
N∑
i=1

hi([Aµ]i), (2)

where the contribution of theith measurement to the negative log-likelihood is given by:

hi(l)
4
= (bie

−l + ri)− yi log(bie
−l + ri). (3)

The proposed algorithm exploits the additive form of (2). Directly minimizing−L(µ) (maximum likelihood) results in a very noisy
estimatêµ due to the ill-posed nature of the problem. However, it is well known that the attenuation map in the body consists of approx-
imately locally homogeneous regions. This property has formed the basis of many segmentation methods for transmission scans [22].
Rather than applying hard segmentation, we add to the negative log-likelihood a penalty term which encourages piecewise smoothness
in the image, resulting in the penalized-likelihood image reconstruction formulation as given below:

µ̂ = argmin
µ≥0

Φ(µ), Φ(µ) = −L(µ) + βR(µ). (4)

Our goal is to develop an algorithm for finding the minimizingµ̂ with minimal CPU time.
We consider roughness penaltiesR(µ) that can be expressed in the following very general form [17,23]:

R(µ) =

K∑
k=1

ψk([Cµ]k), (5)

where theψk’s are potential functions acting as a norm on the “soft constraints”Cµ ≈ 0 andK is the number of such constraints. The
functionsψk we consider are convex, symmetric, nonnegative, differentiable and satisfy some more conditions that are listed in Section
3-C. Theβ in equation (4) is a parameter which controls the level of smoothness in the final reconstructed image. For more explanation
of the penalty function, see [23].

The objective function defined in (4) is not convex when there are nonzero background counts (ri 6= 0) in the data. In this realistic
case, there is no guarantee that there is a single global minimum. However, some practical algorithms exist that seem to work very well,
yet none of them are proven to be monotonic. In this paper we introduce an algorithm that is monotonic even whenΦ is not convex. The
new approach is based on successive paraboloidal surrogate functions and will be explained in the rest of the paper.

III. PARABOLOIDAL SURROGATESALGORITHMS

The penalized-likelihoodobjective functionΦ(µ) has a complex form that precludes analytical minimization. Thus, iterative methods
are necessary for minimizingΦ(µ). Our approach uses the optimization transfer idea proposed by De Pierro [14, 17], summarized as
follows. Letµn be the attenuation map estimate after thenth iteration. We would like to find a “surrogate” function5 φ(µ;µn) which is
easier to minimize or to monotonically decrease thanΦ(µ). This approach transforms the optimization problem into a simpler problem
at each iteration, asillustrated in Figure 1. The following “monotonicity” condition on the surrogate function is sufficient to ensure that
the iterates{µn}monotonically decreaseΦ:

Φ(µ) −Φ(µn) ≤ φ(µ;µn)− φ(µn;µn), ∀µ ≥ 0. (6)

We restrict ourselves to differentiable surrogate functions, for which the following conditions are sufficient6 to ensure (6):

1. φ(µn;µn) = Φ(µn)

2.
∂φ

∂µj
(µ;µn)

∣∣∣∣
µ=µn

=
∂Φ

∂µj
(µ)

∣∣∣∣
µ=µn

, ∀j = 1, . . . , p (7)

3. φ(µ;µn) ≥ Φ(µ) for µ ≥ 0.

Figure 1 illustrates a surrogate function that is tangent to the original objective at the current iterate and lies above it for all feasible
values of the parameters.

The EM algorithm [6] provides a statistical method for constructing surrogate functionsφ(µ;µn) satisfying the above conditions.
However, in the transmission tomography problem, the natural EM surrogate is difficult to minimize and leads to slow convergence. In
this paper, we construct a simpler surrogate using ordinary calculus rather than statistical techniques.

5We use the notationφ(µ;µn) to emphasize that the surrogate is a function ofµ onceµn is fixed and it changes for eachµn , following theQ function notation of the
EM algorithm [5].
6The second condition follows from the other two conditions for differentiable surrogate functions.
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The log-likelihood function (2) has a certain kind of dependence on the parametersµ, namely through their projectionsAµ. The
negative log-likelihood is the sum of individual functionshi, each of which depends on a single projection only. We can exploit this
form of the likelihood function by selecting a 1-D surrogate function foreach of the one-dimensionalhi functions in the projection (l)
domain. The overall sum of these individual 1-D functions will be an appropriate surrogate for the likelihood part of the objective.

Let lni = [Aµ
n]i denote the estimate of theith line integral of the attenuation coefficient at thenth iteration. We choose the following

quadratic form for the surrogate functionsqi:

qi(l; l
n
i )
4
= hi(l

n
i ) + ḣi(l

n
i )(l − l

n
i ) +

1

2
ci(l

n
i )(l − l

n
i )
2, (8)

whereci(lni ) is the curvature of the parabolaqi andḣ denotes first derivative ofh. This construction ensures thatqi(lni ; l
n
i ) = hi(l

n
i )

andq̇i(lni ; l
n
i ) = ḣi(l

n
i ) similar to (7). To ensure monotonicity, we must choose the curvatures to satisfy the following inequality ateach

iteration:
hi(l) ≤ qi(l; l

n
i ), for l ≥ 0. (9)

After determining the parabolas, one can easily verify that the following function is a global surrogate function for the objectiveΦ(µ)
which satisfies the properties in (7):

φ(µ;µn) = Q(µ;µn) + βR(µ), (10)

where

Q(µ;µn)
4
=

N∑
i=1

qi([Aµ]i ; l
n
i ) (11)

= Φ(µn) + dh(l
n)′A(µ − µn) (12)

+
1

2
(µ− µn)′A′D(ci(l

n
i ))A(µ − µ

n), (13)

where the column vectordh(ln)
4
=
[
ḣi(l

n
i )
]N
i=1

, x′ denotes the transpose ofx, andD(ci(lni )) is theN × N diagonal matrix with

diagonal entriesci(lni ) for i = 1, . . . , N .
The surrogate functionφ(µ;µn) in (10) consists of the sum of a paraboloid (i.e. a quadratic form) and the convex penalty term. An

algorithm that decreases the functionφ will also monotonically decrease the objective function if the inequality in (9) holds. The general
paraboloidal surrogates (PS) method can be outlined as follows:

for each iterationn
determineci(lni ) and consequentlyφ(µ;µn)
find aµn+1 ≥ 0 that decreases (or minimizes)φ(µ;µn)

end.

The key design choices in the general method outlined above are:

1. The different ways of choosing the curvaturesci(l
n
i )’s which would satisfy (9).

2. The algorithm to monotonically decreaseφ(µ;µn) defined in (10) forµ ≥ 0.

Each combination of choices leads to a different algorithm, as we elaborate in the following sections.

