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Abstract

We present a framework for designing fast and monotonic algorithms for transmission tomography penalized-likelihood image reconstruction. The ne
algorithms are based on paraboloidal surrogate functions for the log-likelihood. Due to the form of the log-likelihood function, it is possiblevo fin
curvature surrogate functions that guarantee monotonicity. Unlike previous methods, the proposed surrogate functions lead to monotors@akyofith
the nonconvex log-likelihood that arises due to background events such as scatter and random coincidences. The gradient and the curvatiivearf the like
terms are evaluated only once per iteration. Since the problem is simplified at each iteration, the CPU time is less than that of current algdrithms whic
directly minimize the objective, yet the convergence rate is comparable. The simplicity, monotonicity and speed of the new algorithms asectjvite attr
The convergence rates of the algorithms are demonstrated using real and simulated PET transmission scans.

I. INTRODUCTION

Attenuation correction is required for quantitativelgcurate image reconstruction in emission tomography. The accuracy of this
correction is very important in both PET and SPECT [1]. Transmission scans are performed to measure the attenuation characteristic
the object and to determine attenuation correction factors (ACFs) for emission image reconstruction. Conventional smoothing meth
for ACF computation are simple and fast, but suboptimal [2, 3]. For low-count transmission scans, statistical reconstruction metho
provide lower noise ACFs. However, a drawback of statistical methods is the slow convergence (or possible divergence) of curre
reconstruction algorithms. This paper describes fast and monotonic algorithms for penalized-likelihood reconstruction of attenuati
maps from transmission scan data. These reconstructed attenuation maps can be reprojected to calculate lower noise ACFs for impr
emission image reconstruction.

Statistical methods for reconstructing attenuation maps from transmission scans are becoming increasingly important in thorax &
whole-body PET imaging, where lower counts and short scan times are typical. 3-D PET systems also require attenuation correcti
which can be done by reprojecting 2-D attenuation maps. SPECT systems with transmission sources are becoming increasingly avail
where statistical algorithms can be efficiently used for attenuation map reconstructions.  For low-count transmission scans, the n
statistical FBP reconstruction method systematically overestimates attenuation map coefficients, whereas data-weighted least sqt
methods (WLS) for transmission reconstruction are systematically negatively biased [4dccBrate statistical modeling, penalized-
likelihood reconstruction of attenuation maps eliminates the systematic bias and yields lower variance relative to linear methods. Hen
we focus on penalized-likelihood image reconstruction rather than WLS in this paper.

There are many reconstruction algorithms based on the Poisson model for transmission measurements. The expectation maximiz:
(EM) algorithm [5], which led to a simple M-step for the emission problem, does not yield a closed form expression for the M-step ir
the transmission case [6]. Modifications of the transmission ML-EM algorithm [7—9] as well as algorithms that directly optimize the
penalized-likelihood objective [3,10-13] have been introduced. Some of these algorithms seem to converge rapidly in the convex ca

However, up to now, no practically realizable monotonic (or convergent) algorithm has been found for the penalized-likelihoo
problem when the objective is not convex. The negative log-likelihood is nonconvex when there are “background” counts in the dat
This is unavoidable in PET and SPECT, due to the accidental coincidences in PET and emission tioSRHICT. The assumption
of no background counts may be valid in X-ray CT.

In this paper, we present a new algorithm which is guaranteed to be monotonic even when the objective function is nonconvex. Ti
algorithm depends on paraboloidal surrogate functions for the log-likelihood which transform the problem into a simpler quadrati
optimization problem at each iteration. The transformed problem at each iteration is similar to a Penalized Weighted Least Squa
(PWLS) problem, and thus has a familiar and simple form. This quadratic problem need not be solved exactly; an algorithm th
monotonically decreases the surrogate function suffices. Since evaluating the gradient and Hessian of the surrogate function is much
costly, the CPU time per iteration is greatly reduced as compared to algorithms that directly attempt to minimize the objective functio
such as coordinate descent. Remarkably, the convergence rate is comparable to other direct algorithms. For nonconvex objec
functions, monotonicity alone does not guarantee convergence to the global minimizer when local minima exist, but it does ensure t|
the estimates cannot diverge since the likelihood is bounded. Whether the transmission log likelihood has multiple local minima is
open question.

The “surrogate” or “substitute” function idea is not new to the tomographic reconstruction area. EM algorithms can be viewed &
providing a surrogate function for the log-likelihood function by means of a statistically more informative “complete” data set which is
unobservable [5]. The conditional expectation of the log-likelihood function for this new space is often easier to maximize, having
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window due to Compton scatter and finite energy resolution.
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closed form for the emission case. This statistical construction of surrogate functions is somewhat indirect and seems to yield a limi
selection of choices. De Pierro has developed surrogate functions for nonnegative least squares problems based solely on conve
arguments, rather than statistics [14]. Our proposed approach is similar in spirit.

The EM algorithm did not result in a closed form M-step for the transmission case [6], so direct minimization of the objective functior
became more attractive. Cyclic Newtonian coordinate descent (CD,NR) [11] has been used effectively in transmission tomograp!
However, coordinate descent based on Newton’s iteration for each pixel is not guaranteedatodbenis. Furthermore, an iteration
of Newton-based coordinate descent requires at leasixponentiations andi7 M floating point operatiorfs, where M is the (very
large) number of nonzero elements in the system matrir (1) below. These exponentiations and floating point operations constitute
a significant fraction of the CPU time per iteration. Recently, Zhehal. introduced a “functional substitution” (FS) method [15, 16]
which is proven to be monotonic for transmission scans with no background ceyunts@ in (1) below). Like coordinate descent,

FS algorithm cyclically updates the coordinates of the image vaatothe attenuation map values for each pixel. However, instead of
minimizing the original complex objective function with respect to each parameter, FS algorithm minimizes a 1-D parabolic surroga
function. The minimization of the surrogate is guaranteed to monotonically decrease the original objective function if the derivative
the negative log-likelihood is concave (which is true whrgn= 0) [15, 16]. On the other hand, the FS algorithm requires at &6t
exponentiations anti7 M/ floating point operatiorisper iteration, which means that the guarantee of monotonicity comes at a price of
significantly increased computation time per iteration for that method. Furthermore, the FS algorithm is not monotonic in the nonconv
case of interestin PET and SPECT, where- 0.

De Pierro [17] has used a surrogate function for the penalty part of the penalized-likelihood problem for convex penalties. Th
surrogate function idea was also used in several algorithms which update a group of pixel values at a time instead of sequential upc
of each pixel. Examples of these types of algorithms are the convex algorithm of [18] wieltes all pixels simultaneously and the
grouped coordinate ascent (GCA) algorithm of [12, 15] which updates a subset of pixels at a time. The surrogate functions used
these algorithms were obtained using De Pierro’s convexity trick [17] to form a separable function that is easier to minimize than tt
non-separable original objective function. The convergence rates per iteration decrease due to the higher curvature of these surro
functions, but these algorithms require less computation per iteration as compared to single coordinate descent [11] and are parallelize
Furthermore, it is trivial to impose the nonnegativity constraint with an additively separable surrogate function [12].

