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ABSTRACT

Gradient-based iterative methods often converge slowly
for tomographic image reconstruction and image restora-
tion problems, but can be accelerated by suitable pre-
conditioners. Diagonal preconditioners offer some im-
provement in convergence rate, but do not incorporate
the structure of the Hessian matrices in imaging prob-
lems. Circulant preconditioners can provide remark-
able acceleration for inverse problems that are approxi-
mately shift-invariant,i.e. for those with approximately
block-Toeplitz or block-circulant Hessians. However,
in applications with nonuniform noise variance, such as
arises from Poisson statistics in emission tomography and
in quantum-limited optical imaging, the Hessian of the
weighted least-squares objective function is quite shift-
variant, and circulant preconditioners perform poorly. Ad-
ditional shift-variance is caused by edge-preserving regu-
larization methods based on nonquadratic penalty func-
tions. This paper describes new preconditioners that ap-
proximate more accurately the Hessian matrices of shift-
variant imaging problems. Compared to diagonal or circu-
lant preconditioning, the new preconditioners lead to sig-
nificantly faster convergence rates for the unconstrained
conjugate-gradient (CG) iteration. We also propose a new
efficient method for the line-search step required by CG
methods. Applications to positron emission tomography
(PET) illustrate the method.
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I. INTRODUCTION

Tomographic image reconstruction using statistical
methods can provide more accurate system models, sta-
tistical models, and physical constraints than the conven-
tional filtered backprojection (FBP) method. Most statisti-
cal methods for image reconstruction require minimizing
an objective function related to the measurement statis-
tics. For realistic image sizes, direct minimization meth-
ods are computationally intractable, so iterative methods
are required. For objective functions that are quadratic, or
at least convex and locally quadratic, conjugate-gradient
(CG) algorithms are appealing for reasons of conver-
gence rate, simplicity, and potential for parallelization
[1–10]. This paper describes new preconditioning meth-
ods that accelerate the convergence of gradient-based it-
erative methods for penalized weighted least-squares to-
mographic image reconstruction. The proposed methods
generalize those described in [8, 11]. The methods also
apply to other inverse problems such as image restoration.

Gradient-based iterations often converge slowly for
poorly-conditioned problems and for large-scale problems
where the Newton-Raphson method is impractical due to
the size of the Hessian matrix. Broadly speaking, the
goal when preconditioning is to induce a coordinate trans-
formation that improves the condition number of a prob-
lem, which generally leads to faster convergence. Sev-
eral “generic” preconditioners for CG methods are de-
scribed in textbooks,e.g.[12]. The simplest and perhaps
most prevalent preconditioners are diagonal scaling ma-
trices [12], versions of which have been applied to image
reconstruction1 [4, 6–8, 14]. Although diagonal precondi-

1Curiously, the most prevalent preconditioner in the emission to-
mography literature is not the usual diagonal matrix (8) formed from
the Hessian, but is rather the particular estimate-dependent diagonal
matrix that is implicit in the popular expectation-maximization (EM)
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tioners can accelerate convergence in many optimization
problems, these preconditioners cannot provide the fastest
convergence rate for imaging problems since they ignore
the off-diagonal structure of the Hessian of the objective
function (the correlation between pixels and the1/r re-
sponse of tomographic systems).

Some simple (or perhaps over-simplified) imaging
problems are nearly shift-invariant,i.e., the matrix2 G′G,
which is part of the Hessian of the objective function, is
approximately block-Toeplitz, whereG is a system matrix
described in (1) below. For these problems the diagonal
preconditioner is ineffective, but appropriate circulant pre-
conditioners can provide very remarkable improvements
in convergence rate. (See [15] for a recent thorough re-
view of this subject.) Circulant preconditioners are partic-
ularly appealing since one can use the fast-Fourier trans-
form (FFT) for efficient implementation. Several optimal
circulant preconditioners are available for Toeplitz prob-
lems [15–19]. Such circulant preconditioners, also called
“Fourier” preconditioners, have been applied to both to-
mographic image reconstruction [20] and image restora-
tion problems [21, 22]. Figure 3, described in Section V
below, illustrates the well-known effectiveness of circu-
lant preconditioners for shift-invariant problems. Circu-
lant preconditioners have also been applied to total varia-
tion methods for nonlinear image restoration [23,24].