A. Maximum Curvature

A natural choice forci(lni ) is the maximum second derivative in the feasible region for the projections. This “maximum curvature”
ensures that (9) holds, which follows from the generalized mean value theorem for twice differentiable functions (page 228, [24]). The
feasible region for the projections is[0,∞) due to the nonnegativity constraint. Hence, the choice

ci(l
n
i ) = max

l∈[0,∞)
{ḧi(l)} (14)

is guaranteed to satisfy (9). We show in Appendix A that the closed form expression forci(l
n
i ) is:

ci(l
n
i ) =

[(
1−

yiri
(bi + ri)2

)
bi

]
+

(15)

where[x]+ = x for x > 0 and zero otherwise. Thus, it is trivial to compute theci(lni ) terms in this case. The choice (15) for the
curvatureci(lni ) does not depend on the iterationn, so it is a constant. We refer to this choice as the “maximum curvature” (PS,M,CD).

Having specified the curvatures{ci(lni )}, the paraboloidal surrogateQ(µ;µn) in (13) is now fully determined. Next we need an
algorithm that decreases or minimizes the surrogate functionφ(µ;µn).
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B. Algorithms for Minimizing the Paraboloidal Surrogate

In the absence of the nonnegativity constraint, in principle one could minimize the surrogate functionφ(µ;µn) overµ by zeroing its
gradient. The column gradient ofφ(µ;µn) with respect toµ is given by

∇µφ(µ;µ
n) = A′dh(l

n) +A′D(ci(l
n
i ))A(µ − µ

n) + β∇R(µ). (16)

If R(µ) is a quadratic form,i.e.R(µ) =
1

2
µ′Rµ, then we can analytically zero the gradient, yielding the iteration:

µn+1 = µn − [A′D(ci(l
n
i ))A+ βR]

−1∇µΦ(µ
n). (17)

There are three problems with the above iteration. It does not enforce the nonnegativity constraint, the matrix inverse is impractical to
compute exactly, and it is limited to quadratic penalty functions. To overcome these limitations, we instead apply a monotonic coordinate
descent iteration to decreaseφ(µ;µn).

C. Coordinate Descent Applied to the Surrogate Function

To apply coordinate descent to monotonicallydecrease the surrogate functionφ(µ;µn), we need a quadratic function that majorizes the

functionφ(µ;µn) at each pixel. We treat the likelihoodpart and the penalty part separately. LetQ̂nj (µj)
4
= Q([µ̂1, . . . , µ̂j−1, µj, µ̂j+1, . . . , µ̂p];µ

n

andR̂oj (µj)
4
= R([µ̂1, . . . , µ̂j−1, µj, µ̂j+1, . . . , µ̂p]), whereµ̂ denotes the current estimate of the parameterµ. Then we must select cur-

vaturesdnj andp̂j that satisfy the following:

Q̂nj (µj) = Q(µ̂;µn) + Q̇nj (µ̂)(µj − µ̂j) +
1

2
dnj (µj − µ̂j)

2 (18)

R̂oj (µj) ≤ R̂j(µj)
4
= R(µ̂) + Ṙj(µ̂)(µj − µ̂j) +

1

2
p̂j(µj − µ̂j)

2, ∀µj ≥ 0, (19)

whereQ̂nj (µj) and R̂oj (µj) are treated as functions ofµj only. Equality is achievable in (18) since the likelihood surrogateQ̂nj (µj)

is quadratic. For the penalty part̂Roj(µj), we must find a quadratic function̂Rj(µj) that lies above it, by appropriate choice ofp̂j as
considered below.

The derivative of the likelihood surrogate parabola atµ̂j is (from (11))

Q̇nj (µ̂)
4
=

∂

∂µj
Q̂nj (µj)

∣∣∣∣
µj=µ̂j

=

N∑
i=1

aij q̇i(l̂i),

where from (8)
q̇i(l̂i) = ḣi(l

n
i ) + ci(l

n
i )(l̂i − l

n
i ), (20)

wherel̂i =
∑N

i=1 aijµ̂j , and

ḣi(l) =

(
yi

bie−l + ri
− 1

)
bie
−l. (21)

From (8) and (11), the curvature of the parabolaQ̂nj (µj) is obviously:

dnj
4
=

N∑
i=1

a2ijci(l
n
i ). (22)

From (5), the derivative of the penalty part atµ̂j is

Ṙj(µ̂)
4
=

∂

∂µj
R̂oj (µj)

∣∣∣∣
µj=µ̂j

=
K∑
k=1

ckjψ̇k([Cµ̂]k).

We must obtain a parabolic surrogateR̂j(µj) that satisfies (19). We assume the potential functionsψk(·) satisfy the followingconditions:
• ψ is symmetric
• ψ is everywhere differentiable (and therefore continuous)
• ψ̇(t) = d/dtψ(t) is non-decreasing (and henceψ is convex)

• ωψ(t)
4
= ψ̇(t)/t is non-increasing fort ≥ 0

• ωψ(0) = limt→0 ψ̇(t)/t is finite and nonzeroi.e. 0 < ωψ(0) <∞.
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In the context of robust regression, Huber showed (Lemma 8.3 on page 184 in [19], also [23]) that for potential functionsψk that satisfy
the conditions above, we can find a parabolaψ̂k(t) that lies aboveψk(t), ∀t ∈ IR. This parabolâψk(t) is tangent to the potential function

at the current point̂tk
4
= [Cµ̂]k and at−t̂k and has the curvatureωψk(t̂k) whereωψ(·) was defined above. The surrogate parabola is

given by:

ψ̂k(t) = ψk(t̂k) + ψ̇(t̂k)(t− t̂k) +
1

2
ωψk(t̂k)(t − t̂k)

2,

and is illustrated in Figure 2. Thus, the following is a surrogate parabola for the penalty part of the objective function:

R̂j(µj) =

K∑
k=1

ψ̂k([Cµ]k)
∣∣∣
µm=µ̂m,∀m6=j

. (23)

The curvature of the parabolâRj(µj) is:

p̂j
4
=

K∑
k=1

c2kjωψk([Cµ̂]k). (24)

Combining the above surrogate parabolas (18) and (23), the minimization step of the coordinate descent for pixelj is simply:

µ̂newj = argmin
µj≥0

Q̂nj (µj) + βR̂j(µj) =

[
µ̂j −

Q̇nj (µ̂) + βṘj(µ̂)

dnj + βp̂j

]
+

. (25)

This is an update that monotonically decreases the value ofφ(·;µn) and consequently the value ofΦ(·). One iteration is finished when all
pixels are updated via (25) in a sequential order. We usually update the paraboloidal surrogate function after one iteration of coordinate
descent (CD), but one could also perform more than one CD iteration per surrogate. We call this method the Paraboloidal Surrogates
Coordinate Descent (PSCD) method.