In this paper, we propose to use a global surrogate function for the original objective function. This global surrogate fumation is
separable, but has a simple quadratic form. The method is based on finding 1-D parabolic functions that are tangent to and lie ab
each of the terms in the log-likelihood, similar to Huber's method for robust linear regression [19]. Whereas Huber considered strict
convex cost functions, we extend the method to derive provably monotonic algorithms even for nonconvex log-likelihood function:
Remarkably, these algorithms requiessCPU time to converge than the fastest algorithm introduced before (GCA of [12]) and as an
additional advantage, they are proven to be monotonic. We call the new approach to image reconstruction the “Paraboloidal Surroga
(PS) method.

In the rest of this paper, we describe the problem, develop the new algorithm, and present representative performance results on
PET transmission data.

Il. THE PROBLEM

The measurements in a photon-limited application such as PET or SPECT are modeled appropriately as Poisson random varial
In transmission tomography, the means of the prompt coincidences are related exponentially to the projections (or line integrals) of 1
attenuation map through Beer’s Law [6]. In addition, the measurements are contaminated by extra “background” counts due mostly
random coincidences and scatter in PET and emission crosstalk in SPECT. Thus, it is realistic to assume the following model:

y; ~ Poissofibe A4 + 1}, i =1,..., N, (1)

whereN is the number of measurements; is the average linear attenuation coefficient in vokébr j = 1,...,p, andp denotes
the number of voxels. The notatigd ], = >-7_, a;;u; represents théh “line integral” of the attenuation map, andA = {a;;}

is the N x p system matrix. We assume thd;}, {r;} and{a;;} are known nonnegative constehtaherer; is the mean number
of background event$; is the blank scan factor, ang represents the number of transmission events counted bytthletector (or
detector pair in PET).

We seek to find a statistical estimate of the attenuation mapich “agrees” with the data and is anatomically reasonable. For this
purpose, a hatural approach is to use a likelihood-based estimation strategy. The log-likelihood function for the independent transmiss

datais:
N

L(p) = Z {yz log(be ™A 4 1) — (bye 1AM + 7“1')} ,

i=1

2This can be reduced @) floating point operations if the denominator terms are precomputed similar to section 3-F in this paper.

3Precomputation of the denominator terms in FSCD would destroy monotonicity.

4The assumption that the background countare known nonnegative constants is an approximation. In PET, we estimatgstbg smoothing the delayed coinci-
dences from the transmission scan [20]. Alternatively, one can use time scaled delayed coincidences from a blank scan (which are less noisr duanditorg) as
ther; factors [21] or use Bayesian estimation techniques to estimatérom delayed coincidences [3, 20].
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ignoring constant terms. The log-likelihood depends on the parameter yettosugh only its projectiongd ], and can be expressed
in the following form:

N
—L(p) =Y hi([Apl,), @)
=1
where the contribution of th#gh measurement to the negative log-likelihood is given by:
hz(l) é (bie_l + 7“1') — Y log(bie_l + 7“1'). (3)

The proposed algorithm exploits the additive form of (2). Directly minimizing(x) (maximum likelihood) results in a very noisy
estimate’ due to the ill-posed nature of the problem. However, it is well known that the attenuation map in the body consists of appro»
imately locally homogeneous regions. This property has formed the basis of many segmentation methods for transmission scans [;
Rather than applying hard segmentation, we add to the negative log-likelihood a penalty term which encourages piecewise smoothr
in the image, resulting in the penalized-likelihood image reconstruction formulation as given below:

fi= arg;ginfb(u), ®(n) = —L(p) + BR(1). 4)
Our goal is to develop an algorithm for finding the minimizifagvith minimal CPU time.
We consider roughness penaltig§.) that can be expressed in the following very general form [17,23]:

K
R(p) =Y ve([Culy), (5)
k=1

where theyy,’s are potential functions acting as a norm on the “soft constrafifs’~ 0 and K is the number of such constraints. The
functionsy,, we consider are convex, symmetric, nonnegative, differentiable and satisfy some more conditions that are listed in Secti
3-C. Theg in equation (4) is a parameter which controls the level of smoothness in the final reconstructed image. For more explanati
of the penalty function, see [23].

The objective function defined in (4) is not convex when there are nonzero background eguat8)(in the data. In this realistic
case, there is no guarantee that there is a single global minimum. However, some practical algorithms exist that seem to work very w
yet none of them are proven to be monotonic. In this paper we introduce an algorithm that is monotonic ev@risniadrconvex. The
new approach is based on successive paraboloidal surrogate functions and will be explained in the rest of the paper.

[1l. PARABOLOIDAL SURROGATESALGORITHMS

The penalized-likelihood objective functidr(i:) has a complex form that precludes analytical minimization. Thus, iterative methods
are necessary for minimizing(u). Our approach uses the optimization transfer idea proposed by De Pierro [14,17], summarized a:
follows. Let " be the attenuation map estimate aftersthieiteration. We would like to find a “surrogate” function(y; ") which is
easier to minimize or to monotonically decrease ti#@n). This approach transforms the optimization problem into a simpler problem
at each iteration, aflustrated in Figure 1. The following “monotonicity” condition on the surrogate function is sufficient to ensure that
the iterateg " } monotonically decreasé:

D(p) — (") < (s p") — P(u™5 1), Y > 0. (6)

We restrict ourselves to differentiable surrogate functions, for which the following conditions are siffficiensure (6):

Lo p(u™;u™) =2(u")
o 5d

2. —( =
a; (ks 1 )u=u" o (1)

3. ¢(usp") > @(p) foru > 0.

Figure 1 illustrates a surrogate function that is tangent to the original objective at the current iterate and lies above it for all feasib
values of the parameters.

The EM algorithm [6] provides a statistical method for constructing surrogate funetigng:”) satisfying the above conditions.
However, in the transmission tomography problem, the natural EM surrogate is difficult to minimize and leads to slow convergence.
this paper, we construct a simpler surrogate using ordinary calculus rather than statistical techniques.

7vj:17"'7p (7)

5We use the notation(u; u™) to emphasize that the surrogate is a functiop @incep™ is fixed and it changes for eagi?, following the @ function notation of the
EM algorithm [5].
6The second condition follows from the other twandlitions for differentiable surrogate functions.
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The log-likelihood function (2) has a certain kind of dependence on the parameteesnely through their projectiondy. The
negative log-likelihood is the sum of individual functiohg each of which depends on a single projection only. We can exploit this
form of the likelihood function by selecting a 1-D surrogate functiondach of the one-dimensiona] functions in the projection/)
domain. The overall sum of these individual 1-D functions will be an appropriate surrogate for the likelihood part of the objective.