Unfortunately, many imaging problems areshift vari-
ant, for the following reasons. Firstly, many imaging
systems produce heteroscedastic measurements, particu-
larly in quantum-limited applications such as emission to-
mography and photon-limited optical imaging [25,26]. In
these applications, the measurement noise covariance is a
diagonal matrix with very nonuniform entries, due to both
nonuniform Poisson variance and to physical effects such
as detector efficiency and attenuation [27]. Therefore the
Fisher information termG′WG within the Hessian (see
(5) and Fig. 1 below) is shift variant and thus poorly ap-
proximated by any circulant preconditioner. Secondly, in-
corporating a nonquadratic edge-preserving penalty func-
tion into the objective function to perform regularization
introduces an additional form of shift variance into the
Hessian (5). Finally, for some imaging systems (e.g.
SPECT, 3D PET, and helical CT), even if we were to dis-

algorithm. (For emission tomography the EM algorithm is equivalent
to a gradient-ascent iteration with a certain estimate-dependent diag-
onal preconditioner [13].) Kaufman [4] and Mumcuogluet al. [6]
incorporated this diagonal preconditioner into conjugate-gradient al-
gorithms. The estimate-dependence of this preconditioner affects the
conjugacy of the direction vectors, leading Lalushet al. to advocate an
iteration-independent diagonal preconditioner [3,14].

2We use “′” to denote matrix and vector Hermitian transpose.

regard the nonuniform noise variance, the matrixG′G is
still inherently shift-variant due to the system geometry
and/or spatial variations in detector response. (See [28] for
an image restoration method for shift-variant imaging sys-
tems.) Thus, neither diagonal nor circulant precondition-
ing is well-suited to shift-variant imaging problems. Since
statistical methods for image reconstruction yield higher-
quality images than FBP reconstruction but at a price of
increased computation, it is important to develop methods
for accelerating convergence of the iterative algorithms.
This paper generalizes the quadratic method described in
[8] by developing improved preconditioners that accom-
modate the shift-variance caused by nonuniform noise and
nonquadratic penalties.

Section II reviews the image reconstruction problem
and the preconditioned conjugate gradient iteration. Sec-
tion III summarizes the preconditioners. Section IV de-
scribes a new method for the CG line-search step. Sec-
tion V reports empirical results that demonstrate signifi-
cantly improved convergence rates in PET reconstruction
with real data.

II. REGULARIZED RECONSTRUCTIONPROBLEM

Most tomographic image reconstruction and image
restoration problems are specific cases of the following
general inverse problem: find an estimate of object pa-
rametersx = [x1, . . . , xp]′ (e.g.pixel intensities) from a
measurement vectory related tox by

y = Gxtrue + noise. (1)

In the context of PET,xj is the radioisotope concentra-
tion in thejth voxel,G = {gij} is the “system” matrix
that describes the tomographic geometry, andy represents
sinogram data that has been precorrected for the effects
of random coincidences, attenuation, scatter, deadtime,
etc. However, the proposed methods apply generally to
problems of the form (1) for whichG′G is approximately
block Toeplitz.

A. The Objective Function

One useful statistical criterion for estimatingx from y is
the following penalized weighted least-squares3 objective
function [5,27]:

Φ(x) =
1

2
(y −Gx)′W (y −Gx) + βR(x) (2)

whereR(x) is a penalty function that encourages smooth
or piecewise-smooth estimates, andβ is a parameter that

3One could generalize the approach to produce penalized-
likelihood estimates by using iteratively reweighted least-squares [29].
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controls the tradeoff between spatial resolution and noise
[30]. (Methods for choosingβ to specify a desired reso-
lution are described in [30].) Usually,W is the inverse
of the covariance matrix ofy (accounting for any mea-
surement precorrections) or an estimate thereof [27]. We
restrict the presentation to cases whereW is a diagonal
matrix, although generalizations are possible4. Our goal
is to compute an estimatêx of xtrue from y by finding the
minimizer of the objective functionΦ(x).

The unregularized problem (withβ=0) is poorly condi-
tioned or even under-determined, so some regularization
is required to ensure a stable solution. Gradient-based it-
erative methods generally converge only to local minima
for non-convex regularizing functions, so we focus here
on convex penalty functions [31]. The following gen-
eral form [32] expresses most of the convex penalty func-
tions that have been proposed for regularization of imag-
ing problems:

R(x) =

K∑
k=1

ψk([Cx− c]k), (3)

whereC is a K × p matrix and c ∈ R
K , for some

user-defined numberK of soft “constraints” of the form
[Cx]k ≈ ck. The standard roughness penalty simply
penalizes differences between neighboring pixel values.
This penalty is the special case of (3) whereK is the
number of pairs of neighboring pixels5, the vectorc = 0,
and each row ofC contains one “+1” and one “-1” entry
so that[Cx]k corresponds to the difference between two
neighboring pixel values [33].

In this paper we first consider general convex non-
quadratic functionsψk that are symmetric, twice-
differentiable, and that have bounded, nonzero second
derivatives6. We then treat the case of quadratic penalty
functions7, whereψk(t) = ωkt

2/2 for a positive value
ωk, as a simpler special case. We also assume that the
penalty matrixC has been chosen such that the matrix
G′WG + C ′D[ωk]C is positive definite for any set of
positive values{ωk}Kk=1, whereD[ωk] denotes theK×K
diagonal matrix with entriesω1, . . . , ωK along its diag-
onal. In particular this assumption implies thatG andC
have disjoint null spaces. Regularization methods are gen-
erally designed to ensure such positive definiteness.