The PSCD algorithm with the curvatures obtained from (15) is outlined in Table I. In this table, the algorithm flow is given for the
general case whereci(lni ) may change at each iteration. However, the curvaturesci(l

n
i ) given in Table I are constant throughout the

iterations. If one uses fixedci(lni ) values which do not depend onn as in (15), then thednj terms can be precomputed and the algorithm
should be reorganized to take this computational advantage intoaccount.

Another computational advantage of curvatures that do not depend on the iterations is as follows. If we defineq̃i = q̇i/
√
ci and

ãij = aij
√
ci, then the update in (38) will be simplified to:

q̃i := q̃i + ãij(µ
work
j − µ̂j),

which decreases the computation time devoted to back and forward projections per iteration by about 20% for implementations using
precomputed system matrices. The equations (37) and (39) should also be modified to use the new variables. We have not implemented
this faster version for this paper.

The algorithm in Table I requires roughly double the floating point operations required for one forward and one backprojection per

iteration. The gradient of the original log-likelihood with respect to the projections
{
ḣi(l

n
i )
}N
i=1

and the curvature termsci(lni ) are

computed only once per iteration7. The gradient of the surrogate paraboloid usesq̇i terms which can be updated easily as shown in
(38) in the algorithm. This implementation does not update the projectionsl̂i after each pixelupdate since they are only needed in the
outer loop (34). The projections are computed in (39) after updating all pixels. The update (39) requirescni > 0 to work. In (36), we
constrain the curvature value to some small valueε > 0 (which obviously does not hurt monotonicity) so that (39) can be evaluated for
all i = 1, . . . , N . However,ε should not be very small since it will cause undesirable numerical precision errors. Storage requirements
are also modest for the proposed algorithm. A single copy of the image and four sinograms forl̂i, ci, ḣi and q̇i need to be stored in
addition to data vectorsyi, bi, ri.

In the following, we discuss the convergence rate of the algorithm, which provides motivation for obtaining better curvatures.

D. Convergence and Convergence Rate

In the absence of background events,i.e. when ri = 0, the penalized-likelihood objectiveΦ is convex and our proposed PSCD
algorithm is globally convergent. This is a fairly straightforward consequence of the proof in [25] for convergence of SAGE, so we omit
the details.

However whenri 6= 0, little can be said about global convergence due to the possibility that there are multiple minima or a continuous
region of minima. Our practical experience suggests that local minima are either unlikely to be present, or are quite far from reasonable

7In contrast to PSCD algorithm, when coordinate descent (CD,NR) is applied to the original objective function, new gradients and curvatures must be computed after
each pixel is updated. These computations involve expensive exponentiations and floating point operations which increase the CPU time required for original coordinate
descent.
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starting images, since all experiments with multiple initializations of the algorithm yielded the same limit within numerical precision.
The PSCD algorithm is monotonic even with the nonconvex objective function. One can easily show that every fixed point of the
algorithm is a stationary point of the objective function and vice versa. Thus, it is comforting to know that the algorithm will converge
to a local minimum and will not blow up.

The convergence rate of the proposed algorithm with the “maximum curvature” choice is suboptimal. The curvaturesci(l
n
i ) are too

conservative and the paraboloids are unnecessarily narrow. Intuitively, one can deduce that smallerci(l
n
i ) values will result in faster

convergence. The reason for this is that the lower the curvature, the wider the paraboloid and the bigger the step size as can be seen in
Fig. 1. To verify this intuition, we analyze the convergence rate of the algorithm. For simplicity, we assume that a quadratic penalty is
used in the reconstruction and that the surrogate functionφ(µ;µn) (10) is minimized exactly.

Let µ̂ be the unconstrained minimizer of the original objective function. At stepn, by zeroing the gradient of (10), we get the
simple Newton-like update in (17). By Taylor series, forµn ≈ µ̂, we can approximate the gradient of the objective function as:
∇Φ(µn) ≈H(µ̂)(µn − µ̂), whereH(µ̂) is the Hessian ofΦ at µ̂. DefineN(c) = A′D(ci)A+ βR, then from (17):

µn+1 − µ̂ ≈ µn − µ̂− [N(c)]−1H(µ̂)(µn − µ̂)

= (I − [N(c)]−1H(µ̂))(µn − µ̂). (26)

This equation describes how the convergence rate of the proposed algorithm is affected by differentci choices. We use the results
from [26] to evaluate the convergence rate. LetN(c1) andN(c2) be two matrices corresponding to curvature vectorsc1 and c2

respectively withc1i < c2i , ∀i. Then obviouslyN (c2) − N(c1) is positive definite and it follows from Lemma 1 in [26] that the
algorithm corresponding toc1 has a lower root-convergence factor and thus converges faster than the algorithm corresponding toc2.

Therefore, to optimize the convergence rate, we would like theci(l
n
i ) values to be as small as possible while still satisfying (9). The

optimal choice for the curvatures is the solution to the following constrained optimization problem for eachi:

ci(l
n
i ) = min

{
c ≥ 0 : hi(l) ≤ hi(l

n
i ) + ḣi(l

n
i )(l − l

n
i ) +

1

2
c(l − lni )

2 ∀l ≥ 0

}
. (27)

This choice yields the fastest convergence rate while still guaranteeing monotonicity. In the following section, we discuss the solution
to (27).

E. Optimum Curvature

The curvature that satisfies (27) is not trivial to find for general functionshi(·). However, the marginal negative log-likelihood
functions for each projection (hi defined in (3)) in transmission tomography have some nice properties. We show the following in
Appendix B. The parabola that is:

1. tangent tohi at the current projectionlni , and
2. intersectshi at l = 0,

is guaranteed to lie abovehi(l) ∀l ≥ 0. This claim is true only when the curvatureci(lni ) of qi is nonnegative. If the curvature obtained
by the above procedure is negative, then we setci(l

n
i ) to zero8. Whenci(lni ) = 0, theqi function is the line which is tangent to thehi

curve at the current projection valuelni .
The curvature of the parabola described above is9 :

ci(l
n
i ) =




[
2
hi(0)− hi(lni ) + ḣi(l

n
i )(l

n
i )

(lni )
2

]
+

, lni > 0,[
ḧi(0)

]
+
, lni = 0.

