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ABSTRACT I. INTRODUCTION

Tomographic image reconstruction using statistical

Gradient-based iterative methods often converge slowfiethods can provide more accurate system models, sta-
for tomographic image reconstruction and image restotéstical models, and physical constraints than the conven-
tion problems, but can be accelerated by suitable ptienal filtered backprojection (FBP) method. Most statisti-
conditioners. Diagonal preconditioners offer some in¢al methods for image reconstruction require minimizing
provement in convergence rate, but do not incorporsa® objective function related to the measurement statis-
the structure of the Hessian matrices in imaging profics. For realistic image sizes, direct minimization meth-
lems. Circulant preconditioners can provide remarkds are computationally intractable, so iterative methods
able acceleration for inverse problems that are approgi€ required. For objective functions that are quadratic, or
mately shift-invariant,i.e. for those with approximately at least convex and locally quadratic, conjugate-gradient
block-Toeplitz or block-circulant Hessians. HowevefCG) algorithms are appealing for reasons of conver-
in applications with nonuniform noise variance, such @ence rate, simplicity, and potential for parallelization
arises from Poisson statistics in emission tomography adde-10]. This paper describes new preconditioning meth-
in quantum-limited optical imaging, the Hessian of theds that accelerate the convergence of gradient-based it-
weighted least-squares objective function is quite shitrative methods for penalized weighted least-squares to-
variant, and circulant preconditioners perform poorly. Adnographic image reconstruction. The proposed methods
ditional shift-variance is caused by edge-preserving regigneralize those described in [8, 11]. The methods also
larization methods based on nonquadratic penalty fur&pply to other inverse problems such as image restoration.
tions. This paper describes new preconditioners that apGradient-based iterations often converge slowly for
proximate more accurately the Hessian matrices of shifteorly-conditioned problems and for large-scale problems
variant imaging problems. Compared to diagonal or circwhere the Newton-Raphson method is impractical due to
lant preconditioning, the new preconditioners lead to sithe size of the Hessian matrix. Broadly speaking, the
nificantly faster convergence rates for the unconstraingdal when preconditioning is to induce a coordinate trans-
conjugate-gradient (CG) iteration. We also propose a néevmation that improves the condition number of a prob-
efficient method for the line-search step required by Clém, which generally leads to faster convergence. Sev-
methods. Applications to positron emission tomograplgral “generic” preconditioners for CG methods are de-
(PET) illustrate the method. scribed in textbooksg.g.[12]. The simplest and perhaps

most prevalent preconditioners are diagonal scaling ma-
trices [12], versions of which have been applied to image
reconstructioh [4, 6-8, 14]. Although diagonal precondi-
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tioners can accelerate convergence in many optimizati@yard the nonuniform noise variance, the ma@GhG is
problems, these preconditioners cannot provide the fastgtit inherently shift-variant due to the system geometry
convergence rate for imaging problems since they ignaaad/or spatial variations in detector response. (See [28] for
the off-diagonal structure of the Hessian of the objectian image restoration method for shift-variant imaging sys-
function (the correlation between pixels and the re- tems.) Thus, neither diagonal nor circulant precondition-
sponse of tomographic systems). ing is well-suited to shift-variant imaging problems. Since
Some simple (or perhaps over-simplified) imagingtatistical methods for image reconstruction yield higher-
problems are nearly shift-invariarite., the matriX G'G, quality images than FBP reconstruction but at a price of
which is part of the Hessian of the objective function, i§icreased computation, it is important to develop methods
approximately block-Toeplitz, whel@ is a system matrix for accelerating convergence of the iterative algorithms.
described in (1) below. For these problems the diagonEtis paper generalizes the quadratic method described in
preconditioner is ineffective, but appropriate circulant pré8] by developing improved preconditioners that accom-
conditioners can provide very remarkable improvemerigodate the shift-variance caused by nonuniform noise and
in convergence rate. (See [15] for a recent thorough renquadratic penalties.
view of this subject.) Circulant preconditioners are partic- Section Il reviews the image reconstruction problem
ularly appealing since one can use the fast-Fourier traggd the preconditioned conjugate gradient iteration. Sec-
form (FFT) for efficient implementation. Several optimalion Ill summarizes the preconditioners. Section IV de-
circulant preconditioners are available for Toeplitz proiscribes a new method for the CG line-search step. Sec-
lems [15-19]. Such circulant preconditioners, also callé@n V reports empirical results that demonstrate signifi-
“Fourier” preconditioners, have been applied to both teéantly improved convergence rates in PET reconstruction
mographic image reconstruction [20] and image restoiith real data.
tion problems [21, 22]. Figure 3, described in Section V
below, illustrates the well-known effectiveness of circu-
lant preconditioners for shift-invariant problems. Circu- Most tomographic image reconstruction and image
lant preconditioners have also been applied to total vari@storation problems are specific cases of the following
tion methods for nonlinear image restoration [23,24]. general inverse problem: find an estimate of object pa-
Unfortunately, many imaging problems ashift vari- rameterse = [z1,..., ;] (€.g.pixel intensities) from a
ant, for the following reasons. Firstly, many imagingneasurement vectgrrelated tox by
systems produce heteroscedastic measurements, particu-
larly in quantum-limited applications such as emission to-

mography and photon-limited optical imaging [25, 26]. i the context of PETg; is the radioisotope concentra-
these applications, the measurement noise covariance g in the jth voxel, G = {gi;} is the “system” matrix
diagonal matrix with very nonuniform entries, due to botfhat describes the tomographic geometry, anejpresents
nonuniform Poisson variance and to physical effects sugpogram data that has been precorrected for the effects
as detector efficiency and attenuation [27]. Therefore 8¢ random coincidences, attenuation, scatter, deadtime,
Fisher information ternG'W G within the Hessian (see gtc. However, the proposed methods apply generally to

(5) and Fig. 1 below) is shift variant and thus poorly agsroplems of the form (1) for whicks’ G is approximately
proximated by any circulant preconditioner. Secondly, ifsjock Toeplitz.

corporating a nonquadratic edge-preserving penalty func-
tion into the objective function to perform regularizatio\. The Objective Function
introduces an additional form of shift variance into the 5,4 seful statistical criterion for estimatingrom y is