4It suffices to haveG′WG ≈ DMD whereD is diagonal and
M is approximately block-circulant.

5K ≈ 2p andK ≈ 4p for first and second-order neighborhoods
respectively.

6This assumption precludes the choice [31]ψk(t) = |t|
p for p < 2

which has unbounded second derivative.
7For certain ROI quantification tasks the quadratic penalty is useful

[30] and even outperforms nonquadratic penalties [34].

Since this paper focuses on comparing various pre-
conditioners, for simplicity we ignore any nonnegativity
constraint forx. One could extend the methods to in-
clude a nonnegativity barrier/penalty function [6, 35], or
active-set or gradient projection method [36,37]. Improve-
ments in convergence rate due to improved precondition-
ers should extend to methods that incorporate nonnegativ-
ity, as shown in [38].

B. The Gradients

Under the above assumptions, one can determine the
unique minimizer̂x of the objective functionΦ by find-
ing the zero of its gradient. One can express the column
gradient ofΦ as follows:

−∇′Φ(x) = G′W (y −Gx)− βC ′z(x), (4)

wherez : Rp → R
K is defined by

zk(x)
4
= ψ̇k([Cx− c]k).

The Hessian ofΦ (its matrix of second partial derivatives)
is given by

H(x) = G′WG+ βC ′Dψ̈(x)C, (5)

whereψ̈k(t) = d2/dt2ψk(t) and

Dψ̈(x)
4
= D

[
ψ̈k([Cx− c]k)

]
.

In general there is no explicit analytical solution for the
zero of the gradient (4). However, in the special case of
quadratic penalty functions withψk(t) = ωkt2/2, the vec-
tor z(x) simplifies toz(x) = D[ωk] (Cx − c), and the
gradient simplifies to

−∇′Φ(x) = b−Hx

whereH = G′G+ βC ′D[ωk]C and

b
4
= G′W y +CD[ωk] c.

When c = 0, which is the typical choice,b = G′W y

is essentially a weighted “backprojection” ofy. In the
quadratic case, the zero of the gradient is “simply” the
solution of the linear system of equationsHx̂ = b. Un-
fortunately, due to the size ofH for realistic image sizes,
even in the quadratic case one cannot compute directly
the analytical solution̂x = H−1b. Furthermore, for non-
quadratic penalties there is no explicit analytical solution
for x̂. Thus, one must use iterative methods to computex̂.

The preconditioned conjugate-gradient (PCG) iteration
is well-suited to solvingHx̂ = b, and is also useful
for minimizing nonquadratic objective functions. The re-
mainder of this section reviews the PCG algorithm.
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C. Minimization Using Conjugate Gradients

Gradient-based minimization methods use the gradient
of the objective function∇′Φ(xn) to determine a series
of direction vectors{dn} along whichΦ is minimized via
1D line search [39]. Conjugate-gradient methods modify
the search directions to ensure that they are mutually con-
jugate (or approximately so for nonquadratic problems).
We use the following preconditioned form of the Polak-
Ribiere CG method [6,39]:

gn = −∇′Φ(xn) (-gradient: see (4))

pn =Mgn (precondition) (6)

γn =



0, n = 0
〈gn − gn−1, pn〉

〈gn−1, pn−1〉
, n > 0

dn = pn + γnd
n−1 (search direction)

αn = argmin
α
Φ(xn + αdn) (step size) (7)

xn+1 = xn + αnd
n (update).

For quadratic objectives the step sizeαn is given explicitly
by

αn = 〈d
n, gn〉/〈dn,Hdn〉,

and forn > 0 one can use the alternate form

γn = 〈g
n, pn〉/〈gn−1, pn−1〉.

For nonquadratic objectivesΦ, one must findαn using a
line-search. We used the new efficient line-search method
described in Section IV to generate the empirical results
in Section V.

D. Computation Requirements

WhenG is a sparsen × p matrix, which is the case
in tomography, the unpreconditioned CG algorithm for
a first-order quadratic penalty function requires about
4ρnp + 8n + 17p floating point operations per iteration,
whereρ is the fraction of nonzero elements ofG. In tomo-
graphic image reconstruction problems, typicallyn ≈ p.
For a tomographic system matrixG based on a “strip-
integral” discretization of the Radon transform, the spar-
sity factor ρ is aboutρ = 2/

√
n ≈ 2/

√
p. Thus the

per-iteration computation of unpreconditioned CG is ap-
proximately8p3/2. (For a1282 image, this approximation
yields 16.8 megaflops, which agrees reasonably well with
the first line of Table 1.) For power-of-two image sizes,
computing an FFT requires about6p log2 p flops. Typi-
cally log2 p � p1/2, so preconditioners that are based on
FFTs require minimal additional computation for tomo-
graphic image reconstruction problems, as evidenced by
Table 1.