(28)

We prove in Appendix B that this curvature is the optimum curvature that satisfies (27). The nonnegativity constraint plays an important
role in the proof. If nonnegativity is not enforced, the projections at an iteration may go negative and the curvature (28) will not guarantee
monotonicity anymore. Fig. 3 illustrates this surrogate parabola with the “optimum curvature” (28). In Table I, the curvature computation
in (35) should be changed to (28) to implement PSCD method with the optimum curvature (PS,O,CD).

8In fact, any nonnegativeci(lni ) will ensure monotonicity, hence theε in (36).
9Whenlni is nonzero but small, due to numerical precision, (28) might turn out to be extremely large during computation. Ifci(lni ) >

[
ḧi(0)
]
+

(which theoretically

should not happen but practically happens due to limited precision), then we setci(l
n
i ) to be equal to the maximum second derivative

[
ḧi(0)
]
+

which eliminates the

problem.
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F. Precomputed Curvature

By relaxing the monotonicity requirement, we can develop faster yet “almost always” monotonic algorithms. We can do this by
choosing curvaturesci(lni ) in equation (8) such thaṫhi(l) = q̇i(l; l

n
i ), buthi(l) ≈ qi(l; l

n
i ), rather than requiring the inequality (9). In

this case, the paraboloids are quadratic “approximations” to the log-likelihood function at each iteration. A reasonable choice for the
curvatures is:

ci = ḧi

(
log

bi

yi − ri

)
= (yi − ri)

2/yi. (29)

The valuelmini = log(
bi

yi − ri
) is the point that minimizes thehi function. These curvaturesci in (29) are close approximations to

the second derivative ofhi functions at the projection valuesAµ̂ whereµ̂ is the solution to the penalized-likelihood problem [12].
This is called the “fast denominator” approach in [12], since it features a one-time precomputed approximation to the curvature that
is left unchanged during the iterations so that the denominator termsdnj (22) can be computed prior to iteration (similar to “maximum
curvature” in equation (15)). Computational benefits for iteration independent curvatures as summarized in Section 3-C can be utilized.
This approximation works well because we usually start the iterations with an FBP imageµ0 where projectionsAµ0 are usually close
to lmin. Nevertheless, unlike with (28) monotonicity is not guaranteed with (29).

The PS method with the curvature (29) yields faster convergence than the other PS algorithms presented above. This method is related
to the PWLS image reconstruction method [11, 27], but instead of making a one-time quadratic approximation to the log-likelihood
function, the approximation is renewed at each iteration. Although the curvature of the paraboloid remains same, the gradient is changed
to match the gradient of the original objective function at the current iterate. The nonnegativity constraint does not play an important
role for the derivation, and this curvature may be used for algorithms where nonnegativity is not enforced. We refer to this curvature as
“precomputed curvature” (PS,P,CD).

IV. RESULTS

To assess the effectiveness and speed of the new PS algorithms, we present results using real PET data. We acquired a 15-hour
blank scan (bi’s) and a 12-min transmission scan data (yi’s) using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod
transmission sources [28]. The phantom used was an anthropomorphic thorax phantom (Data Spectrum, Chapel Hill, NC). Delayed
coincidence sinograms were collected separately ineach scan. The blank and transmission scan delayed-coincidence sinograms were
shown to be numerically close10 [21], so we used a time-scaled version of blank scan delayed coincidences as theri factors with no other
processing. The projection space was 160 radial bins and 192 angles, and the reconstructed images were128× 128 with 4.2 mm pixels.
The system matrix{aij} was computed by using 3.375 mm wide strip integrals with 3.375 mm spacing, which roughly approximates
the system geometry [4].

We performed reconstructions of the phantom by FBP as well as various penalized-likelihood methods. For the penalty term in PL
reconstructions, we used the following function:

R(µ) =
1

2

p∑
j=1

∑
k∈Nj

wjkψ(µj − µk)

which is a special case of (5). Herewjk is normally equal to 1 for horizontal and vertical neighbors and1/
√
2 for diagonal neighbors.

We used the modifiedwjk’s described in [29] to achieve more uniform resolution. For the potential function, we used one of the
edge-preserving nonquadratic cost functions that was introduced in [30]

ψ(x) = δ2 [|x/δ| − log(1 + |x/δ|)] .

This function acts like a quadratic penalty for small differences in neighboring pixels and is close to absolute value function for dif-
ferences greater thanδ. This nonquadratic function penalizes sharp edges less than quadratic functions. We usedδ = 0.004 cm−1

chosen by visual inspection. In the final reconstructed image, the horizontal and vertical neighbor differences are less than thisδ in
homogeneous regions (90% of all differences) which makes the curved part of the penalty effective in those regions. However at edges,
for which the differences are greater thanδ, this penalty penalizes less than the quadratic one.

The PS algorithms described throughout this section are named using the following format: PS,C,CD. PS stands for paraboloidal
surrogates as the general framework for the algorithms and CD stands for coordinate descent applied to the surrogate function. The letter
C in the format represents the curvature typeci(l

n
i ). The types are: “M”, “O” and “P” for maximum second derivative curvature (15),

optimum curvature (28) and precomputed curvature (29) respectively. The other algorithms we used for comparison in this section
are as follows. LBFGS: a constrained Quasi-Newton algorithm [31], CD,P: coordinate descent with precomputed denominators and
CD,NR: coordinate descent with Newton-Raphson denominators [11, 12] applied to objective function, GD,P: grouped descent with
precomputed denominators [12].

10This is due to the fact that singles rate is mostly affected by transmission rods.
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Fig. 4 shows images reconstructed by FBP and statistical methods from a 12 minute scan. For comparison, an FBP reconstruction
of a 7 hour scan is also shown. Qualitatively, the statistical reconstruction looks better than the FBP image, having less noise and
more uniform homogeneous regions. However, our focus here is not the image quality but the amount of time it takes the algorithms
to converge to the minimizer image. Nevertheless, improved emission image quality is our ultimate goal. Statistical methods for
transmission reconstruction yield better ACFs as compared to conventional methods and result in better emission images. Our goal here
is to speed-up and stabilize statistical methods to make them usable routinely in clinic.

Fig. 5 shows that the proposed PSCD algorithms decreasedΦ almost as much per iteration as the coordinate descent algorithm applied
to Φ directly. This result is important because it shows that the surrogate paraboloids (especially with the optimum curvature) closely
approximate the original log-likelihood. More importantly, in Fig. 6 the PSCD algorithms are seen to be much faster than coordinate
descent in terms of the actual CPU time11. One of the main overhead costs in coordinate descent is the computation of the log-likelihood
gradient term after each pixel change [12]. In PSCD algorithm, the gradient of the surrogate function (q̇i’s) can be computed (updated)
by a single multiplication (20). The “maximum curvature” method introduced in Section 3-A precomputes the denominator terms (dnj )
for the likelihood part sinceci(lni )’s do not depend on the iterations. However, theseci(l

n
i )’s are much larger than the optimal curvatures,

so more iterations are required for PS,M,CD than PS,O,CD to converge.
We also compared the PSCD algorithms to the general purpose constrained Quasi-Newton algorithm (LBFGS) [31] in Figures 5 and 6.