Hessian (5). Finally, for some imaging systenesg( the following penalized weighted least-squdrebjective
SPECT, 3D PET, and helical CT), even if we were to di?&nction 5 §2]7p] g . :

II. REGULARIZED RECONSTRUCTIONPROBLEM

y = Gz, + noise. (1)

algorithm. (For emission tomography the EM algorithm is equivalent 1 ,

to a gradient-ascent iteration with a certain estimate-dependent diag- ‘I’(E) = §(g - G&) W(g - G&) + ﬁR(E) (2)
onal preconditioner [13].) Kaufman [4] and Mumcuogkt al. [6]

incorporated this diagonal preconditioner into conjugate-gradient ﬂlrhereR(g) is a penalty function that encourages smooth

gon_thms. The est!mat_e-dependence o_f this preconditioner affects Eﬂepiecewise-smooth estimates, afds a parameter that
conjugacy of the direction vectors, leading Lal&tlal. to advocate an

iteration-independent diagonal preconditioner [3, 14]. 30ne could generalize the approach to produce penalized-
2\We use *” to denote matrix and vector Hermitian transpose.  likelihood estimates by using iteratively reweighted least-squares [29].
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controls the tradeoff between spatial resolution and noiseSince this paper focuses on comparing various pre-
[30]. (Methods for choosings to specify a desired reso-conditioners, for simplicity we ignore any nonnegativity
lution are described in [30].) Usuall§y is the inverse constraint forz. One could extend the methods to in-
of the covariance matrix of (accounting for any mea- clude a nonnegativity barrier/penalty function [6, 35], or
surement precorrections) or an estimate thereof [27]. \Afetive-set or gradient projection method [36,37]. Improve-
restrict the presentation to cases wh&eis a diagonal ments in convergence rate due to improved precondition-
matrix, although generalizations are possibl®©ur goal ers should extend to methods that incorporate nonnegativ-
is to compute an estimateof z,,,,. from y by finding the ity, as shown in [38].
minimizer of the objective functio®(z). _

The unregularized problem (witB=0) is poorly condi- B- The Gradients
tioned or even under-determined, so some regularizatiorUnder the above assumptions, one can determine the
is required to ensure a stable solution. Gradient-baseduitique minimizerz of the objective functiond by find-
erative methods generally converge only to local mininmiag the zero of its gradient. One can express the column
for non-convex regularizing functions, so we focus hergadient of® as follows:
on convex penalty functions [31]. The following gen-
eral form [35] expryesses most [of t]he convex penagljtygfunc- V') =GW(y - Gz) - fC'z(z), (4
tions that have been proposed for regularization of imaghere; : R? — RX is defined by
ing problems:

A .
X z(z) = Yr([Cz — cJk).
R(z) =) ¢w([Cz — ), (3) The Hessian of (its matrix of second partial derivatives)
k=1 is given by
. . K
where C is a K x p matrix ande¢ € R*, for some H(z) = G’WG+ﬁC’D¢(g)C, (5)

user-defined numbeK of soft “constraints” of the form

[Cz], =~ c. The standard roughness penalty simplwheredy(t) = d?/dt?yy(t) and
penalizes differences between neighboring pixel values. A )

This penalty is the special case of (3) whekeis the Dj(z) =D |¢p([Cz — cfi) | -

number of pairs of neighboring pixélsthe vectore = 0, . . . .
In general there is no explicit analytical solution for the

and each row oCC contains one “+1” and one “-1" entry ero of the aradient (4). However. in the special case of
so that[Cz];, corresponds to the difference between two gradient (4). However, i peci

neighboring pixel values [33]. quadratic 'peng!ty functions withy, (t) = wxt?/2, the vec-
In this paper we first consider general convex n0|!1Qr 5.@) S|_mpI|_f|_es t0z(z) = Dlwi] (Cz — ¢), and the
guadratic functionsiy that are symmetric, twice- gradient simplifies to
differentiable, and that have bounded, nonzero second ~V'®(z)=b- Hz
derivative§. We then treat the case of quadratic penalty , ,
functiond, wherey(t) = wyt?/2 for a positive value WhereH = G'G + SC'D|w;] C and
wg, as a simpler special case. We also assume that the
penalty matrixC' has been chosen such that the matrix
G'WG + C'D|wy] C is positive definite for any set of When ¢ = 0, which is the typical choiceb = G'Wy
positive valuegwy } 5, whereD|wy,] denotes theé x K is essentially a weighted “backprojection” gf In the
diagonal matrix with entriesq,...,wx along its diag- quadratic case, the zero of the gradient is “simply” the
onal. In particular this assumption implies ti@tandC  solution of the linear system of equatioftz = b. Un-
have disjoint null spaces. Regularization methods are géortunately, due to the size @ for realistic image sizes,
erally designed to ensure such positive definiteness. even in the quadratic case one cannot compute directly
It suffices to havee’ WG ~ DM D whereD is diagonal and the analytical solutior: = H ~'b. Furthermore, for non-

bE GWy+ CDlwilc.

M is approximately block-circulant. gquadratic penalties there is no explicit analytical solution
°K ~ 2p and K = 4p for first and second-order neighborhoodfor . Thus, one must use iterative methods to comgute
respectively. The preconditioned conjugate-gradient (PCG) iteration

®This assumption precludes the choice [31]t) = [t|P forp <2 . . . A .
which has unbounded second derivative. is well-suited to solvingHZz = b, and is also useful

"For certain ROI quantification tasks the quadratic penalty is usef@ MiNiMizing nonquadratic objective functions. The re-
[30] and even outperforms nonquadratic penalties [34]. mainder of this section reviews the PCG algorithm.
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C. Minimization Using Conjugate Gradients [1l. PRECONDITIONERS