III. PRECONDITIONERS

The matrixM in (6) above is the preconditioner;
choosing this matrix is part of the algorithm design. To
guarantee convergenceM must be symmetric positive
definite. For quadratic objectives, preconditioning the CG
algorithm is equivalent to solving the transformed linear
system of equationsM1/2HM1/2x̃ = M1/2b, where
x̃ = M−1/2x̂, whereH is the Hessian of the objective
function as defined in (5). The convergence rate of the
CG algorithm generally improves as the condition number
ofMH decreases towards unity. For quadratic objective
functions, the ideal preconditioner would beM0 = H

−1

so thatM 0H = I, because thep × p identity matrixI
has the minimal condition number (unity), and the precon-
ditioned CG algorithm would converge in one step. For
nonquadraticΦ, the inverse-Hessian preconditioner

M0(x) =H
−1(x) = [G′WG+ βC ′Dψ̈(x)C]

−1

yields superlinear convergence rates, as does the Newton-
Raphson method [40]. Since we cannot computeH−1 for
largep, we must develop preconditioners thatapproximate
H−1.

A. Diagonal Preconditioner

The classical diagonal preconditioner is simply the in-
verse of the diagonal elements ofH :

MD(x)
4
= D

[
1

Hjj(x)

]
. (8)

These diagonals are positive sinceH is positive definite.
SinceG is sparse andW is diagonal, one can easily com-
pute the diagonal elementsHjj(x) without computing all
of H(x). Implementing this preconditioner within a CG
algorithm does not require storing the entire diagonal ma-
trix MD for step (7); one simply multiplies each element
of the gradient vector by the corresponding diagonal entry
of MD, i.e. pn

j
= gn

j
/H jj(x), j = 1, . . . , p. The diag-

onal preconditionerMD(x) rescales the problem so that
MD

−1H typically has a smaller condition number than
H . Figure 1 displays a diagonally-preconditioned Hes-
sianM−1

D H for a small 2D image reconstruction prob-
lem; the product is far from the ideal identity matrix, so
the convergence rate of PCG is still fairly slow.

B. Circulant Preconditioner

If the Hessian is approximately circulant, then circulant
preconditioners are effective. In general the Hessian (5) is
far from circulant. However, for didactic purposes, con-
sider the case of a shift-invariant quadratic penalty with
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ψ(t) = t2/2, and assume that the weighting matrixW
has an approximately constant diagonal,i.e.W ≈ αI.
Then we can make the following approximation

H(x) = G′WG+ βC ′C ≈ αK(β/α), (9)

where
K(η)

4
= G′G+ ηC ′C. (10)

The utility of approximation (9) is that the matrixK is
suitable for circulant approximations in most image recov-
ery problems. Specifically, for anyη there is a diagonal
matrix8 Ω(η) such that for any powerl:

K l(η) = [G′G+ ηC ′C]l ≈ T ′Q′Ωl(η)QT , (11)

whereQ is the orthonormal version of the 2D DFT oper-
ator9. Such circulant approximations to Toeplitz matrices
have been studied extensively,e.g.[15,22,41].

The matrixT is simply the identity matrix when the
image size is a power of two and when all pixels within
the image are to be estimated. However, often only those
pixels within some known support within the image are
estimated and the other pixel values are fixed to zero,e.g.
Fig. 2. In such cases, the matrixT is the matrix of ones
and zeros that “embeds” thep pixel parameters being es-
timated into an image “matrix” (or lexicographically or-
dered version thereof) with size that is a power of 2, which
facilitates use of the FFT. In particular,T ′T = Ip. For
simplicity the reader may want to think ofT as the identity
matrix, but the full generality is often needed in practice.

Combining (9) with the circulant approximation (11)
for l = −1 leads to the following circulant preconditioner:

MC
4
=
1

α
T ′Q′Ω−1(β/α)QT . (12)

Clinthorne et al. applied this type of preconditioner to
shift-invariant image reconstruction [20]. Circulant pre-
conditioners can be efficiently incorporated into the CG
algorithm using 2D FFTs.

For comparison purposes, we have investigated the ef-
fectiveness of the circulant preconditioner even for shift-
variant problems where the circulant approximation is
poor. The best choice ofα is unclear in the shift-variant
case. In Section V we apply the above preconditioner to

8See [33] for details about computingΩ, which consists of the 2D
DFT coefficients of the column ofK corresponding to the pixel at the
center of the image.

9For anyp1×p2 2D image lexicographically ordered as a vectoru,
Qu is the lexicographically ordered vector of the 2D DFT coefficients
of that image divided by

√
p1p2. Similarly,Q′u is the inverse 2D DFT

of u, scaled by the same square root factor.

shift-variant image reconstruction problems using the fol-
lowing choice

α
4
=
1

p

p∑
j=1

∑
i g
2
ijW ii∑
i g
2
ij

.