Let!? = [Au™], denote the estimate of thith line integral of the attenuation coefficient at tité iteration. We choose the following
quadratic form for the surrogate functiogps

2

GBI 2 ) + )0~ )+ Sesi) - 7, ®

wherec;(I7") is the curvature of the parabaja andh denotes first derivative df. This construction ensures thg(i?; 1) = h; (i)
andg; (17, 17) = h; (1) similar to (7). To ensure monotonicity, we must choose the curvatures to satisfy the following inequesdith at
iteration:

After determining the parabolas, one can easily verify that the following function is a global surrogate function for the objgctive
which satisfies the propertiesin (7):

o(p; 1) = Q(u; 1") + BR(p), (10)
where
A N
Quip™) = > ail(Aul;17) (11)
=1
= ®(u")+dn(") A(p —p") (12)
1
+5 (= p") A'D(ei (1) A(n — 1), (13)
. N
where the column vectad,, (1) 2 [hi(l?)] , ' denotes the transpose of and D(c¢;(I")) is the N x N diagonal matrix with
=1
diagonal entries; (i) fori =1,..., N.

The surrogate functiogt(u; u™) in (10) consists of the sum of a paraboloi@(a quadratic form) and the convex penalty term. An
algorithm that decreases the functiopwill also monotonically decrease the objective function if the inequality in (9) holds. The general
paraboloidal surrogates (PS) method can be outlined as follows:

for each iteratiom

determinec; (1) and consequently(u; u™)

find au™ ! > 0 that decreases (or minimizesju; u™)
end.

The key design choices in the general method outlined above are:

1. The different ways of choosing the curvatuegd!)'s which would satisfy (9).
2. The algorithm to monotonically decreaggu; u™) defined in (10) fop: > 0.

Each combination of choices leads to a different algorithm, as we elaborate in the following sections.

A. Maximum Curvature

A natural choice fok; (1) is the maximum second derivative in the feasible region for the projections. This “maximum curvature”
ensures that (9) holds, which follows from the generalized mean value theorem for twice differentiable functions (page 228, [24]). Tt
feasible region for the projections|[i$, o) due to the nonnegativity constraint. Hence, the choice

a(li) =, gg)g){hi(l)} (14)

is guaranteed to satisfy (9). We show in Appendix A that the closed form expressiafiforis:

where[z], = z for x > 0 and zero otherwise. Thus, it is trivial to compute thd;') terms in this case. The choice (15) for the
curvaturee; (1) does not depend on the iterationso it is a constant. We refer to this choice as the “maximum curvature” (PS,M,CD).

Having specified the curvaturds;(I*)}, the paraboloidal surrogat@(y; ™) in (13) is now fully determined. Next we need an
algorithm that decreases or minimizes the surrogate fungtipnu™).
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B. Algorithms for Minimizing the Paraboloidal Surrogate
In the absence of the nonnegativity constraint, in principle one could minimize the surrogate fdriptipfi) over . by zeroing its
gradient. The column gradient ¢f uu; u™) with respect tqu is given by

Vud(u; p") = A'dn(1") + A'D(ci (1) A — 1) + BVR(p). (16)
1
If R(w) is a quadratic formi.e. R(u) = §M/RM, then we can analytically zero the gradient, yielding the iteration:

p' =t — [A'D(c;(I') A + BR] 'V, ®(u"). 4

There are three problems with the above iteration. It does not enforce the nonnegativity constraint, the matrix inverse is impractical
compute exactly, and itis limited to quadratic penalty functions. To overcome these limitations, we instead apply a monotonic coordine
descent iteration to decreagéu; u™).

C. Coordinate Descent Applied to the Surrogate Function

To apply coordinate descent to monotonically decrease the surrogate fup@iiqri*), we need a quadratic function that majorizes the

functiong(u; u™) at each pixel. We treat the likblood part and the penalty part separately.a}?(uj) = Qs -+ fhj—1s Py ity - oy fp] 11

and]fz;?(uj) = R([f1, - - -5 fi—1, 4, j+1, - - -, fp]), Wherefi denotes the current estimate of the paramet&then we must select cur-
vaturesd? andp; that satisfy the following:

Qi) = QUi ") + Qg — fs) + 53 s — )’ (19)
B(u) < Rolowg) 2 RG)+ By — fs) + 50100y — o)’ Yoy 2 0, (19)

WhereQ?(uj) and R;(uj) are treated as functions pf; only. Equality is achievable in (18) since the likelihood surrog@ﬁuj)

is quadratic. For the penalty paﬂ%?(uj), we must find a quadratic functioﬁj(uj) that lies above it, by appropriate choiceggfas
considered below.
The derivative of the likelihood surrogate parabolgats (from (11))

250) 2 503 m)

N A
= aiaily),

=R i=1

where from (8)

Gi(l) = ha(U) + e () (I = 1), (20)
wherel; = >N a;;/1;, and
hi(l) = <# - 1> bie . 1)
From (8) and (11), the curvature of the param?gé(uj) is obviously:
N
& =N ade ). (22)
=1
From (5), the derivative of the penalty part/gtis
K
R(p) = %Rﬁ(uj) =3 cxhi([CRlx)
J Kj=hj k=1

We must obtain a parabolic surrogaigz(uj) that satisfies (19). We assume the potential functigiis) satisfy the following conditions:
e 1) iS symmetric
e ¢ is everywhere differentiable (and therefore continuous)
e t)(t) = d/dt(t) is non-decreasing (and hengas convex)
o wy(t) £ 4(t)/t is non-increasing for > 0
e wy(0) = limy_,4)(t)/t is finite and nonzerae. 0 < wy(0) < co.
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In the context of robust regression, Huber showed (Lemma 8.3 on page 184 in [19], also [23]) that for potential fypdhiansatisfy
the conditions above, we can find a parabol#) that lies above)y (), Vt € IR. This parabola) (t) is tangent to the potential function

at the current point, 2 [Ci]i, and at—t and has the curvatutey, (f;) wherew,,(-) was defined above. The surrogate parabola is
given by:

9u(t) = ulda) + B(EE — Ba) + e ) — i0)?,

and is illustrated in Figure 2. Thus, the following is a surrogate parabola for the penalty part of the objective function:

K
R; () = 2 de(Cul)| | (23)
The curvature of the paraboly (u;) is: B
by = Y Ajwn (Cily). (24)
k=1
Combining the above surrogate parabolas (18) and (23), the minimization step of the coordinate descent;fiar giirely:
i = argmin Qf (1) + BR; (15) = lﬂj - W (25)

This is an update that monotonically decreases the valgé gf™) and consequently the value®f-). One iteration is finished when all
pixels are updated via (25) in a sequential order. We usually update the paraboloidal surrogate function after one iteration of coordir
descent (CD), but one could also perform more than one CD iteration per surrogate. We call this method the Paraboloidal Surroge
Coordinate Descent (PSCD) method.

The PSCD algorithm with the curvatures obtained from (15) is outlined in Table I. In this table, the algorithm flow is given for the
general case wherg (/) may change at each iteration. However, the curvatos@8) given in Table | are constant throughout the
iterations. If one uses fixed (I}') values which do not depend aras in (15), then the’ terms can be precomputed and the algorithm
should be reorganized to take this computational advantagadotmunt.

Another computational advantage of curvatures that do not depend on the iterations is as follows. If wg;defigg\/c; and
a;; = aij+/c;, then the update in (38) will be simplified to:

Gi = G + g (1™ = f1y),

which decreases the computation time devoted to back and forward projections per iteration by about 20% for implementations usi
precomputed system matrices. The equations (37) and (39) should also be modified to use the new variables. We have not impleme
this faster version for this paper.