Although the LBFGS algorithm takes about 25% less CPU time (0.88 seconds) per iteration than PSCD algorithms, it did not converge
as fast as the proposed algorithms. This shows that the algorithms such as PSCD which are tailored to our specific problem converge
faster than the general purpose Quasi-Newton method.

In Fig. 7, we consider the fastest previous algorithm we know of (i.e. GD with 3 × 3 groups with precomputed denominator [12])
and compare it to the fastest PS algorithms. The PSCD with “precomputed curvatures” (PS,P,CD) (introduced in Section 3-F) requires
slightly less CPU time than GD,P to converge. Although the PS,P,CD algorithm is not provably monotonic, it is a reasonable approxi-
mation and we did not observe any non-monotonicity in our practical experience. The monotonic PS,O,CD method is shown in this plot
as a baseline for comparison with Fig. 6.

In Fig. 8, we present the results of a transmission scan simulation with zero background counts (ri = 0) and compare the monotonic
PSCD algorithm with the functional substitution (FS) method of Zhenget al.[15,16]. The FS algorithm is proven to be monotonic when
ri = 0 in which casehi is convex. However, the FSCD method requires considerably more computation per iteration than both CD and
PSCD. The plot shows that FSCD requires more CPU time than PSCD.

Table II compares the number of iterations and CPU seconds required to minimize the objective function byeach method. The CPU
times12, floating point operations and memory accesses (of orderM only) per iteration are also tabulated, whereM is the number of
nonzero entries in system matrixA. For comparison purposes, a single forward and backprojection requires about 0.78 CPU seconds.
The CD and FS methods are significantly different from our proposed PSCD methods in the following respect. In our methods, theq̇i
terms are kept updated for alli outside the projection loop in (38). In contrast, both CD and FS requireḣi terms within the backprojection
loop, and these change with every pixel update so they must be computed on the fly within the backprojection loop. Thus that back-
projection must accessyi, bi, ri, l̂i and the system matrix within the loop, and perform quite a few floating point operations (including
the exponentiations) with them. Not only is there inherently more floating point operations required for CD and FS, we suspect that the
need to nonsequentiallyaccess parts of four sinogram-sized arrays, in addition to the system matrix, significantly degrades the ability of
the CPU to pipeline operations. This leads to the dramatic differences in CPU time between PSCD and CD methods.

If a monotonic algorithm is required, the PSCD algorithm with the optimal curvature (PS,O,CD) is the fastest algorithm. The other
algorithms are not guaranteed to be monotonic except PSCD with maximum curvature. Although PS,M,CD algorithm consumes less
CPU time per iteration, it takes longer to converge since the curvatures result in an unnecessarily narrow surrogate function which causes
small step sizes.

Among the nonmonotonicalgorithms, another PS method, PSCD with precomputed curvatures (PS,P,CD) is the fastest. It converged in
about 15 seconds with the real data used. The CPU time per iteration is the same as PS,M,CD since they both precompute the denominator
(dnj ) terms. Since the curvatures are smaller, this method decreases the objective very rapidly, nevertheless it is not guaranteed to be
monotonic. However, as with the CD and GD with precomputed denominators [12], we have never observed any nonmonotonicity in
practical applications. The FSCD and CD algorithms consume a lot of CPU cycles per iteration and they are much slower than the
proposed algorithms. The GD,P algorithm lowers the CPU requirements by decreasing the number of exponentiations, but it does not
decrease the objective function as much per iteration as coordinate descent. Thus, it is also slightly slower than the PS,P,CD algorithm.
This Table shows that PSCD algorithms are preferable for both monotonic and nonmonotonic transmission image reconstructions.

V. CONCLUSION

We have introduced a new class of algorithms for minimizing penalized-likelihood objective functions for transmission tomography.
The algorithms are shown to be monotonic even with the nonconvex objective function. In the nonconvex case, there is no proof that
these algorithms will find the global minimum but at least the algorithms will monotonically decrease the objective function towards

11All CPU times are recorded on a DEC 600 5-333 MHz workstation with compiler optimization enabled.
12The CPU times are computed on a DEC 600 5-333 MHz. We also compiled the code on a SUN Ultra 2 computer and got similar CPU time ratios for the algorithms.

However, the ratios could differ on another architecture or with another compiler due to cache size and pipelining differences.
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a local minimum. Practical experience suggests there are rarely multiple minima in this problem, but there is no proof. In the strictly
convex case, the proposed algorithms are guaranteed to converge to the global minimum by a proof similar to that in [32].

The algorithms we introduced are simple, easy to understand, fast and monotonic. The simplicity in part is due to the additive form of
(2), which is a direct consequence of independent measurements. Since the emission tomography log-likelihood has a very similar form
due to independence of measurements, it is possible to apply the paraboloidal surrogates idea to the emission case as well to get faster
algorithms [33]. Convergence is very important for algorithms for any optimization problem, particularly in medical applications. The
PSCD algorithm is globally convergent when there are no background counts. Even when there are background counts, the new algorithm
is guaranteed to monotonically decrease the objective function making the algorithm stable. Previous algorithms could not guarantee
that property without expensive line searches. The robustness, stability and speed of the new algorithm renders it usable in routine
clinical studies. Such use should increase the emission image quality as compared to conventional methods which use linear processing
and FBP for reconstruction. Further “acceleration” is possible by ordered subsets [34], albeit without guaranteed monotonicity.

It is possible to parallelize the PS algorithms by applying either grouped descent (GD) [12,13] algorithm to the surrogate function, or
by parallelizing the projection and backprojection operators [35] for each pixel. However, in a serial computer we found that PS method
with GD update (PSGD) was not faster than the PSCD algorithm. This is due to the fact that the gradient updates in PSCD algorithm
consume much less CPU time than the gradient evaluations in the original CD algorithm which require expensive exponentiations and
floating point operations. Hence, grouped descent did not reduce the CPU time per iteration as much in PS method as in the direct
method.