Gradient-based minimization methods use the gradientThe matrix M in (6) above is the preconditioner;
of the objective functioriv’®(z") to determine a serieschoosing this matrix is part of the algorithm design. To
of direction vectordd"} along which® is minimized via guarantee convergenc®! must be symmetric positive
1D line search [39]. Conjugate-gradient methods moditlefinite. For quadratic objectives, preconditioning the CG
the search directions to ensure that they are mutually catgorithm is equivalent to solving the transformed linear
jugate (or approximately so for nonquadratic problemsjystem of equation®Z*/2HM'/?z = M'/?p, where
We use the following preconditioned form of the Polake = M ~1/2%, where H is the Hessian of the objective
Ribiere CG method [6, 39]: function as defined in (5). The convergence rate of the

n_ I/ n —_— CG algorithm generally improves as the condition number
g'=-Ve@") (gradient: see (4)) of M H decreases towards unity. For quadratic objective

p" = Myg" (precondition) (6) functions, the ideal preconditioner would Bdy = H
0, n=0 so thatMyH = I, because the x p identity matrix I
— ) (g"— gL p) has the minimal condition number (unity), and the precon-
Tn = g —g9 P " . :
W, n >0 ditioned CG algorithm would converge in one step. For

nonguadraticd, the inverse-Hessian preconditioner

d" = p" +~,d"! (search direction)
- _ -1 _ ! 'y . 1

an = argmin ®(z" + ad®) (stepsize) (7)) Mol@) = H (z) = [G'WG + fC'Dy(z)C]

2" = 2" + a,d” (update) yields superlinear convergence rates, as does the Newton-

Raphson method [40]. Since we cannot compte! for

For quadratic objectives the step sizgis given explicitly largep, we must develop preconditioners thaproximate

by o
Qpn = <dn’gn>/<dn’H£ln>v ’
and forn > 0 one can use the alternate form A. Diagonal Preconditioner
Yo = (g™ p") /(g" L, p" ). The classical diagonal preconditioner is simply the in-

. - , , verse of the diagonal elements H:
For nonquadratic objectiveB, one must findy,, using a

line-search. We used the new efficient line-search method A 1 3
described in Section IV to generate the empirical results Mp(z) =D H;;(z) ) (8)

in Section V.
These diagonals are positive sinEEis positive definite.

D. Computation Requirements SinceG is sparse an® is diagonal, one can easily com-

When G is a sparser x p matrix, which is the case Pute the diagonal elements ;;(z) without computing all
in tomography, the unpreconditioned CG algorithm f&f H(z). Implementing this preconditioner within a CG
a first-order quadratic penalty function requires abo@tdorithm does not require storing the entire diagonal ma-
4pnp + 8n + 17p floating point operations per iteration trix Mp for step (7); one simply multiplies each element
wherep is the fraction of nonzero elements@f Intomo- Of the gradient vector by the corresponding diagonal entry
graphic image reconstruction problems, typicatlyx p. ©f Mp, i.e.p? = g7/Hj(z), j = 1,...,p. The diag-
For a tomographic system matri® based on a “strip- onal preconditioneiM (z) rescales the problem so that
integral” discretization of the Radon transform, the spa®p " H typically has a smaller condition number than
sity factor p is aboutp = 2/\/n ~ 2/,/p. Thus the H. Figure 1 displays a diagonally-preconditioned Hes-
per-iteration computation of unpreconditioned CG is aian M ' H for a small 2D image reconstruction prob-
proximately8p®/2. (For a1282 image, this approximation lem; the product is far from the ideal identity matrix, so
yields 16.8 megaflops, which agrees reasonably well withe convergence rate of PCG is still fairly slow.
the first line of Table 1.) For power-of-two image size
computing an FFT requires aboéip log, p flops. Typi-
cally log, p < p'/2, so preconditioners that are based on If the Hessian is approximately circulant, then circulant
FFTs require minimal additional computation for tomopreconditioners are effective. In general the Hessian (5) is
graphic image reconstruction problems, as evidenced fay from circulant. However, for didactic purposes, con-
Table 1. sider the case of a shift-invariant quadratic penalty with

S
B. Circulant Preconditioner
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¥(t) = /2, and assume that the weighting matkiX  shift-variant image reconstruction problems using the fol-
has an approximately constant diagoriad, W ~ «lI. lowing choice

Then we can make the following approximation
g app . A lzp: > gfjWn-
H(z) = G'WG + 8C'C ~ aK(3/a), (9) P& 7Zi Q?j .
where This choice corresponds to the meajwalue, wherex;
K(n) 2G6G+ nC'C. (10) is defined in (14) below. W is aconstantdiagonal ma-

o o _ _ trix, i.e. W = al, thena equals that constant and (9)
The utility of approximation (9) is that the matrik' is s exact rather than an approximation. The results in Sec-

suitable for circulant approximations in mostimage recoypn, v demonstrate thaivZ o is ineffective for shift-variant
ery problems. Specifically, for any there is a diagonal prgplems.

matrix@ Q(n) such that for any powdrt
C. Proposed Preconditioner

l _ ! ! I ~ TN Ol
K (n)=[GG+nCCl ~T'QUmRT, (1) 15 ynderstand the limitations of the circulant precon-

whereQ is the orthonormal version of the 2D DFT Opergjltloner for shift-variant problems, it is helpful to first

) L . . __consider qualitatively how it works in the shift-invariant
atof. Such circulant approximations to Toeplitz matrlcef ) : . :
. . D case. IfH is Toeplitz, then (ignoring end effects)
have been studied extensivetyg.[15, 22, 41].
The matrixT is simply the identity matrix when the each column o corresponds to the same 1D kernel but
. : 'ﬁ?iﬁed to be centered around the pixel corresponding to
the image are to be estimated. However, often only thots gt column. The circulant preconditiond ¢ is essen-

pixels within some known support within the image artelaqu the inverse filter for that 1D signal. Computing the

estimated and the other pixel values are fixed to zem, productM ¢ H is equivalent to applying that inverse filter

Fig. 2. In such cases, the matfiXis the matrix of ones to each column o . When the inverse filter is applied to

. y ) : the kernel ofH, the result is (approximately) a Kronecker
and zeros that “embeds” thepixel parameters being es- )
. . ) ) . . . delta function located at the center of the kernel. Thus
timated into an image “matrix” (or lexicographically or- . ) ) .
: o . . M« H =~ I since in thejth column the kernel is centered
dered version thereof) with size that is a power of 2, whic e
about thejth pixel in the 1D case.