The algorithm in Table | requires roughly double the floating point operations required for one forward and one backprojection pe

. N
iteration. The gradient of the original log-likelihood with respect to the project{dn:él?)} - and the curvature terms(I?*) are

computed only once per iteratibnThe gradient of the surrogate paraboloid ugeserms which can be updated easily as shown in
(38) in the algorithm. This implementation does not update the projedti@fter each pixelipdate since they are only needed in the
outer loop (34). The projections are computed in (39) after updating all pixels. The update (39) re®juirésto work. In (36), we
constrain the curvature value to some small valte0 (which obviously does not hurt monotonicity) so that (39) can be evaluated for
alli =1,..., N. However,e should not be very small since it will cause undesirable numerical precision errors. Storage requirement:
are also modest for the proposed algorithm. A single copy of the image and four sinogrdme:fok; and¢; need to be stored in
addition to data vectorg;, b;, ;.

In the following, we discuss the convergence rate of the algorithm, which provides motivation for obtaining better curvatures.

D. Convergence and Convergence Rate

In the absence of background everits, whenr; = 0, the penalized-likelihood objectiv@ is convex and our proposed PSCD
algorithm is globally convergent. This is a fairly straightforward consequence of the proof in [25] for convergence of SAGE, so we omi
the details.

However whenr; £ 0, little can be said about global convergence due to the possibility that there are multiple minima or a continuou:
region of minima. Our practical experience suggests that local minima are either unlikely to be present, or are quite far from reasona

7In contrast to PSCD algorithm, when coordinate descent (CD,NR) is applied to the original objective function, new gradients and curvaturesmpusetafter
each pixel is updated. These computations involve expensive exponentiations and floating point operations which increase the CPU time reginiaéddordinate
descent.
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starting images, since all experiments with multiple initializations of the algorithm yielded the same limit within numerical precision.
The PSCD algorithm is monotonic even with the nonconvex objective function. One can easily show that every fixed point of th
algorithm is a stationary point of the objective function and vice versa. Thus, it is comforting to know that the algorithm will converge
to a local minimum and will not blow up.

The convergence rate of the proposed algorithm with the “maximum curvature” choice is suboptimal. The cusMdfyrase too
conservative and the paraboloids are unnecessarily narrow. Intuitively, one can deduce thatcgitfallealues will result in faster
convergence. The reason for this is that the lower the curvature, the wider the paraboloid and the bigger the step size as can be se
Fig. 1. To verify this intuition, we analyze the convergence rate of the algorithm. For simplicity, we assume that a quadratic penalty
used in the reconstruction and that the surrogate fungtipnu™) (10) is minimized exactly.

Let i be the unconstrained minimizer of the original objective function. At stepy zeroing the gradient of (10), we get the
simple Newton-like update in (17). By Taylor series, §gt ~ [, we can approximate the gradient of the objective function as:
Vo (um) ~ H(f)(u™ — fv), whereH (f2) is the Hessian ob at ji. Define N (c¢) = A’ D(c;)A + SR, then from (17):

e A

fo— [N ()] H(3)(u" — f2)
N(c)] ™ H () (u" — ). (26)

This equation describes how the convergence rate of the proposed algorithm is affected by diffeheites. We use the results
from [26] to evaluate the convergence rate. Ié{c') and N(c?) be two matrices corresponding to curvature vectdrand c2
respectively withc! < ¢?,Vi. Then obviouslyN (c?) — N(c!) is positive definite and it follows from Lemma 1 in [26] that the
algorithm corresponding t@' has a lower root-convergence factor and thus converges faster than the algorithm correspasding to

Therefore, to optimize the convergence rate, we would like:t{i¢) values to be as small as possible while still satisfying (9). The
optimal choice for the curvatures is the solution to the following constrained optimization problem far each

(i) = min{c >0 hi(l) < h(IP) + ha (1) (1 — 1) + %c(l —1M)?2 vl > 0} . (27)

This choice yields the fastest convergence rate while still guaranteeing monotonicity. In the following section, we discuss the soluti
to (27).

E. Optimum Curvature

The curvature that satisfies (27) is not trivial to find for general functiosig. However, the marginal negative log-likelihood
functions for each projectiomh{ defined in (3)) in transmission tomography have some nice properties. We show the following in
Appendix B. The parabola that is:

1. tangent tay; at the current projectioff’, and
2. intersectd; atl = 0,

is guaranteed to lie above(l) ¥I > 0. This claim is true only when the curvatwgi?) of ¢; is nonnegative. If the curvature obtained
by the above procedure is negative, then weg@l) to zer®. Whene;(I?) = 0, theg; function is the line which is tangent to tthe
curve at the current projection valije

The curvature of the parabola described abo%e is

. (28)

We prove in Appendix B that this curvature is the optimum curvature that satisfies (27). The nonnegativity constraint plays an importa
role in the proof. If nonnegativity is not enforced, the projections at an iteration may go negative and the curvature (28) will not guarantt
monotonicity anymore. Fig. 3 illustrates this surrogate parabola with the “optimum curvature” (28). In Table I, the curvature computatio
in (35) should be changed to (28) to implement PSCD method with the optimum curvature (PS,0,CD).

8In fact, any nonnegative (I7*) will ensure monotonicity, hence then (36).
9Whenll'.l is nonzero but small, due to numerical precision, (28) might turn out to be extremely large during computati@ft.) It [hi(o)] N (which theoretically

should not happen but practically happens due to limited precision), then wg e} to be equal to the maximum second derivat[\fe(o)] N which eliminates the
problem.
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F. Precomputed Curvature

By relaxing the monotonicity requirement, we can develop faster yet “almost always” monotonic algorithms. We can do this b
choosing curvatures; (i) in equation (8) such that; (1) = ¢;(I;1%), buth;(I) ~ ¢;(I;11*), rather than requiring the inequality (9). In
this case, the paraboloids are quadratic “approximations” to the log-likelihood function at each iteration. A reasonable choice for tl
curvatures is:

. b,
ci =h; (10g > = (yi — 1) /yi- (29)
Yi — T4

4

The valuel™® = log( ) is the point that minimizes thg; function. These curvatures in (29) are close approximations to

the second derivative &tz functions at the projection valued/ wheref is the solution to the penalized-likelihood problem [12].
This is called the “fast denominator” approach in [12], since it features a one-time precomputed approximation to the curvature th
is left unchanged during the iterations so that the denominator fn(@2) can be computed prior to iteration (similar to “maximum
curvature” in equation (15)). Computational benefits for iteration independent curvatures as summarized in Section 3-C can be utiliz
This approximation works well because we usually start the iterations with an FBP pfagleere projectionsA.® are usually close

to [™in, Nevertheless, unlike with (28) monotonicity is not guaranteed with (29).