This choice corresponds to the meanκ2j value, whereκj
is defined in (14) below. IfW is aconstantdiagonal ma-
trix, i.e.W = αI, thenα equals that constant and (9)
is exact rather than an approximation. The results in Sec-
tion V demonstrate thatMC is ineffective for shift-variant
problems.

C. Proposed Preconditioner

To understand the limitations of the circulant precon-
ditioner for shift-variant problems, it is helpful to first
consider qualitatively how it works in the shift-invariant
1D case. IfH is Toeplitz, then (ignoring end effects)
each column ofH corresponds to the same 1D kernel but
shifted to be centered around the pixel corresponding to
that column. The circulant preconditionerMC is essen-
tially the inverse filter for that 1D signal. Computing the
productMCH is equivalent to applying that inverse filter
to each column ofH . When the inverse filter is applied to
the kernel ofH , the result is (approximately) a Kronecker
delta function located at the center of the kernel. Thus
MCH ≈ I since in thejth column the kernel is centered
about thejth pixel in the 1D case.

For shift-variant problems, the columns ofH corre-
spond todifferentsignals, and no single inverse filter can
reduce all columns to Kronecker delta functions simulta-
neously. Thus, essentially what is needed for shift-variant
problems is a separate inverse filter for each column of
the Hessian. However, such an approach appears to re-
quire p FFTs per iteration, which is impractical. As a
practical compromise, our proposed preconditioning ap-
proach is the following. We precompute a small number
of inverse filters (with a correspondingly moderate num-
ber of FFTs) and essentially interpolate between those in-
verse filters for each pixel (i.e. column of the Hessian).
A subtlety is that a naive implementation of the above
idea would lead to an asymmetric preconditioner that is
not guaranteed to be nonnegative definite. Therefore, we
apply the above idea to the matrix square root of the Hes-
sian, and then “square” the resulting matrix to ensure a
nonnegative definite preconditioner. From such a nonneg-
ative definite preconditioner one can easily form a positive
definite preconditioner by addingεI to the preconditioner
for ε > 0.

This section presents a sequence of approximations to
the inverse of the Hessian matrix in (5). The final approxi-
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mations yield a new preconditioner that is efficient compu-
tationally10. Note that our approximations have no effect
on the final solution̂x, only on therate of convergence
to that solution. Thus, poor approximations do not cause
reduced estimate accuracy, but merely suboptimal conver-
gence rates. The results in Section V demonstrate that our
proposed preconditioners lead to significantly accelerated
convergence, despite possibly crude approximations in the
development!

The first key approximation is one that we have pre-
viously used for analyzing the spatial resolution proper-
ties of tomographic image reconstruction in [30]. Roughly
speaking, this approximation brings the diagonal weight-
ing matrix to the outside of the Fisher information matrix
as follows:

G′WG ≈DκG
′GDκ, (13)

whereDκ = D[κj ] and

κj
4
=

√∑
i g
2
ijW ii∑
i g
2
ij

. (14)

This exchange is important in what follows because by as-
sumptionG′G is approximately block-Toeplitz,i.e. shift-
invariant, unlikeG′WG. The matrices on the two sides
of approximation (13) areexactlyequal along their diag-
onals, and would also be equal off-diagonal if theW ii’s
were all equal. (The results in [30] demonstrate the ac-
curacy and utility of this approximation.) Combining the
exchange (13) with (5) leads to our first Hessian approxi-
mation:

H(x) ≈H1(x)
4
=DκG

′GDκ + βC
′Dψ̈(x)C.

The inverse of this approximation is not a practical pre-
conditioner, so we must further simplify. We apply an
approximate exchange analogous to (13) to the regular-
ization term:

βD−1κ C
′Dψ̈(x)CD

−1
κ ≈Dη(x)C

′CDη(x), (15)

whereDη(x)
4
= D

[√
ηj(x)

]
and

ηj(x)
4
=

β

κ2j

∑
k c
2
kjψ̈k([Cx− c]k)∑

k c
2
kj

. (16)

As in (13), the two sides of (15) agree exactly along their
diagonals. Furthermore, in the quadratic penalty case with
ψk(t) = t

2/2, we haveDψ̈=I so (15) is then exact.
10I.e., it requires much less computation time than multiplying by

G andG′ in (4), which are the most time consuming steps in the CG
iteration for tomographic image reconstruction.

The factorηj(x) is aneffective regularization parame-
ter for the jth pixel [30]. To illustrate, note that ifW=I
andψk(t) = t2/2, thenκj = 1 andηj(x) = β for all
j andx. Combining the approximation (15) withH1(x)
leads to our second inverse Hessian approximation:

H−1(x) ≈H−12 (x)
4
=D−1κ B

−1(x)D−1κ , (17)

where

B(x)
4
= G′G+Dη(x)C

′CDη(x). (18)

It is easily shown thatB is symmetric and positive definite
under the (reasonable) sufficient conditions thatψ̈k(t) 6=
0 ∀t and that the only vector in the nullspace ofC is the
vector ofp ones, which must not be in the nullspace of
G [27].