facilitates use of the FFT. In particuldl,’T = I,. For ; .
L ; : . For shift-variant problems, the columns & corre-
simplicity the reader may want to think @f as the identity . . . . i
spond todifferentsignals, and no single inverse filter can

matrix he full generality i nn in practice, . )
atrix, but the full generality is often needed in practice educe all columns to Kronecker delta functions simulta-

Combining (9) with the c!rcula_mt apprOX|mat|o_r_1 (11_ eously. Thus, essentially what is needed for shift-variant

for I = —1 leads to the following circulant preconditioner: : . :
problems is a separate inverse filter for each column of

the Hessian. However, such an approach appears to re-
quire p FFTs per iteration, which is impractical. As a
practical compromise, our proposed preconditioning ap-
Clinthorne et al. applied this type of preconditioner toproach is the following. We precompute a small number
shift-invariant image reconstruction [20]. Circulant pregs inverse filters (with a correspondingly moderate num-
conditioners can be efficiently incorporated into the Cser of FFTs) and essentially interpolate between those in-
algorithm using 2D FFTs. verse filters for each pixel.€. column of the Hessian).

For comparison purposes, we have investigated the gfyptlety is that a naive implementation of the above
fectiveness of the circulant preconditioner even for shiflyes would lead to an asymmetric preconditioner that is
variant problems where the circulant approximation jst guaranteed to be nonnegative definite. Therefore, we
poor. The best choice af is unclear in the shift-variant apply the above idea to the matrix square root of the Hes-
case. In Section V we apply the above preconditioner §, * and then “square” the resulting matrix to ensure a

8See [33] for details about computirg, which consists of the 2D honnegative definite preconditioner. From such a nonneg-
DFT coefficients of the column ok corresponding to the pixel at the ative definite preconditioner one can easily form a positive

center of the image. _ _ definite preconditioner by adding to the preconditioner
SFor anyp; x p2 2D image lexicographically ordered as a veaior fore > 0

Qu is the lexicographically ordered vector of the 2D DFT coefficients . o . .

of that image divided by/p1p>. Similarly, Q"w is the inverse 2D DFT This section presents a sequence of approximations to

of u, scaled by the same square root factor. the inverse of the Hessian matrix in (5). The final approxi-

Mc 2 2 T'Qa7 (5/a)QT. (12)
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mations yield a new preconditioner that is efficient compu- The factorn;(z) is aneffective regularization parame-
tationally'®. Note that our approximations have no effeder for the jth pixel [30]. To illustrate, note that iW=I
on the final solutionz, only on therate of convergence and vy (t) = t2/2, thenx; = 1 andn;(z) = g for all
to that solution. Thus, poor approximations do not caugeandz. Combining the approximation (15) with ; (x)
reduced estimate accuracy, but merely suboptimal convierads to our second inverse Hessian approximation:

gence rates. The results in Section V demonstrate that our
A

proposed preconditioners lead to significantly accelerated H™(2) ~ H,'(z) = D' B (z)D}}, (17)
convergence, despite possibly crude approximations in the
development! where
The first key approximation is one that we have pre- A
viously used for analyzing the spatial resolution proper- B(z) = G'G + D, (z)C'CD,(z). (18)

ties of tomographic image reconstruction in [30]. Roughly
speaking, this approximation brings the diagonal welngJS easily shown thaB is symmetric and positive definite
ing matrix to the outside of the Fisher information matrinder the (reasonable) sufficient conditions thatt)

as follows: 0 vt and that the only vector in the nullspace(@fis the
GWG ~ D,.G'GD,., (13) Vector ofp ones, which must not be in the nullspace of
G [27].
whereD,; = D[x;] and The approximations and preconditioners that we derive
W below all have the same form as (17), but with different
K A [22: 935 4 u (14) approximations tadB~1(z). The requirement that the pre-
> 9ij conditioners be symmetric positive definite increases the

challenge here.

“To proceed, we exploit the heuristic that the effect of the
goenalty term is predominatelpcal, i.e., the image that
one would reconstruct from measurements corresponding

onals, and would also be equal off-diagonal if #16;;'s to a point source at thgth pixel is determined primarily

. by the value ofy;. A convenient mathematical expression
were all equal. (The results in [30] demonstrate the arcy . . ff?’ . . P
or this heuristic is as follows:

curacy and utility of this approximation.) Combining the
exchange (13) with (5) leads to our first Hessian approxi- 1/2( )e ~ K- 1/2( i(2))e; A v, (z) (19)
mation: e

This exchange is important in what follows because by as
sumptionG’G is approximately block-Toeplit,e. shift-

invariant, unlikeG'W G. The matrices on the two side
of approximation (13) arexactlyequal along their diag-

where K was defined in (10) and; is the jth unit vector
(i.e, an impulse at thgth pixel). The vectow; is an ap-

The inverse of this approximation is not a practical pré)roxmate ‘inverse filter” for thejth column (0" row) of
conditioner, so we must further simplify. We apply ad® - in the sense that
approximate exchange analogous to (13) to the regular-

ization term: e, B?(z)v;(z) ~ {

H(z) ~ H\(z) £ D.G'GD, + fC'D(z)C.

(1)’ Z ;3 (20)
-1 / /
ADC Dy JOD,! ~ Dy(2)C'CDy(z),  (19) We synthesize a matrix approximation from (19) by using

the following exact expansion of amyx p matrix A:
whereDn(g)éD[ n;(z)] and J P WX

i) 2 B 2k it Ue([Cz — i)
e F”? Dok Cij .

As in (13), the two sides of (15) agree exactly along the/}ppl}/lng this expansion to the matrix square robt=
diagonals. Furthermore, in the quadratic penalty case which exists sincd is positive definite, and com-

p p

A=AI=A e e =
(16) 26 = 2 (e

() = 2/2, we haveDiz:I so (15) is then exact. bining with (19) leads to the approximation:
101.e., it requires much less computation time than multiplying by
G and G’ in (4), which are the most time consuming steps in the CG 1/2 Z v;(2)e; Ss3(z), (22)

iteration for tomographic image reconstruction. j=1
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or equivalently after “squaring:” To further reduce the number of FFT’s, we propose to
» 12 12 ) use interpolation. We choose a small numbers p of
B~ (z) = B/ (2)B” /(z) = S3(2)S5(z). (22) values{ij}, that cover (most of) the range of the val-
ues of thep;’s in (16), and precompute the 2D-DFT coef-

. . . . 71/2_ . _
The matrixS3 is an approximation tdB ; the jth col ficients of K () in (10) for those values:

umn of S5 is thejth column of K evaluated at the effec-
tive regularization parametey (x) of the jth pixel. Com- A
bining (22) and (21) with (17) leads to our third inverse Qe =Qmk), k=1,...,m.