The PS method with the curvature (29) yields faster convergence than the other PS algorithms presented above. This method is rel
to the PWLS image reconstruction method [11, 27], but instead of making a one-time quadratic approximation to the log-likelihoo
function, the approximation is renewed at each iteratiorh@lgh the curvature of the paraboloid remains same, the gradient is changed
to match the gradient of the original objective function at the current iterate. The nonnegativity constraint does not play an importa
role for the derivation, and this curvature may be used for algorithms where nonnegativity is not enforced. We refer to this curvature
“precomputed curvature” (PS,P,CD).

IV. RESULTS

To assess the effectiveness and speed of the new PS algorithms, we present results using real PET data. We acquired a 15
blank scan &;’s) and a 12-min transmission scan dajgd) using a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod
transmission sources [28]. The phantom used was an anthropomorphic thorax phantom (Data Spectrum, Chapel Hill, NC). Delay
coincidence sinograms were collected separateBath scan. The blank and transmission scan delayed-coincidengeasns were
shown to be numerically clo&&[21], so we used a time-scaled version of blank scan delayed coincidences aatiers with no other
processing. The projection space was 160 radial bins and 192 angles, and the reconstructed imagésa@gewith 4.2 mm pixels.

The system matriXa;;} was computed by using 3.375 mm wide strip integrals with 3.375 mm spacing, which roughly approximates
the system geometry [4].

We performed reconstructions of the phantom by FBP as well as various penalized-likelihood methods. For the penalty term in |

reconstructions, we used the following function:

p
R =530 3wty — me)
J=1 keN;

which is a special case of (5). Hetg,, is normally equal to 1 for horizontal and vertical neighbors a2 for diagonal neighbors.
We used the modifiedy;;’s described in [29] to achieve more uniform resolution. For the potential function, we used one of the
edge-preserving nonquadratic cost functions that was introduced in [30]

() = 6% [|z/6] — log(1 + | /d])].

This function acts like a quadratic penalty for small differences in neighboring pixels and is close to absolute value function for dif
ferences greater thah This nonquadratic function penalizes sharp edges less than quadratic functions. We=t12604 cm !

chosen by visual inspection. In the final reconstructed image, the horizontal and vertical neighbor differences are less timan this
homogeneous regions (90% of all differences) which makes the curved part of the penalty effective in those regions. However at edg
for which the differences are greater thigrhis penalty penalizes less than the quadratic one.

The PS algorithms described throughout this section are named using the following form&.CPI'S stands for paraboloidal
surrogates as the general framework for the algorithms and CD stands for coordinate descent applied to the surrogate function. The |
C in the format represents the curvature typg?). The types are: “M”, “O” and “P” for maximum second derivative curvature (15),
optimum curvature (28) and precomputed curvature (29) respectively. The other algorithms we used for comparison in this secti
are as follows. LBFGS: a constrained Quasi-Newton algorithm [31], CD,P: coordinate descent with precomputed denominators a
CD,NR: coordinate descent with Newton-Raphson denominators [11, 12] applied to objective function, GD,P: grouped descent wi
precomputed denominators [12].

10This is due to the fact that singles rate is mostly affected by transmission rods.
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Fig. 4 shows images reconstructed by FBP and statistical methods from a 12 minute scan. For comparison, an FBP reconstruc
of a 7 hour scan is also shown. Qualitatively, the statistical reconstruction looks better than the FBP image, having less noise &
more uniform homogeneous regions. However, our focus here is not the image quality but the amount of time it takes the algorithr
to converge to the minimizer image. Nevertheless, improved emission image quality is our ultimate goal. Statistical methods f
transmission reconstruction yield better ACFs as compared to conventional methods and result in better emission images. Our goal
is to speed-up and stabilize statistical methods to make them usable routinely in clinic.

Fig. 5 shows that the proposed PSCD algorithms decrebstohost as much per iteration as the coordinate descent algorithm applied
to @ directly. This result is important because it shows that the surrogate paraboloids (especially with the optimum curvature) close
approximate the original log-likelihood. More importantly, in Fig. 6 the PSCD algorithms are seen to be much faster than coordina
descent in terms of the actual CPU titheDne of the main overhead costs in coordinate descent is the computation of the log-likelihood
gradient term after each pixel change [12]. In PSCD algorithm, the gradient of the surrogate fufi&)aa be computed (updated)
by a single multiplication (20). The “maximum curvature” method introduced in Section 3-A precomputes the denominatefjferms (
for the likelihood part since; (I1*)’s do not depend on the iterations. However, theg€)’s are much larger than the optimal curvatures,
so more iterations are required for PS,M,CD than PS,0,CD to converge.

We also compared the PSCD algorithms to the general purpose constrained Quasi-Newton algorithm (LBFGS) [31] in Figures 5 anc
Although the LBFGS algorithm takes about 25% less CPU time (0.88 seconds) per iteration than PSCD algorithms, it did not conver
as fast as the proposed algorithms. This shows that the algorithms such as PSCD which are tailored to our specific problem conve
faster than the general purpose Quasi-Newton method.

In Fig. 7, we consider the fastest previous algorithm we know.ef GD with 3 x 3 groups with precomputed denominator [12])
and compare it to the fastest PS algorithms. The PSCD with “precomputed curvatures” (PS,P,CD) (introduced in Section 3-F) requi
slightly less CPU time than GD,P to converge. Although the PS,P,CD algorithm is not provably monotonic, it is a reasonable appro»
mation and we did not observe any non-monotonicity in our practical experience. The monotonic PS,0,CD method is shown in this pl
as a baseline for comparison with Fig. 6.

In Fig. 8, we present the results of a transmission scan simulation with zero background epent§ @nd compare the monotonic
PSCD algorithm with the functional substitution (FS) method of Zhetreg.[15,16]. The FS algorithm is proven to be monotonic when
r; = 0 in which caseh; is convex. However, the FSCD method requires considerably more computation per iteration than both CD an
PSCD. The plot shows that FSCD requires more CPU time than PSCD.

Table Il compares the number of iterations and CPU seconds required to minimize the objective funeich ygtod. The CPU
times™?, floating point operations and memory accesses (of akflenly) per iteration are also tabulated, whéreis the number of
nonzero entries in system mattk. For comparison purposes, a single forward and backprojection requires about 0.78 CPU seconds
The CD and FS methods are significantly different from our proposed PSCD methods in the following respect. In our mettods, the
terms are kept updated for albutside the projection loop in (38). In contrast, both CD and FS re@yierms within the backprojection
loop, and these change with every pixel update so they must be computed on the fly within the backprojection loop. Thus that ba
projection must accesg, b;, r;, l; and the system matrix within the loop, and perform quite a few floating point operations (including
the exponentiations) with them. Not only is there inherently more floating point operations required for CD and FS, we suspect that t
need to nonsequentialficcess parts of fourrsbgram-sized arrays, in addition to the system matrix, significantly degrades the ability of
the CPU to pipeline operations. This leads to the dramatic differences in CPU time between PSCD and CD methods.

If a monotonic algorithm is required, the PSCD algorithm with the optimal curvature (PS,0,CD) is the fastest algorithm. The othe
algorithms are not guaranteed to be monotonic except PSCD with maximum curvature. Although PS,M,CD algorithm consumes le
CPU time per iteration, it takes longer to converge since the curvatures result ineceggarily narrow surrogate function which causes
small step sizes.