The approximations and preconditioners that we derive
below all have the same form as (17), but with different
approximations toB−1(x). The requirement that the pre-
conditioners be symmetric positive definite increases the
challenge here.

To proceed, we exploit the heuristic that the effect of the
penalty term is predominatelylocal, i.e., the image that
one would reconstruct from measurements corresponding
to a point source at thejth pixel is determined primarily
by the value ofηj. A convenient mathematical expression
for this heuristic is as follows:

B−1/2(x)ej ≈K
−1/2(ηj(x))ej

4
= vj(x), (19)

whereK was defined in (10) andej is thejth unit vector
(i.e., an impulse at thejth pixel). The vectorvj is an ap-
proximate “inverse filter” for thejth column (or row) of
B1/2, in the sense that

e′kB
1/2(x)vj(x) ≈

{
1, k = j
0, k 6= j.

(20)

We synthesize a matrix approximation from (19) by using
the following exact expansion of anyp× p matrixA:

A = AI = A

p∑
j=1

eje
′
j =

p∑
j=1

(
Aej

)
e′j.

Applying this expansion to the matrix square rootA =
B−1/2, which exists sinceB is positive definite, and com-
bining with (19) leads to the approximation:

B−1/2(x) ≈
p∑
j=1

vj(x)e
′
j
4
= S3(x), (21)
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or equivalently after “squaring:”

B−1(x) = B−1/2(x)B−1/2(x) ≈ S′3(x)S3(x). (22)

The matrixS3 is an approximation toB−1/2; thejth col-
umn ofS3 is thejth column ofK evaluated at the effec-
tive regularization parameterηj(x) of thejth pixel. Com-
bining (22) and (21) with (17) leads to our third inverse
Hessian approximation:

H−1(x) ≈H−13 (x)
4
=D−1κ S

′
3(x)S3(x)D

−1
κ . (23)

We have used matrix square roots to ensure symmetry
of the approximation. Thus an alternative approximation
based on (21) and (22) is as follows11:

H−1(x) ≈H−14 (x)
4
=D−1κ S3(x)S

′
3(x)D

−1
κ . (24)

BothH3 andH4 are plausible starting points for subse-
quent approximations.

The purpose of the above sequence of approximations
was to derive a form such as (23) that depends on the ap-
proximately circulant matrixK. Applying the circulant
approximation (11) forl = −1/2 yields:

K−1/2(η)ej ≈ T
′Q′Ω−1/2(η)QT ej ,

so combining with (19):

vj(x) ≈ wj(x)
4
= T ′Q′Ω−1/2(ηj(x))QT ej. (25)

Essentiallywj is an approximate inverse filter for thejth

column ofB1/2. Combining (25) with (23) and (21) leads
to our fifth inverse Hessian approximation:

H−1(x) ≈H−15 (x)
4
=D−1κ S

′
5(x)S5(x)D

−1
κ , (26)

S5(x)
4
=

p∑
j=1

wj(x)e
′
j . (27)

Like S3, the matrixS5 is an approximation toB−1/2;
the jth column ofS5 is the jth column of the circulant
approximation toK. Again the matrix squaring suggests
the alternate form:

H−1(x) ≈H−16 (x)
4
=D−1κ S5(x)S

′
5(x)D

−1
κ . (28)

Implementing a preconditioner based on eitherH−15 or
H−16 would appear to require2(p + 1) 2D-FFT’s per it-
eration. Although this is less computation than required
forH−13 orH−14 , it remains impractical.

11One can easily show thatH−1
4 can also be written in the following

form:H−1
4 (x) =

∑p
j=1 vj(x) v

′
j(x).

To further reduce the number of FFT’s, we propose to
use interpolation. We choose a small numberm � p of
values{η̃k}mk=1 that cover (most of) the range of the val-
ues of theηj ’s in (16), and precompute the 2D-DFT coef-
ficients ofK(η) in (10) for those values:

Ωk
4
= Ω(η̃k), k = 1, . . . ,m.

We then apply interpolation to approximate the 2D-DFT’s
corresponding to the required valuesηj :

Ω−1/2(ηj(x)) ≈
m∑
k=1

λk(ηj(x))Ω
−1/2
k , (29)

where λk ∈ [0, 1] are the interpolation factors with∑m
k=1 λk = 1. Since theη’s are positively valued, we

currently determine theλk ’s by using linear interpolation
with a logarithmic scale for theη’s:

λk(η)
4
=




log η̃k+1 − log η

log η̃k+1 − log η̃k
, η̃k ≤ η ≤ η̃k+1

log η − log η̃k−1
log η̃k − log η̃k−1

, η̃k−1 ≤ η ≤ η̃k

1, k = 1, η ≤ η̃1
1, k = m, η ≥ η̃m
0, otherwise.