In our opinion, the PS,O,CD algorithm supersedes all of our previous methods [4, 12, 18], and is our recommended algorithm for
penalized-likelihood transmission tomography. The PS,P,CD algorithm is a faster but nonmonotonic alternative which can be used for
noncritical applications. A possible compromise would be to run a few iterations of PS,O,CD algorithm and then fix the curvatures
and denominator terms (dnj ) for the rest of the iterations to save computation time. Alternatively, one can run PS,P,CD algorithm and
check the objective functionΦ(µ) after each iteration to verify that it has decreased. If the objective does not decrease (happens very
rarely), then PS,O,CD algorithm can be applied to the previous iterate to ensure monotonicity. For medical purposes, we believe that a
monotonic algorithm should be used to reduce the risk of diagnostic errors due to erroneous reconstructions. Fortunately, with the new
proposed methods, monotonicity can be assured with only a minor increase in CPU time (17.2 versus 15.1 CPU seconds).

VI. A PPENDIX A

We prove in this appendix that the maximum second derivative ofhi(l) for l ≥ 0 is given by (15). We drop the subscripti for
simplicity.

The form of theh functions is critical in the following. The second and third derivatives of the functionh in (3) are:

ḧ(l) =

(
1−

yr

(be−l + r)2

)
be−l, (30)

h(3)(l) =

(
yr

[
−be−l + r

(be−l + r)3

]
− 1

)
be−l. (31)

We assumeb > 0, y ≥ 0, andr ≥ 0 throughout these appendices. First, we prove two lemmas about properties of theseh functions.
These lemmas are used for the proofs in Appendix B as well.

Lemma 1:The following are equivalent forh(l) defined in (3):
• (E1)r = 0 or r ≥ y,
• (E2)h is strictly convex,
• (E3) ḣ is strictly concave,
• (E4) ḣ is monotonically increasing,
• (E5) ḧ is monotonically decreasing.

Proof: Sinceh is three times continuously differentiable,h is strictly convex if and only if̈h > 0 andḣ is strictly concave if and
only if h(3) < 0. Clearly,ḧ > 0 if and only if ḣ is monotonically increasing. So, (E2)⇐⇒ (E4). For similar reasons (E3)⇐⇒ (E5).

If r = 0 or r ≥ y, thenyr < (be−l + r)2, so from (30)̈h(l) ≥ 0, ∀l. Thus, (E1)⇒ (E2).
To prove (E1)⇒ (E3), from (31), it suffices to show that(be−l + r)3 > yr(−be−l + r). But this is trivial sincer3 ≥ yr2 under the

conditions (E1).
To prove the opposite, ifr 6= 0 andy > r, then one can easily show thatḧ(l) and−h(3)(l) can take negative values for sufficiently

largel considering (30) and (31). So, (E2)⇒ (E1) and (E3)⇒ (E1).
Lemma 2:Wheny > r andr 6= 0, the nonconvex functioṅh has the following properties:
• (P1)ḣ is continuously differentiable,
• (P2)ḣ has exactly one critical pointl∗, i.e. ḧ(l∗) = 0 andl∗ is a local maximizer oḟh(l),
• (P3)ḣ is strictly concave and monotone increasing forl < l∗,
• (P4)ḣ is monotone decreasing forl > l∗,
• (P5)ḧ has exactly one critical pointlz , i.e.h(3)(lz) = 0 andlz is a local minimizer of̈h(l).
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Proof: (P1) is obvious from (21) and (30).

In the nonconvex case, the equationḧ(l) = 0 has exactly one solution inIR, l∗ = log

(
b

√
yr − r

)
. Sinceh(3)(l∗) = −2

(
√
yr − r)2
√
yr

<

0, l∗ is a local maximum, proving (P2).
Solutions to the equationh(3)(l) = 0 are the roots of a cubic polynomial in the variablet = be−l which has only one real solution.

The real root is negative whenh is convex resulting no solution forl. But, in the nonconvex case the real root is positive and results

in exactly one solutionlz = log(b/(a/3 − yr/a − r)) wherea = 3

√
27yr2 + 3

√
3y3r3 + 81y2r4. So, ḧ(l) has exactly one critical

point. We have shown above thath(3)(l∗) < 0 and one can easily see thath(3)(l) ≈
(y
r
− 1
)
be−l > 0 for large l. Thuslz > l∗

andh(3)(l) < 0 for l < lz . So,ḧ(l) is monotonically decreasing forl < lz. Also for l > lz, h(3)(l) > 0 and ḧ(l) is monotonically
increasing. This proves thatlz is a local minimum for̈h(l). Hence, (P5) is proven.

To prove (P3), we have to showh(3)(l) < 0 andḧ(l) > 0 for l < l∗. But, as we found abovel∗ < lz andh(3)(l) < 0 for l < lz. Also,
ḧ(l) > 0 for l < l∗ sincel∗ is the only critical point and local maximizer ofḣ due to (P2). So, (P3) is also proven.

The function̈h(l) has exactly one zero crossingl∗ from (P2) which is a local maximizer oḟh. Then,ḧ(l) has to be always negative

for l > l∗ proving (P4). To verify, one can easily see that,ḧ(l) ≈
(
1−

y

r

)
be−l < 0 for largel values. Söh(l) < 0 ∀l > l∗.

The following result follows from (E5) of Lemma 1 for the convex case and from (P5) of Lemma 2 for the nonconvex case.
Corollary 1: The maximum value for̈h in the region[0,∞) is achieved at the end points,i.e.

ci(l
n
i ) = max

l∈[0,∞)
{ḧ(l)}

= max{ḧ(∞), ḧ(0)}

=
[
ḧ(0)
]
+
,

=

[(
1−

yr

(b+ r)2

)
b

]
+

.

The result follows sinceliml→∞ ḧ(l) = 0.

VII. A PPENDIX B

In this appendix, we prove that the curvature defined in (28) is the optimum curvature that satisfies (27), which in turn implies from
(26) that the choice (28) yields the fastest convergence rate. We first prove two lemmas about strictly concave functions.

Lemma 3:A one-dimensional linel(x) = ax+ b can intersect a strictly concave (or strictly convex) functionf(x) at most twice.
Proof: Supposel(xi) = f(xi) at pointsx1 < x2 < x3. Then sincef(x) is strictly concave,f(x) > l(x) for x ∈ (x1, x3), which

contradicts the initial assumption thatf(x2) = l(x2).
Lemma 4:Let f(x) be a one-dimensional strictly concave function, and letl(x) = ax + b be a line that intersectsf(x) at the two

pointsx1 < x2. Then
f(x) < l(x) for x ∈ (−∞, x1) ∪ (x2,∞).

Proof: Suppose there exists anx3 > x2 such thatf(x3) ≥ l(x3). Consider the new linem(x) that intersectsf(x) at x1 andx3.
Sincem(x1) = l(x1) andm(x3) = f(x3) ≥ l(x3), it follows from the affine form ofl(x) andm(x) thatm(x2) ≥ l(x2) = f(x2),
which contradicts the assumption thatf(x) is strictly concave. The casex3 < x1 is similar.