Among the nonmonotonic algorithms, another PS method, PSCD with precomputed curvatures (PS,P,CD) is the fastest. It converge
about 15 seconds with the real data used. The CPU time per iteration is the same as PS,M,CD since they both precompute the denomil
(d}) terms. Since the curvatures are smaller, this method decreases the objective very rapidly, nevertheless it is not guaranteed t:
monotonic. However, as with the CD and GD with precomputed denominators [12], we have never observed any honmonotonicity
practical applications. The FSCD and CD algorithms consume a lot of CPU cycles per iteration and they are much slower than t
proposed algorithms. The GD,P algorithm lowers the CPU requirements by decreasing the number of exponentiations, but it does
decrease the objective function as much per iteration as coordinate descent. Thus, it is also slightly slower than the PS,P,CD algorit
This Table shows that PSCD algorithms are preferable for both monotonic and nonmonotonic transmission image reconstructions.

V. CONCLUSION

We have introduced a new class of algorithms for minimizing penalized-likelihood objective functions for transmission tomography
The algorithms are shown to be monotonic even with the nonconvex objective function. In the nonconvex case, there is no proof tt
these algorithms will find the global minimum but at least the algorithms will monotonically decrease the objective function toward:

11All CPU times are recorded on a DEC 600 5-333 MHz workstation with compiler optimization enabled.
12The CPU times are computed on a DEC 600 5-333 MHz. We also compiled the code on a SUN Ultra 2 computer and got similar CPU time ratios for the algorithrr
However, the ratios could differ on another architecture or with another compiler due to cache size and pipelining differences.
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a local minimum. Practical experience suggests there are rarely multiple minima in this problem, but there is no proof. In the strict
convex case, the proposed algorithms are guaranteed to converge to the global minimum by a proof similar to that in [32].

The algorithms we introduced are simple, easy to understand, fast and monotonic. The simplicity in part is due to the additive form
(2), which is a direct consequence of independent measurements. Since the emission tomography log-likelihood has a very similar fc
due to independence of measurements, it is possible to apply the paraboloidal surrogates idea to the emission case as well to get f
algorithms [33]. Convergence is very important for algorithms for any optimization problem, particularly in medical applications. The
PSCD algorithmis globally convergent when there are no background counts. Even when there are background counts, the new algori
is guaranteed to monotonically decrease the objective function making the algorithm stable. Previous algorithms could not guaran
that property without expensive line searches. The robustness, stability and speed of the new algorithm renders it usable in rou
clinical studies. Such use should increase the emission image quality as compared to conventional methods which use linear proces
and FBP for reconstruction. Further “acceleration” is possible by ordered subsets [34], albeittgilaranteed monotonicity.

Itis possible to parallelize the PS algorithms by applying either grouped descent (GD) [12, 13] algorithm to the surrogate function, ¢
by parallelizing the projection and backprojection operators [35] for each pixel. However, in a serial computendthat PS method
with GD update (PSGD) was not faster than the PSCD algorithm. This is due to the fact that the gradient updates in PSCD algoritt
consume much less CPU time than the gradient evaluations in the original CD algorithm which require expensive exponentiations &
floating point operations. Hence, grouped descent did not reduce the CPU time per iteration as much in PS method as in the di
method.

In our opinion, the PS,0,CD algorithm supersedes all of our previous methods [4,12, 18], and is our recommended algorithm f
penalized-likelihood transmission tomography. The PS,P,CD algorithm is a faster but nonmonotonic alternative which can be used
noncritical applications. A possible compromise would be to run a few iterations of PS,0,CD algorithm and then fix the curvature
and denominator termglf) for the rest of the iterations to save computation time. Alternatively, one can run PS,P,CD algorithm and
check the objective functiof (1) after each iteration to verify that it has decreased. If the objective does not decrease (happens ver
rarely), then PS,0,CD algorithm can be applied to the previous iterate to ensure monotonicity. For medical purposes, we believe the
monotonic algorithm should be used to reduce the risk of diagnostic errors due to erroneous reconstructions. Fortunately, with the n
proposed methods, monotonicity can be assured with only a minor increase in CPU time (17.2 versus 15.1 CPU seconds).

VI. APPENDIXA

We prove in this appendix that the maximum second derivativi; @) for I > 0 is given by (15). We drop the subscripfor
simplicity.
The form of theh functions is critical in the following. The second and third derivatives of the funétion(3) are:

A1) = <1 -~ @’ﬁ) be!, (30)
h®) (1) = (yr [%} - 1> be L. (31)

We assumé > 0,y > 0, andr > 0 throughout these appendices. First, we prove two lemmas about properties df thastons.
These lemmas are used for the proofs in Appendix B as well.

Lemma 1:The following are equivalent fak(/) defined in (3):

e (E)r=00rr >y,

o (E2) h is strictly convex,

« (E3)h is strictly concave,

« (E4) h is monotonically increasing,

« (E5) h is monotonically decreasing.

Proof: Sinceh is three times continuously differentiablejs strictly convex if and only ifo > 0 and is strictly concave if and

only if h(® < 0. Clearly,i > 0 if and only if & is monotonically increasing. So, (E2=> (E4). For similar reasons (E3}=> (E5).

If r =0orr >y, thenyr < (be~! + )2, so from (30)i(l) > 0, Vi. Thus, (E1)= (E2).

To prove (E1)= (E3), from (31), it suffices to show th&te=! 4 )3 > yr(—be~! + r). But this is trivial since-* > yr? under the
conditions (E1).

To prove the opposite, if £ 0 andy > r, then one can easily show thafl) and—~(3) (1) can take negative values for sufficiently
largel considering (30) and (31). So, (E2) (E1) and (E3)= (E1). |

Lemma 2:Wheny > r andr # 0, the nonconvex functioh has the following properties:

« (P1)his continuously differentiable,

« (P2)h has exactly one critical poiiit, i.e. h(1*) = 0 andl* is a local maximizer of(l),

« (P3)h is strictly concave and monotone increasinglfer I*,

« (P4)h is monotone decreasing for> 1*, )

« (P5)h has exactly one critical poirit, i.e. A3 (1*) = 0 andi* is a local minimizer ofi(1).
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Proof: (P1) is obvious from (21) and (30).

>. Sinceh®)(1*) = —QM <

A/ Yyr
0, I* is a local maximum, proving (P2).
Solutions to the equatioh(®) (1) = 0 are the roots of a cubic polynomial in the variable: be~! which has only one real solution.
The real root is negative whenis convex resulting no solution fdr But, in the nonconvex case the real root is positive and results

in exactly one solutio® = log(b/(a/3 — yr/a — r)) wherea = </27yr2 +3+/3y3r3 + 81y2r. So,h(l) has exactly one critical

point. We have shown above that®) (1*) < 0 and one can easily see thdf) (1) ~ (% - 1) be~! > 0 for largel. Thusi® > I*

Inthe nonconvex case, the equatli(h) = 0 has exactly one solutioniR, I* = log <\/_
yr —r

andh(®)(l) < 0forl < I*. So,k(l) is monotonically decreasing for< I*. Also fori > 17, h®)(l) > 0 andh(l) is monotonically
increasing. This proves thétis a local minimum forﬁ(l). Hence, (P5) is proven.