Incorporating the interpolation approximation (29)
into (27) yields

S5(x) =

p∑
j=1

T ′Q′Ω−1/2(ηj)QT eje
′
j

≈
p∑
j=1

T ′Q′

(
m∑
k=1

λk(ηj(x))Ω
−1/2
k

)
QT eje

′
j

=
m∑
k=1

T ′Q′Ω
−1/2
k QT


 p∑
j=1

λk(ηj(x))eje
′
j




=

m∑
k=1

T ′Q′Ω
−1/2
k QTDλk(x)

4
= S7(x),

whereDλk(x)
4
= D[λk(ηj(x))] . This approximation sug-

gests the following preconditioners:

M7(x)
4
= D−1κ S

′
7(x)S7(x)D

−1
κ

M8(x)
4
= D−1κ S7(x)S

′
7(x)D

−1
κ .

Both of these preconditioners require2(m+1) 2D-FFT’s
(or inverse FFT’s) per iteration.
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For further simplification, note that

S′7(x)S7(x) =

(
m∑
k=1

Dλk(x)T
′Q′Ω

−1/2
k

)
QTT ′Q′

·

(
m∑
k=1

Ω
−1/2
k QTDλk(x)

)
.

Using the approximationTT ′ ≈ I (which is exact when
the image size is a power of 2 and when the entire im-
age is estimated) and the fact thatQQ′ = I (sinceQ is
orthonormal), we have the following approximation:

S′7(x)S7(x) ≈ S′9(x)S9(x)

S9(x)
4
=

m∑
k=1

Ω
−1/2
k QTDλk(x).

This simplification leads to the following preconditioner:

M9(x)
4
=D−1κ S

′
9(x)S9(x)D

−1
κ , (30)

which requires only2m 2D-FFT’s per iteration.
As a final simplification, we could consider dropping

the cross terms in the productS′9S9, i.e.

S′9(x)S9(x) ≈
m∑
k=1

Dλk(x)T
′Q′Ω−1k QTDλk(x).

This approximation leads to the following preconditioner:

M10(x)
4
=

D−1κ

(
m∑
k=1

Dλk(x)T
′Q′Ω−1k QTDλk(x)

)
D−1κ ,

which also requires2m FFT’s per iteration. However, we
have found empirically thatM9 leads to faster conver-
gence thanM 10 for nonquadratic penalties [33]. Since
M 9 andM10 have equivalent computation time, we con-
siderM9 to be the preferred preconditioner for the non-
quadratic case.

The preconditionersM8, M9, M 10 are all practical
in the sense that the computation of2m 2D-FFT’s is
O(mp log2 p), which for smallm is moderate compared
with theO(ρnp) computation required to compute the gra-
dient. Note that while these preconditioners combine as-
pects of both the diagonal and circulant preconditioning
methods, the particular diagonal matrices used here are
very different from the conventional diagonal precondi-
tioning matrix given in (8).

D. Circulant Preconditioner Revisited

As a sanity check, consider the shift-invariant case
where all of the effective regularization parameters are
identical: ηj = η0 ∀j andκj = κ ∀j. In this case,m = 1
suffices, and clearly we should chooseη̃1 = η0. Then the
preconditionersM9 andM10 simplify to the following:

M9 =M10 =
1

κ2
T ′Q′Ω−1(η0)QT ,

which is identical to the standard circulant precondi-
tioner (12). Thus our approximations do not lead to any
harm in the shift-invariant special case.

E. Implementation

Storing thep × p preconditioning matrices is fortu-
nately unnecessary, since the CG algorithm requires only
the ability to compute the productpn =Mgn. FFTs can
compute these products efficiently using storage of only a
few vectors of lengthp. For example, we computeM 9g

n

as follows12:

tnk = fft2
(
TDλk(x)D

−1
κ g

n
)

tn =

m∑
k=1

Ω
−1/2
k tnk

pn
k
= T ′fft−12

(
Ω
−1/2
k tn

)

pn = D−1κ

m∑
k=1

pn
k
.

Even less computation and storage is actually required
since one can compute a pair of real FFT’s using just one
complex FFT [39], and the summations can be done by
in-place accumulation.