For simplicity in this appendix, we drop the subscripti and the dependence onn for the variables. Leth(l) be the marginal negative
log-likelihood function defined in (3) with derivatives presented in (21), (30) and (31) and letq(l) be the parabolic surrogate function
defined in (8) with the “optimum curvature”c defined in (28). We uselc to denote the current projection valuelni . The reader may
visualize the following proofs by considering the plots ofḣ andq̇ functions shown in Fig. 3.

We define the difference function by:

δ(l)
4
= q(l) − h(l). (32)

To show thatq(l) ≥ h(l) for l ≥ 0 as required by (9), it suffices to show thatδ(l) ≥ 0. Whenlc = 0, it is obvious from Appendix A that
δ(l) ≥ 0. Thus we focus on the caselc > 0 in the following.

Lemma 5:The following conditions are sufficient to ensureδ(l) ≥ 0, ∀l ∈ [0,∞).
• (C1) δ(0) ≥ 0 andδ(lc) = 0,
• (C2) δ̇(l) ≥ 0 for l ≥ lc, and
• (C3) either
– (C31)δ̇(l) < 0, ∀l ∈ [0, lc), or
– (C32)∃lp ∈ [0, lc) such thaṫδ(l) ≥ 0 for l ∈ [0, lp] andδ̇(l) ≤ 0 for l ∈ (lp, lc].
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Proof: Sinceδ(lc) = 0

δ(l) =

∫ l

lc
δ̇(t)dt. (33)

• Casel ≥ lc. The integrand in (33) is nonnegative due to (C2), soδ(l) ≥ 0.

• Casel ∈ [0, lc]. If (C31) is true, thenδ(l) = δ(lc)−
∫ lc
l δ̇(t)dt ≥ δ(lc) = 0.

If (C32) holds andl ∈ [0, lp], thenδ(l) = δ(0) +
∫ l
0
δ̇(t)dt ≥ δ(0) ≥ 0 by (C1). Likewise if (C32) holds andl ∈ (lp, lc], then

δ(l) = δ(lc) −
∫ lc
l
δ̇(t)dt ≥ δ(lc) = 0 again by (C1).

Hence,δ(l) ≥ 0 ∀l ≥ 0 under the above conditions.
We now establish the conditions of Lemma 5. (C1) follows directly from the definition (27), so we focus on (C2) and (C3) below. We

first treat the case whereh(l) is strictly convex.
Lemma 6: If h(l) is a convex function anḋh(l) is concave forl ≥ 0, then the difference functionδ(l) in (32) with the curvaturec

defined in (28) satisfies conditions (C2) and (C32) in Lemma 5. Furthermore,c > 0.
Proof: It is trivial to show that the conditions (E2) through (E5) of Lemma 1 hold in this case forl ≥ 0. First we prove

c > 0. Supposec = 0, so q̇ is a constant. Sincėh(l) is increasing by (E4) in Lemma 1 anḋq(lc) = ḣ(lc), it is obvious that

q̇(l) > ḣ(l), ∀l ∈ [0, lc), soδ(0) = −
∫ lc
0
δ̇(t)dt < 0 contradicting (C1). So,c > 0 in this case andδ(0) = 0 by design.

To prove (C32), consideṙh. The lineq̇ cannot intersect the strictly concaveḣ at more than two points due to Lemma 3. We know
that δ̇(lc) = 0, thuslc is an intersection point. We haveδ(0) = 0 andδ(lc) = 0 by definition. From mean value theorem, there must
be another intersection pointlp ∈ [0, lc) such thatδ̇(lp) = 0. We know by Lemma 3 that there cannot be any additional points where
δ̇(l) = 0. δ̇(l) < 0 for l ∈ (lp, lc) due to concavity oḟh andδ̇(l) > 0 for l ∈ [0, lp) due to Lemma 4. (C32) is proven.

To prove (C2), apply Lemma 4 to the strictly concave functionḣ with two pointslp andlc as the intersection points of the line with
the curve.

We now consider the realistic nonconvex case.
Lemma 7:Let h(l) be a nonconvex function with its derivativeḣ satisfying properties (P1), (P2) and (P3) in Lemma 2. The difference

functionδ(l) defined in (32) with the curvature defined in (28) satisfies (C2) and (C3) in Lemma 5.
Proof:

The reader can refer to Fig. 3 for representative plots ofh and its first derivative. Note that in Lemma 2, (P2)⇒ (P4) directly.
Consider these two cases wherel∗ is defined as in Lemma 2:

• CASElc < l∗.
In this case, by (P3) of Lemma 2,lc is in a concave increasing region. By Lemma 6, (C32) holds as well as the fact thatc > 0. To
prove (C2), we use property (P4), thatḣ is a decreasing function forl > l∗. So, sinceq̇(l∗) > ḣ(l∗) (as for (C2) in Lemma 6 again)
andc ≥ 0, q̇(l) > ḣ(l), ∀l ≥ lc.

• CASE lc ≥ l∗. Since by (C1),δ(lc) − δ(0) =
∫ lc
0 δ̇(t)dt ≤ 0, δ̇(l) = q̇(l) − ḣ(l) cannot always be nonnegative over the interval

[0, lc). So, eitherq̇(l) < ḣ(l), ∀l ∈ [0, lc) or q̇ intersectsḣ (δ̇(l) = 0) at least once in[0, lc). If the former case occurs, (C31)
holds by definition. If the latter case occurs, then we have to prove that (C32) holds,i.e. there is no more than one point at which
q̇ intersectṡh in [0, lc). Sincec ≥ 0 and ḣ is decreasing in the regionl > l∗, the intersection point(s)lp < l∗. We cannot apply
Lemma 3 here to prove that there is no other intersection point, but we can use Lemma 4 to prove it. Assume there is another
intersection point. Then, the functioṅq > ḣ in the concave region outside the interval between two intersection points by Lemma
4 which impliesδ̇(l∗) > 0 andδ̇(l) > 0 for l > l∗. But this would contradict the fact thatδ̇(lc) = 0. So, (C32) must hold.
In this case, the fact thatc ≥ 0 is enough to prove (C2), sinceḣ is decreasing in this region.

Theorem 1:Let h(l) be a one-dimensional function that satisfies either of the following:
• (H1) h(l) is strictly convex anḋh(l) is strictly concave in the feasible regionl ≥ 0, or
• (H2) ḣ(l) satisfies (P1), (P2) and (P3) of Lemma 2.

Then the curvature defined in (28) satisfies the optimality condition in (27).
Proof: Forh functions that satisfy conditions (H1), Lemma 6 with Lemma 5 prove that the curvature (28) satisfies (9) forlc > 0.