To prove (P3), we have to shaw®) (1) < 0 andh(l) > 0 for I < I*. But, as we found abovié < I andh(®)(I) < 0 forl < I*. Also,
h(l) > 0 for | < I* sincel* is the only critical point and local maximizer afdue to (P2). So, (P3) is also proven.

The functionh(l) has exactly one zero crossitigfrom (P2) which is a local maximizer df. Then,k(l) has to be always negative

for I > I* proving (P4). To verify, one can easily see thgt) ~ ( — —) be~! < 0 for largel values. Sai(l) < 0 VI > I*. [ ]
T

The following result follows from (E5) of Lemma 1 for the convex case and from (P5) of Lemma 2 for the nonconvex case.
Corollary 1: The maximum value fok in the region[0, oo) is achieved at the end poinis.

() = lé%g){ﬁ(l)}
= max{h(c0), h(0)}

KOl

(w1,

VII. APPENDIXB

The result follows sincéim;_, . i(1) = 0.

In this appendix, we prove that the curvature defined in (28) is the optimum curvature that satisfies (27), which in turn implies fror
(26) that the choice (28) yields the fastest convergence rate. We first prove two lemmas about strictly concave functions.
Lemma 3:A one-dimensional liné(z) = ax + b can intersect a strictly concave (or strictly convex) functfgn) at most twice.
Proof: Supposé(z;) = f(z;) at pointse; < z2 < x3. Then sincef(z) is strictly concavef(z) > I(x) for z € (z1, z3), which
contradicts the initial assumption thitzs) = I(x2). |
Lemma 4:Let f(z) be a one-dimensional strictly concave function, and(le} = ax + b be a line that intersectf(z) at the two
pointsz; < x3. Then
f(z) <l(z) forz € (—o0,z1) U (22, 00).

Proof: Suppose there exists aB > 2 such thatf(xz3) > I(z3). Consider the new linex(x) that intersecty(z) atz; andzs.
Sincem(z1) = l(x1) andm(x3) = f(x3) > I(x3), it follows from the affine form of (z) andm(x) thatm(zz) > l(z2) = f(x2),
which contradicts the assumption thfdtr) is strictly concave. The casg < x; is similar. |

For simplicity in this appendix, we drop the subscriptnd the dependence arfor the variables. Lek () be the marginal negative
log-likelihood function defined in (3) with derivatives presented in (21), (30) and (31) ard!}dbe the parabolic surrogate function
defined in (8) with the “optimum curvature® defined in (28). We us# to denote the current projection vallfe The reader may
visualize the following proofs by considering the plotsioéindg functions shown in Fig. 3.

We define the difference function by:

5(1) £ q(1) — h(1). (32)

To show thay(l) > h(l) for! > 0 as required by (9), it suffices to show th@t) > 0. Wheni®¢ = 0, it is obvious from Appendix A that
d(1) > 0. Thus we focus on the cage> 0 in the following.
Lemma 5: The following conditions are sufficient to ensui@) > 0, VI € [0, o).
e (C1)6(0) > 0andd(ic) =0
« (C2)é(1) > 0forl > I°, and
o (C3) either
— (C31)4(1) <0, VI € [0,1¢), or .
— (C32)31” € [0,1¢) such that(1) > 0 forl € [0,17) andd(l) < 0 forl e (I7,1°].



IEEE TRANSACTIONS ON MEDICAL IMAGING. TO APPEAR. 12

Proof: Sinced(I¢) =0
5() = [ 4(t)dt. (33)
lc
« Case > [°. The integrand in (33) is nonnegative due to (C2)89 > 0.
« Casél € [0,1°]. If (C31) is true, therzﬁ( = 6 lc fl t)dt > 6(1°) =

If (C32) holds and € [0,17], thend(l) )+ fo dt >46(0) >0 by (C1). Likewise if (C32) holds antl € (I,1¢], then
a(1) = 6(1°) fl t)dt > 6(1¢) = 0 again by (C1).
Hence,§(1) > 0 VI > 0 under the above conditions. |

We now establish the conditions of Lemma 5. (C1) follows directly from the definition (27), so we focus on (C2) and (C3) below. We
first treat the case whergl) is strictly convex.

Lemma 6:1f h(l) is a convex function and(l) is concave foi > 0, then the difference functiof(l) in (32) with the curvature
defined in (28) satisfies conditions (C2) and (C32) in Lemma 5. Furthermoré.

Proof: It is trivial to show that the conditions (E2) through (E5) of Lemma 1 hold in this casé fer 0. First we prove
¢ > 0. Suppose: = 0, SOq' is a constant Sincé(1) is increasing by (E4) in Lemma 1 andi¢) = h(l°), it is obvious that
q(1) > h(l), VI € [0,1°), s06(0) = — fo t)dt < 0 contradicting (C1). Sa; > 0 in this case and(0) = 0 by design.

To prove (C32), conside. The lineq cannot intersect the strictly concakeat more than two points due to Lemma 3. We know
thatd(I¢) = 0, thusic is an intersection point. We had¢0) = 0 andd(I¢) = 0 by definition. From mean value theorem, there must
be another intersection poitft € [0, (°) such thatS(lp) = 0. We know by Lemma 3 that there cannot be any additional points where
5(1) =0.4(1) < 0forl e (I7,1°) due to concavity of, andé(l) > 0 for Il € [0, ") due to Lemma 4. (C32) is proven.

To prove (C2), apply Lemma 4 to the strictly concave funcfiomith two pointsi? andi¢ as the intersection points of the line with
the curve. |

We now consider the realistic nonconvex case.

Lemma 7:Let h(l) be a nonconvex function with its derivatikesatisfying properties (P1), (P2) and (P3) in Lemma 2. The difference
functiond(1) defined in (32) with the curvature defined in (28) satisfies (C2) and (C3) in Lemma 5.

Proof:
The reader can refer to Fig. 3 for representative plofsafid its first derivative. Note that in Lemma 2, (R2)(P4) directly.
Consider these two cases whérés defined as in Lemma 2:

o« CASEI® < I*.

In this case, by (P3) of Lemma &, is in a concave increasing region. By Lemma 6, (C32) holds as well as the faet:that To
prove (C2), we use property (P4), thigis a decreasing function fér> I*. So, sincej(I*) > h(l*) (as for (C2) in Lemma 6 again)
andc > 0, 4(1) > A(l), vl > I°.

o CASEIc > [*. Since by (C1)§(1¢) — 6(0 fo t)dt < 0,6(1) = ¢(I) — h(l) cannot always be nonnegative over the interval
[0,1°). So, eitherj(l) < h(l), VI € [O,IC) or ¢ mtersects’z (5(1) = 0) at least once irf0, I°). If the former case occurs, (C31)
holds by definition. If the latter case occurs, then we have to prove that (C32) heldsere is no more than one point at which
g intersectsh in [0,1¢). Sincec > 0 andh is decreasing in the regidn> [*, the intersection point(g¥ < I*. We cannot apply
Lemma 3 here to prove that there is no other intersection point, but we can use Lemma 4 to prove it. Assume there is anotf
intersection point. Then, the functign> A in the concave region outside the interval between two intersection points by Lemma
4 which impliesi(1*) > 0 andé (i) > 0 for I > I*. But this would contradict the fact that/°) = 0. So, (C32) must hold.