Hessian approximation:
PP We then apply interpolation to approximate the 2D-DFT's
A

H'(z) ~ H§1(£) 2 D184(2)S;5(x) DL, (23) corresponding to the required valugs

We have used matrix square roots to ensure symmetry —1/2/, - - ‘ —-1/2
of the approximation. Thus an alternative approximation o/ (n; (@) ~ kz_:l)\k(m @)y (29)
based on (21) and (22) is as follots a
A where A\, € [0,1] are the interpolation factors with
H '(z) = H;'(z) = D' S3(z)S5(z)D;". (24 Y™ A, = 1. Since then's are positively valued, we

_ _ _ currently determine tha,’s by using linear interpolation
Both H3 and H 4 are plausible starting points for SUbse\ivith a logarithmic scale for the's:

guent approximations.

The purpose of the above sequence of approximations ( logfgi1 —logn ~
was to derive a form such as (23) that depends on the ap- log et —logig’ S S Tk
proximately circulant matrixk. Applying the circulant logn —log k1 . <z
approximation (11) fof = —1/2 yields: e (n) = log 7y, — log i1’ =1 = 1= Tk

K-1/2 ' —1/2 L k=1n<i
(ne; =~ T'Q'Y=(n)QT¢;, 1, k=m,n> fim
0, otherwise

so combining with (19):
A _ Incorporating the interpolation approximation (29)
vy (z) ~ w; (z) = 7'Q' 1/2(77j (E))QTEJ*- (25) into (27) yields
Essentiallyw; is an approximate inverse filter for thn »
column of B'/?. Combining (25) with (23) and (21) leads S5(z) = Y T'Q'Q '*(n;)QTe;¢]
to our fifth inverse Hessian approximation: j=1

p m
H™\(z) ~ H;(2) = D;'S}(2)S5(@)D;",  (26) ~ Y TQ <Z Ak<nj<z>>n,:1/2> QTe;c]
j=1 k=1
p
AN m
Ss(z) =) w;(z)e). (27) _1)2 -
; TS = Y TQ QT Y Ailnj(@))e e
k=1 j=1
Like S5, the matrix S5 is an approximation taB~1/2; m
the jth column of S5 is the jth column of the circulant = ZT’Q’Q,QWQTDM () 2 S7(z),

approximation toK. Again the matrix squaring suggests k=1
the alternate form: N
DN DR N , i whereD), (z) = D[Ax(n;(x))] . This approximation sug-
H™(z) ~ Hq (z) = D, S5(z)S5(x) D, (28) gests the following preconditioners:
Implementing a preconditioner based on eith‘ég1 or
H ' would appear to requirg(p + 1) 2D-FFT’s per it- My (z)
eration. Although this is less computation than required M(z)
for H3' or H,?, it remains impractical. a

0One can easily show th# ;* can also be written in the following Both of these preconditioners requiten + 1) 2D-FFT’s
form: H,' (z) = >0, v;(z) v} (2). (or inverse FFT’s) per iteration.

i=1Y;

D, S}(x)S7(z) D,

K

D' S7(x)S7(z) Dy

> e
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For further simplification, note that D. Circulant Preconditioner Revisited

m As a sanity check, consider the shift-invariant case
S (z)S7(z) = (Z ka(z)T'Q'ﬂkm) QTT Q' where all of the effective regularization parameters are
—1 identical:n; = no Vj andx; =  Vj. In this casem = 1
suffices, and clearly we should choage= 7. Then the
preconditionersVl g and M 15 simplify to the following:

: (i 0, *QTD,, @)) .
k=1

Using the approximatiof T’ ~ I (which is exact when

the image size is a power of 2 and when the entire ifhich is identical to the standard circulant precondi-
age is estimated) and the fact tHQQ' = I (sinceQ is tioner_(12). Thus_ our approximations do not lead to any
orthonormal), we have the following approximation: ~ harm in the shift-invariant special case.

1 _
My = My = ET'QIQ '(n0)QT,

Sh(z)Sq7(z) ~ 8h(z)So(z) E. Implementation
AN o1/ Storing thep x p preconditioning matrices is fortu-
Solz) = Z ), "QTD;, (2). nately unnecessary, since the CG algorithm requires only
k=1

= the ability to compute the produpt’ = Mg". FFTs can
This simplification leads to the following preconditioner:COMPute these products efficiently using storage of only a
few vectors of lengtlp. For example, we computklgg™

2.

Mg(g) é D;ng(g)Sg(g)Dgl, (30) as fO”OWé‘ .

th = ffto(TD D'g"

which requires only2m 2D-FFT's per iteration. “k m2( @)Dy g )
As a final simplification, we could consider dropping moo— Znﬂptn

the cross terms in the produsf,So, i.e. - Pt koo 2k

" pp = T ()
So(z)So(z) ~ Y Dy, (2)T'Q'R,'QTD,, (). .
k=1 Bn _ D;l ZBZ
This approximation leads to the following preconditioner: k=1
A Even less computation and storage is actually required
Mqp(z) = since one can compute a pair of real FFT’s using just one