For h functions satisfying conditions in (H2), Lemma 7 and Lemma 5 similarly prove that the curvature (28) satisfies (9) forlc > 0.
The rest of the proof applies to both cases (H1) and (H2). Forlc = 0, c in (28) is the maximum second derivative in[0,∞), and (9) is
satisfied by mean value theorem as mentioned in Section 3-A.

We need to prove that no other nonnegative curvature less than (28) satisfies (9).
Assume0 ≤ c∗ < c, and let

q∗(l) = h(lc) + ḣ(lc)(l − lc) +
1

2
c∗(l− lc)2.

Obviouslyc∗ can exist only whenc > 0 sincec = 0 is the minimum curvature we allow. Withc > 0, it is obvious from (28) that
q(0) = h(0). If lc > 0, this clearly implies thatq∗(0) < q(0) = h(0) which shows thatc∗ cannot satisfy (9). Iflc = 0, then a curvature
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c∗ < c would forceq̇ to lie underḣ for some small values ofl. That is,∃ε > 0 such thatq(l) < h(l) for ε > l > 0. Thusc∗ does not
satisfy (9) even forlc = 0.

Corollary 2: The “optimum curvature” defined in (28) using the marginal negative log-likelihood functionhi(l) defined in (3) for the
transmission tomography problem satisfies the optimality condition in (27) forbi > 0, yi ≥ 0, ri ≥ 0.

Proof: The functionhi(l) defined in (3) satisfies the conditions (H1) or (H2) of Theorem 1 depending on the values ofyi andri as
shown in Lemmas 1 and 2. Hence Theorem 1 is directly applicable to the transmission tomography problem.
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Initialize: µ̂ = FBP{log(bi/(yi − ri))}Ni=1 andl̂i =
∑p

j=1 aijµ̂j , ∀i = 1, . . . , N
for each iterationn = 0, . . . ,Niter− 1

q̇i = ḣi =

(
yi

bie−l̂i + ri
− 1

)
bie
−l̂i , for i = 1, . . . , N (34)

ci = max
l≥0

ḧi(l) =

[(
1−

yiri
(bi + ri)2

)
bi

]
+

, for i = 1, . . . , N (35)

ci :=

{
ci, ci > ε
ε, ci ≤ ε

(36)

repeat one or more times
for j = 1, . . . , p

Q̇j =

N∑
i=1

aij q̇i, dj =

N∑
i=1

a2ijci (37)

µoldj = µ̂j

for a couple sub-iterations

µ̂j :=

[
µ̂j −

Q̇j + dj(µ̂j − µoldj ) + β
∑K

k=1 ckjψ̇ ([Cµ̂]k)

dj + β
∑K

k=1 c
2
kjωψk ([Cµ̂]k)

]
+

end

q̇i := q̇i + aijci(µ̂j − µ
old
j ) ∀i s.t.aij 6= 0 (38)

end
end

l̂i := l̂i +
q̇i − ḣi
ci

, for i = 1, . . . , N (39)

end

TABLE I

ALGORITHM OUTLINE FOR A PARABOLOIDAL SURROGATES ALGORITHM WITH COORDINATE DESCENT(PSCD). THE CURVATURE CHOICE SHOWN HERE IS THE

MAXIMUM SECOND DERIVATIVE .

[35] W. Niethammer, “A note on the implementation of the successive overrelaxation method for linear complementarity problems,”Numerical Algorithms, vol. 4, no. 1,
pp. 197–200, January 1993.
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Real data,ri 6= 0 monotonic nonmonotonic

methods P
S

,M
,C

D

P
S

,O
,C

D

P
S

,P
,C

D

G
D

,P
,3

x3

C
D

,P

C
D

,N
R

F
S

C
D

iters for convergence 18 12 11 14 11 11 11
CPU s for convergence 23.3 17.4 15.1 18.1 44.3 52.3 56.2
CPU s per iteration 1.2 1.3 1.2 1.1 3.8 4.6 4.9

exponentiations
per iteration 0 0 0 0 M M 2M

add/subts
per iteration 2M 3M 2M 2M 4M 6M 7M

mult/divs
per iteration 3M 5M 3M 2M 5M 11M 10M

nonsequential accesses
per backprojection M 2M M M 4M 4M 4M

nonsequential accesses
per forward projection 2M 2M 2M M M M M

system matrix accesses
per iteration 2M 2M 2M 2M 2M 2M 2M

TABLE II

COMPARISON OFCPU TIMES, NUMBER OF ITERATIONS TO CONVERGE, FLOATING POINT OPERATIONS AND MEMORY ACCESSES FOR THEPSALGORITHMS

VERSUSCD, GD AND FSMETHODS. CONVERGENCE IN THIS TABLE MEANSΦ(µ0) −Φ(µn) > 0.999
[
Φ(µ0)− Φ(µ∗)

]
WHEREΦ(µ∗) IS THE SMALLEST

OBJECTIVE VALUE OBTAINED IN 30 ITERATIONS AMONG ALL THE METHODS. THE FLOATING POINT OPERATIONS AND MEMORY ACCESSES ONLY IN THE ORDER

OFM ARE SHOWN FOR EACH METHOD.



IEEE TRANSACTIONS ON MEDICAL IMAGING. TO APPEAR. 16

φ(µ;µ )n

1
φ(µ;µ )n

2

µ
n+1
1µ2

n+1
µ

n

Φ(µ)

*
µ

µ

Fig. 1. One-dimensional illustration of the optimization transfer principle. Instead
of minimizingΦ(µ), we minimize the surrogate functionφ(µ;µn) at thenth
iteration. Here, the surrogate functionφ2 has a smaller curvature and is wider
thanφ1, thus it has a bigger step size and hence faster convergence rate to the
local minimumµ∗.
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Fig. 2. Illustration of the tangent parabolas lying above a potential function.
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IEEE TRANSACTIONS ON MEDICAL IMAGING. TO APPEAR. 17

(a)

(b)

(c)

Fig. 4. (a) FBP reconstructionof phantomdata from 7-h transmission scan, (b) FBP
reconstruction from 12-min transmission scan, and (c) Penalized-likelihood re-
construction from 12-min transmission scan using 12 iterations of the “optimum
curvature” PSCD algorithm.
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Fig. 5. Comparison of objective function decreaseΦ(µ0) − Φ(µn) versus itera-
tion numbern of monotonic PS methods with coordinate descent and LBFGS
methods for real phantom data.
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Fig. 6. Same as Figure 5, but x-axis is CPU seconds on a DEC AlphaStation 600
5-333 MHz.
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