In this case, the fact that> 0 is enough to prove (C2), sindeis decreasing in this region.

Theorem 1:Let h(l) be a one-dimensional function that satisfies either of the following:

« (H1) (1) is strictly convex and.(1) is strictly concave in the feasible regidee 0, or

o (H2) (1) satisfies (P1), (P2) and (P3) of Lemma 2.
Then the curvature defined in (28) satisfies the optimality condition in (27).

Proof: For h functions that satisfy conditions (H1), Lemma 6 with Lemma 5 prove that the curvature (28) satisfieg{9) for

For h functions satisfying conditions in (H2), Lemma 7 and Lemma 5 similarly prove that the curvature (28) satisfieg {9} for
The rest of the proof applies to both cases (H1) and (H2).[Fer 0, c in (28) is the maximum second derivative[i) co), and (9) is
satisfied by mean value theorem as mentioned in Section 3-A.

We need to prove that no other nonnegative curvature less than (28) satisfies (9).

Assume) < ¢* < ¢, and let

g* (1) = h(1°) + h(1°) (1 —1¢) + %c*(l —1°)2.

Obviouslyc* can exist only wher > 0 sincec = 0 is the minimum curvature we allow. With > 0, it is obvious from (28) that
q(0) = h(0). If I¢ > 0, this clearly implies thag*(0) < ¢(0) = h(0) which shows that* cannot satisfy (9). If¢ = 0, then a curvature
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¢* < ¢ would forceg to lie underh, for some small values df That is,3e > 0 such thaty(l) < h(l) for e > I > 0. Thusc* does not
satisfy (9) even fot¢ = 0. |
Corollary 2: The “optimum curvature” defined in (28) using the marginal negative log-likelihood funkti@ghdefined in (3) for the
transmission tomography problem satisfies the optimality condition in (2) fer0, y; > 0,r; > 0.
Proof: The functionh; (1) defined in (3) satisfies the conditions (H1) or (H2) of Theorem 1 depending on the valyesofr; as
shown in Lemmas 1 and 2. Hence Theorem 1 is directly applicable to the transmission tomography problem. ]
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Initialize: i1 = FBP{log(bi/(y; — r:))}X, andl; = S°0_ aijjij, Vi=1,...,N

for each iteratiom = 0, ..., Niter— 1
(ji:ili:(#—1>b16_ﬂ,fori:1,...,]\f (34)
bie—li —+7;
ci:maxﬁi(l): 1— Y b; fori=1,...,N (35)
1>0 (blt + ri)Q N ) ) )
Ci, C;>¢€
G = { 61 c: <e€ (36)
repeat one or more times
forj=1,...)p
) N N
Q; = Z aijgi, dj = Z az;c; (37)
=1 =1
M?ld = [l
for a couple sub-iterations
a= | Q; + d;(jt; — 1) + B Y4, exs¥ (C)
J J K ~
dj + B3 k—i chjwu. ((Chtly) n
end
Gi == Gi + aijci(fi; — pS) Vistia; #0 (38)
end
end
. NG — hy
I; :zi+%c Lfori=1,...,N (39)
i
end
TABLE |

ALGORITHM OUTLINE FOR A PARABOLOIDAL SURROGATES ALGORITHM WITH COORDINATE DESCEN(’PSCD). THE CURVATURE CHOICE SHOWN HERE IS THE
MAXIMUM SECOND DERIVATIVE.

[35] W. Niethammer, “A note on the implementation of the successive overrelaxation method for linear complementarity prilbierascal Algorithmsvol. 4, no. 1,
pp. 197-200, January 1993.
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Real datar; # 0 monotonic _honmonotonic

5 8 [a) <

2 ) 8] & x

= o | a | & || 2|8
methods 2 2 2 O 3 o e
iters for convergence 18 12 11 14 11 11 11
CPU s for convergence 233|174 15.1| 18.1| 44.3| 52.3 | 56.2
CPU s per iteration 1.2 | 1.3 1.2 | 1.1 | 3.8 | 4.6 49
Sxpanentiations oo f o] o|mM|[Mm]a2u
A 2M | 3M || 2M | 2M | 4M | 6M | 7M
N sion 3M | 5M || 3M | 2M | 5M | 11M | 10M

ial

nonsegyentalacoosses M| 2M | M | M [ am | am | am
etk el N I O I LU
System matrix accesses 2M | 2M || 2M | 2M | 2M | 2M | 2M

TABLE Il
COMPARISON OFCPUTIMES, NUMBER OF ITERATIONS TO CONVERGEFLOATING POINT OPERATIONS AND MEMORY ACCESSES FOR THESALGORITHMS
VERSUSCD, GDAND FSMETHODS. CONVERGENCE IN THIS TABLE MEANS® (1) — ®(p™) > 0.999 [@(po) — <I>(,u*)] WHERE®(p1*) IS THE SMALLEST
OBJECTIVE VALUE OBTAINED IN 30 ITERATIONS AMONG ALL THE METHODS. THE FLOATING POINT OPERATIONS AND MEMORY ACCESSES ONLY IN THE ORDER
OF M ARE SHOWN FOR EACH METHOD
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(pz(p;p") (g(u:u”)

Fig. 1. One-dimensionalillustration of the optimization transfer principle. Instead
of minimizing ®(x), we minimize the surrogate functiof(u; ©™) at thenth
iteration. Here, the surrogate functiga has a smaller curvature and is wider
than¢i, thus it has a bigger step size and hence faster convergence rate to the
local minimumg*.
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Fig. 2. lllustration of the tangent parabolas lying above a potential function. ’

original derivative
-——— optimum curvature
‘‘‘‘‘‘ max curvature

Fig. 3. This figure illustrates the optimum curvature and the maximum curvature
surrogate functions and their derivatives égr= 100,y; = 70,7; = 5, and
™ = 2.5.
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Transmission Algorithms
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5. Comparison of objective function decreds@.®) — ®(u™) versus itera-

tion numbem of monotonic PS methods with coordinate descent and LBFGS

methods for real phantom data.

(b)

Fig.

Fig. 4. (a) FBP reconstruction of phantom data from 7-h transmission scan, (b) FBP
reconstruction from 12-min transmission scan, and (c) Penalized-likelihood re-
construction from 12-min transmission scan using 12 iterations of the “optimum
curvature” PSCD algorithm.
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6. Same as Figure 5, but x-axis is CPU seconds on a DEC AlphaStation 600

5-333 MHz.
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7. Comparison of the speed of the proposed PS algorithms with the fastest
algorithm that was introduced before: grouped coordinate descent with 3x3
groups.
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Transmission Algorithms
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Fig. 8. Comparison of objective function decreds@.®) — ®(u™) versus CPU
time of monotonic PS and FS methods with coordinate descent.myete0 in
this simulation.