complex FFT [39], and the summations can be done by
m ) :
Dl <Z D), (0)T'Q QT D), @)) D in-place accumulation.
k=1 F. Combined Diagonal/Circulant Preconditioner for the
which also require&m FFT’s per iteration. However, we  Quadratic Case with Modified Penalty
have found empirically thaly leads to faster conver-  For a quadratic penalty witki, (£) = t2/2 andc = 0,
gence thanM ', for nonquadratic penalties [33]. Sincehe opjective function simplifies to
My and M 1, have equivalent computation time, we con-
sider My to be the preferred preconditioner for the non- ¢ (z) = l(y — Gz)W(y — Gz) + lﬁgle,
quadratic case. 2= = 2
The preconditionerdVg, My, M, are all practical where the matrixR = C'C is the (symmetric) Hessian
in the sense that the computation fr 2D-FFT's is of the penalty function. The usual “uniform” 1st-order
O(mplog, p), which for smallm is moderate compared2D roughness penalty matriR, has 4’s along its diag-
with theO(pnp) computation required to compute the graonal and—1’s in the off-diagonal positions correspond-
dient. Note that while these preconditioners combine dfg to each pixel’s four neighbors. Surprisingly, this uni-
pects of both the diagonal and circulant preconditionirfgrm penalty leads taonuniform spatial resolutiowhen
methods, the particular diagonal matrices used here A& 0ne can think of " as both a-dimensional vector or asra, x n
very different from the conventional diagonal precondimage, where:, andn,, are the image column and row dimensions and
tioning matrix given in (8). P = Ngny.
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W +# I [30]. Thus, for quadratic penalties we use this bounded and decreasing for- 0. (Thewy functions

modified penaltyf [30], for which act as weighting functions that diminish the influence of
neighboring pixels near edges between object regions for
R~ D.RyD,. (31) nonquadratic penalty functions [42, 46, 47].) These as-

) -~ ) ] sumptions are reasonable for the convex penalty functions
This modified penalty leads to more uniform spatial res@zaq in imaging.

lution [30], which in turn leads to a Hessian that is partic-

lar] ble t ditioni . i tial The line-search algorithm can be stated as follows. Let
ularly a_1mena € ".pfeco'.‘ ttoning, smcg uniorm spa "% andd denote the current estimate and search direction
resolution and shift-invariance are equivalent concep

o ) F%‘s ectively. For (7) we would like to find the scalar value
Under approximation (31), one can verify thgt= § Vj P y 0

% that minimizes
for the quadratic penalty. Thus from (17) and (11), the fol- nimiz
lowing preconditioner is well-suited to the quadratic ob-

jective with the modified penalty: fle) =2z +ad).

Mcpc = D;lT’Q’Q—l (ﬁ)QTD;l. (32) First define (and precompute) the following terms:

Based on [8], we refer to this approach as the “combined T y—Gz, u Cz —c,
diagonal/circulant” preconditioner. The seemingly minor a = G4, h = Cd,
addition to (12) of theD, terms in (32) provides signifi- fi = r"Wa, fo = dWa,

cant improvement in convergence rate as shown in Fig. 4

(see Section V). Figure 1 also illustrates thdicpcH ~ whereG, C, W, andy were defined in Section Il. Then

I for the quadratic case with the modified penalty, and thaith some manipulation of (2) and (3) one can show the
that approximation is much better than with the circulafigllowing:

preconditioner (12).

r"Wr a?
G. Summary fla) = === —afi+—f + B trlug + ahy)
We recommend the circulant preconditioner (12) for ) ¥
shift-invariant problems, the combined diagonal/circulardt(®) = —fi+afe+0 > hi i (ug + ahy,)
k

preconditioner (32) for quadratic penalized weighted least )
squares with the modified penalty of [30], and the nef(o) = fo +52hi Y (ug + ahy).
preconditioner (30) for the general shift-variant case. k

IV. LINE SEARCH METHOD The Newton-Raphson iteration faris not guaranteed to

For nonquadratic objectives, gradient-based methggverge for this problem. However, the following itera-
require a “line search” in (7) to find the step siaethat tion is guaranteed to converge do
minimizes the objective function along the current search .
direction. General purpose line-search methods [39] are i+1 _ i _ f(a") ‘ (34)
applicable but suboptimal since they fail to exploit the spe- fa+ B hi wi(uk + aihy)’
cific form (particularly convexity) of our objective func-
tion (2). In this section we present a new recursive ling¢herew; was defined in (33). (We initialize with® = 0.)
search algorithm that is simple to implement andusr- The iteration monotonically decreasg&’) by the proof
anteedto monotonically minimize the objective functionof Lemma 8 in [42]. One can also show that the above
with respect tax. This algorithm is an adaptation of thdteration is a strict contractionja’ — &| monotonically
iteration proposed by Huber [42] for robust M-estimatiordlecreases each iteration [47].
(The essence of Huber’s algorithm has also resurfacedVe use about five sub-iterations of the above recursion
in the imaging literature as the “half-quadratic” methotbr each iteration of the CG algorithm. Since no forward
[43-45].) The convergence proof in [42] requires the fobr backward projections are required, these sub-iterations
lowing assumptions: L}, is convex, symmetric, and dif- are a fairly small component of the computation time for
ferentiable, and 2) each iteration. To summarize, the algorithm (34) provides

an easily implemented yet rapidly converging method for
wi(t) 2 @bk(t)/t (33) finding the step size for nonquadratic penalty functions.
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V. NUMERICAL RESULTS To compare convergence rates, we examined the nor-

To compare the convergence rates of the CG algorit ma.l,['.Z edis Idlstaorl(.:e bgtwei? thet?o |ter\7\‘;eg| and the
using the preconditioners described above, we have a'\m'd'rzﬁ \l/a ued% 2" -z h'H/hHIg d”t. (We also Elxam-
plied the algorithms to both simulated and real PET tran'¢e €1 andio, NOMMS, WhICh 'ed 1o comparap'e con-

mission scans. Results for PET emission scans were ﬁ;é.l_SlOl’]S [33]) The PCG algorithms were implemented

in ANSI C [53] using single floating-point precision on a

!oorted in [8]. We have mvestlgated.the effec_ts of the mm%E C AlphaStation 600/5-333 workstation. However, o
image, the type of penalty, the choice of weighs;, and ) .
mputez>°, we implemented a grouped-coordinate as-

several measures of convergence rates. We synopsize ?8 . o i . .
g ynop nt algorithm similar to that described in [50] in Mat-

resentative results only; complete details are given in [3 ) . . .
. : . b using double precision. Several hundred iterations of
We acquired a 12-minute PET transmission scan of a

Data Spectrum thorax phantom on an CTI ECAT 921 E)Er-]IS algorlthm_w_e_re run, u_nful the change |_n the es_tw_ng tes
. reached the limiting precision. This provided a limiting
ACT PET scanner. This scan produced 920653 prom . y .
aluex* that, while of course not “exact,” is about 7 dig-

coincidences, which is quite noisy data. The smogralrtr% of precision more accurate than the single precision val
size was 160 radial bins by 192 angles, with 0.3375 cm P . gep
. . .. ues computed in C.

radial spacing, se = 30720. Prompt and random coinci- . : . S

.. We investigated three choices for the objective func-

dences were collected separately. The mean contributions : . .

) ) . jon. The simplest was quadratically-penalizeoh-

of randoms were estimated by time scaling the delayed co-

incidences from a 15 hour blank scan, as described in [4 §|ghted|east squares (QPULS), wheW” = I, giv-

: ) INg equal weight to all ray measurements. In this case
The reconstructed images wet@8 x 128 pixels of g eq g y

width 0.42 cm. We reconstructed a FBP image by ﬁrg\{e used the standard first-order 2D quadratic roughness

. . L Ity with =t2/2. Asill hei f
smoothing the ratio of the transmission over the blarﬁ&nzr%\,\:,v:ifkéitg) Zt Q/PULSSI igsgrzf:r tc):ﬁ)ic?elrgfgi (())b-

scan with the “constrained least squares” filter described .. . . . -
) ) : , .__lective function since it ignores the statistics. However,
in [30, 49], computing the logarithm, and finally applying, . . . . .
. . . . .2 ~this case has been extensively studied previously since the
the ramp filter prior to pixel-driven backprojection. Thi ) . . .
. : ssian of® is approximately block-circulant. Therefore
approach closely matches the spatial resolution of the FBP .

. . . . .. We include it for comparison. Fig. 3 shows that the circu-
'r:]n;?f) dV\S”th that of the quadratically penalized statlstlc%m preconditioner (12) provides significant acceleration

o _ . _ for this nearly shift-invariant problem, as expected from
The log-likelihood for Poisson transmission data is non-, y P P

revious reports.
guadratic [50], and therefore not directly of the form give P

in (2). A conventional approach is to make a ray-by-r The second objective function was quadratically penal-
' 7 Y7ed weightedleast squares (QPWLS), wheW¥ is the
2nd-order Taylor expansion of the log-likelihood [5, 5% Welg au Q ), WheW |

o vield dratic functional of the f Nt urvature term in the 2nd-order Taylor expansion of the
0 yield a quadratic functional of the form (2). Mransmission log-likelihood [33, 51]. In this case we used

fortunately that approximation leads tp systemgtic_ pi‘?ﬁe modified penalty that provides more uniform spatial
[51,52]. Therefore, we used the FBP image to InIt""‘“z?esolution [30]. As illustrated in Fig. 2, the QPWLS ob-

the grouped-coordinate ascent algorithm of [50], WhICgctive function leads to a less noisy image, since ray mea-

was run for two iterations to produce an intermediate eg&]rements with greater uncertainty are given lower weight.

timateZ. We then computed a 2nd-order Taylor eXparI]—Towever, this nonuniform weighting leads to significant

sion of the transmission log-likelihood about the reprojeghift-variance As illustrated in Fig. 4, for QPWLS the

t'(.)n Of.i to produce a quadratl_c data-ﬂt_term_ of f[he forrgtandard circulant preconditioner performs very poorly.
given in (2). Regularized versions of this objective fun(ﬁowever, the proposed combined diagonal/circulant pre-

tion \f[v?re tr}en mlnl(;n‘;‘z/ed using the_ PC;%; al_lg_Jr? ”thm't Th@onditioner (32) provides significant acceleration, with
exact form fory; and W;; are given in [33]. The system negligible increase in computation time per iteration over

modelG used for reconstruction assumed parallel strip i'f‘ﬁe circulant preconditioner

tegrals of width 0.3375 cm. The third objective function wasonquadratically

. we investigated the convergence rates _Of the PCG a!%_%'nalized weighted least squares (NPWLS). We used one
rithm with both the FBP image and a zero image as the it the penalties proposed in [54] fa;:

tial imagez®. The FBP initialization always led to faster
convergence [33], so we report only those results here. A W(t) = 6% |t/8] —log (1 + |t/6]) ], (35)
manually determined subset of the pixels (see Fig. 2) was

reconstructed, which specifies the maffixn (11). with § = 0.004 cm. This function is approximately
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quadratic forlt| < 4, but is approximately linear fdt| > imaging problems.

9, which provides a degree of edge preservation. We didWe also compared the CG algorithm using the proposed
not use the modified penalty weighting of [30] here, singgeconditioners to the coordinate-descent algorithms of
its effect is currently unknown for nonquadratic penaltiefs, 27]. As in [5], we found that coordinate-descent often
The nonquadratic penalty provides shift-variant smootbenverged faster thannpreconditionedCG [33]. How-

ing, which, as illustrated in Fig. 2, can lead to (somewhadyer, we consistently found that the CG algorittuith the
improved image quality (particularly for nearly piecewiseproposed preconditionersonverged significantly faster
constant objects. The nonquadratic penalty leads to siigan coordinate descent [33]. How a nonnegativity con-
nificant additional shift-variance, so the circulant precostraint would affect the results requires further evaluation.
ditioner again performs very poorly, as shown in Fig. 5.

However, the proposed preconditiorefy leads to signif- VI. DISCUSSION

icar?t improvgment in convergence rgte, vyith only a mOOI'We have described new conjugate-gradient precondi-
est increase in computation time per iteration (see Tableﬁo]ning methods for shift-variant imaging problems, and
and 2). have presented representative results that demonstrate that
To implement My we usedm = 4 and 7y = the proposed preconditioners lead to significantly im-
{0.05,02,1.,2.} - B/R?, wherer® = 37 k7. This proved convergence rates over previous diagonal and cir-
range reflects the fact that/x> would be the effective) culant preconditioners for PET image reconstruction.
in the shift-invariant case, and thag(¢) < ¢,(0) somost  The development of the preconditioners used several
of the required values of; in (16) are smaller thafi/x*. heuristics about the properties of the Hessian for image
Increasingm gave negligible improvements, which is exreconstruction problems. Although the results show that
pected from Table | of [33]; increasing may makeM gy a the methods work, the derivation is somewhat less theo-
better approximation tdZ;", but that can only accelerateretically satisfying than the optimality results known for
convergence slightly sincH 5 is an imperfect approxima- circulant preconditioners for Toeplitz problems [15-19].
tion to H. Whether such results can be extended to the more compli-
Table 1 summarizes the CPU time per iteration of tteated structure of shift-variant problems remains an invit-
PCG algorithm (as reported by the UNttock()  func- ing challenge.
tion) for the various preconditioners and objective func- Circulant-based methods are perhaps inherently poorly
tions for the data described above. The additional CRUited to shift-variant problems. Our preconditioner par-
time needed for the proposed preconditioners over caially circumvents this drawback by essentially using sep-
ventional circulant preconditioning is modest (less thamrate Fourier transforms for each pixeg(for each col-
15%). The resulting improvements in convergence ralenn of the Hessian), which is then simplified through
surpass the small increase in computation per iterationttfe interpolation approximation (29). A more direct ap-
more realistic system model would use a more dense mp@each might begin with bases that better accommodate
trix G, which would further enhance the relative benefitshift-variance, such as wavelets.
of the proposed preconditioners. Table 1 also shows thealthough this paper focuses on image reconstruction,
required number of flops per iteration for this problemhe preconditioning methods are also useful for calculating
as reported by MatlabBops command. The precondi-analytical metrics related to imaging system performance,
tioners require only a modest increase in computation pgich as bias, variance, and spatial resolution [30, 52, 55].
iteration. Many of these calculations require iterative methods for
Table 2 summarizes how many iterations and what toglving large-scale linear systems of equations involving
CPU time is required for the PCG algorithm to “convergethe Hessian of the objective function.
for the various preconditioners and objective functions, Although the preconditioner development was pre-
where we define convergence here by the iterates haveanted for 2D imaging, the entire argument also applies
reached 99.9% of the asymptotic value of the objectite higher dimensions, such as 3D PET imaging, or “2.5D"
function,i.e. ®(z") — ®(z%) > 0.999 - [®(z>) — ®(z)]. imaging, in which each image in a stack is imaged sepa-
Table 2 clearly shows that even though the preconditiorately but a 3D penalty is used during reconstruction to
ers require a slight increase in computation per iteratigorovide regularization both within and between planes.
the reduced number of iterations that result will more thalle expect these preconditioners will be particularly useful
compensate for this expense. Thus FFT-based precoridi-fully 3D PET [10]. The inherent shift-variance 6f'G
tioners are very practical and effective for tomographfor such systems will add to the challenge. For 3D SPECT
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reconstruction, one may be able to form suitable precdnd-l] J. A. Fessler, “Preconditioning methods for shift-
ditioners by adapting linear methods such as in [56]. We
plan to investigate such methods in the near future.
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CPU Second$Mflops

M Per Iteration

QPULS || QPWLS | NPWLS |
I 0.63| 18.5|| 0.64| 18.5| 0.89| 25.3
Mp 0.63| 18.5| 0.64| 18.5| 0.92| 25.3
M 0.72| 21.2] 0.73] 21.2| 0.99| 28.1
Mcpe | - - || 073212\ - -
My - - - - || 1.12] 30.8

Table 1. CPU seconds and megaflops per PCG iteratic
for the three objective functions, for the various precondi
tioners. Each PCG iteration with the proposed precond )
tioner requires 10% more flops and about 13% more CP

time than with the conventional circulant preconditioner.

Total Iterations Total CPU Time
M QPULS] QPWLS ]| NPWLS |
I 6| 51| 15| 11.3|| 15| 14.6
Mp 6| 53| 8| 7115|152
Mc 2| 29| 9| 8322|232
Mcpe | - | - 5| 55| -] -
My - = - - 7| 9.7

Unpreconditioned ) Diagonal Precon. )
.,
",
Circulant Precon. Combined Precon.

Figure 1: Images of the preconditioned HesshiH for

an 8-by-8-pixel test image for a small tomographic imag-
ing problem. Preconditioners, Mp, M¢, Mcpc.
The diagonal elements d&¥f - H range from .55 to 1.48,
whereas the diagonal elements ®f cpcH range from
.77 to 1.04. The eigenvalues & -pcH are also more
narrowly spread than foM «H, which leads to faster
convergence for the proposed preconditioner.

Table 2: Number of iterations and total CPU seconds re-
quired for the PCG iterates to “converge,” as defined in
text. Although the proposed preconditioner slightly in-
creases computation per iteration, the reduced number of
iterations leads to significantly less overall computation.
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0.0/cm
FBP Reconstruction Support

‘ .
0.13/cm

QPULS QPWLS NPWLS

Figure 2: Grayscale images of the reconstructed FBP image, the reconstruction support (the set of pixels estimated)
and the images reconstructed using each of the three objective functions: QPULS, QPWLS, NPWLS.
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QPULS Preconditioned CG Algorithms
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Figure 3: Normalized, distance to solutior° versus it-

erationn for the quadratically-penalizegnweightedeast

squares (QPULS) objective function. Shown is CG witt
no preconditioning, with the diagonal preconditioner (8)
and with the circulant preconditioner (12). In the QPULS%
case, the Hessian is nearly block-circulant, so the circulas
preconditioner provides remarkable acceleration.
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Figure 5: Normalized, distance to solutiorx® versus
iteration n for the nonquadraticallypenalized weighted
least squares (NPWLS) objective function. Shown is CG
with no preconditioning, with the diagonal preconditioner
(8), with the circulant preconditioner (12), and with the
proposedM ¢ preconditioner (30). The proposed precon-
ditioner provides significant acceleration in convergence
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rate over conventional preconditioners.

Figure 4: Normalized, distance to solutiorx> versus
iterationn for the quadratically-penalizedeightedleast
squares (QPWLS) objective function. Shown is CG with
no preconditioning, with the diagonal preconditioner (8),
with the circulant preconditioner (12), and with the com-
bined diagonal/circulant preconditioner (32). The new
preconditionetM cpc leads to significantly faster conver-
gence than the ordinary circulant preconditioner for this
shift-variant problem.