F. Combined Diagonal/Circulant Preconditioner for the
Quadratic Case with Modified Penalty

For a quadratic penalty withψk(t) = t2/2 andc = 0,
the objective function simplifies to

Φ(x) =
1

2
(y −Gx)′W (y −Gx) +

1

2
βx′Rx,

where the matrixR = C′C is the (symmetric) Hessian
of the penalty function. The usual “uniform” 1st-order
2D roughness penalty matrixR0 has 4’s along its diag-
onal and−1’s in the off-diagonal positions correspond-
ing to each pixel’s four neighbors. Surprisingly, this uni-
form penalty leads tononuniform spatial resolutionwhen

12One can think ofgn as both ap-dimensional vector or as anx×ny
image, wherenx andny are the image column and row dimensions and
p = nxny.
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W 6= I [30]. Thus, for quadratic penalties we use the
modified penaltyof [30], for which

R ≈DκR0Dκ. (31)

This modified penalty leads to more uniform spatial reso-
lution [30], which in turn leads to a Hessian that is partic-
ularly amenable to preconditioning, since uniform spatial
resolution and shift-invariance are equivalent concepts.
Under approximation (31), one can verify thatηj = β ∀j
for the quadratic penalty. Thus from (17) and (11), the fol-
lowing preconditioner is well-suited to the quadratic ob-
jective with the modified penalty:

MCDC =D
−1
κ T

′Q′Ω−1(β)QTD−1κ . (32)

Based on [8], we refer to this approach as the “combined
diagonal/circulant” preconditioner. The seemingly minor
addition to (12) of theDκ terms in (32) provides signifi-
cant improvement in convergence rate as shown in Fig. 4
(see Section V). Figure 1 also illustrates thatMCDCH ≈
I for the quadratic case with the modified penalty, and that
that approximation is much better than with the circulant
preconditioner (12).

G. Summary

We recommend the circulant preconditioner (12) for
shift-invariant problems, the combined diagonal/circulant
preconditioner (32) for quadratic penalized weighted least
squares with the modified penalty of [30], and the new
preconditioner (30) for the general shift-variant case.

IV. L INE SEARCH METHOD

For nonquadratic objectives, gradient-based methods
require a “line search” in (7) to find the step sizeα that
minimizes the objective function along the current search
direction. General purpose line-search methods [39] are
applicable but suboptimal since they fail to exploit the spe-
cific form (particularly convexity) of our objective func-
tion (2). In this section we present a new recursive line-
search algorithm that is simple to implement and isguar-
anteedto monotonically minimize the objective function
with respect toα. This algorithm is an adaptation of the
iteration proposed by Huber [42] for robust M-estimation.
(The essence of Huber’s algorithm has also resurfaced
in the imaging literature as the “half-quadratic” method
[43–45].) The convergence proof in [42] requires the fol-
lowing assumptions: 1)ψk is convex, symmetric, and dif-
ferentiable, and 2)

ωk(t)
4
= ψ̇k(t)/t (33)

is bounded and decreasing fort > 0. (Theωk functions
act as weighting functions that diminish the influence of
neighboring pixels near edges between object regions for
nonquadratic penalty functions [42, 46, 47].) These as-
sumptions are reasonable for the convex penalty functions
used in imaging.

The line-search algorithm can be stated as follows. Let
x andd denote the current estimate and search direction
respectively. For (7) we would like to find the scalar value
α̂ that minimizes

f(α) = Φ(x+ αd).

First define (and precompute) the following terms:

r = y −Gx, u = Cx− c,
a = Gd, h = Cd,

f1 = r′W a, f2 = a′W a,

whereG,C,W , andy were defined in Section II. Then
with some manipulation of (2) and (3) one can show the
following:

f(α) =
r′W r

2
− αf1 +

α2

2
f2 + β

∑
k

ψk(uk + αhk)

ḟ(α) = −f1 + αf2 + β
∑
k

hk ψ̇k(uk + αhk)

f̈(α) = f2 + β
∑
k

h2k ψ̈k(uk + αhk).

The Newton-Raphson iteration forα is not guaranteed to
converge for this problem. However, the following itera-
tion is guaranteed to converge tôα:

αi+1 = αi −
ḟ(αi)

f2 + β
∑

k h
2
k ωk(uk + α

ihk)
, (34)

whereωk was defined in (33). (We initialize withα0 = 0.)
The iteration monotonically decreasesf(αi) by the proof
of Lemma 8 in [42]. One can also show that the above
iteration is a strict contraction:|αi − α̂| monotonically
decreases each iteration [47].

We use about five sub-iterations of the above recursion
for each iteration of the CG algorithm. Since no forward
or backward projections are required, these sub-iterations
are a fairly small component of the computation time for
each iteration. To summarize, the algorithm (34) provides
an easily implemented yet rapidly converging method for
finding the step sizeα for nonquadratic penalty functions.
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V. NUMERICAL RESULTS

To compare the convergence rates of the CG algorithm
using the preconditioners described above, we have ap-
plied the algorithms to both simulated and real PET trans-
mission scans. Results for PET emission scans were re-
ported in [8]. We have investigated the effects of the initial
image, the type of penalty, the choice of weightsW ii, and
several measures of convergence rates. We synopsize rep-
resentative results only; complete details are given in [33].

We acquired a 12-minute PET transmission scan of a
Data Spectrum thorax phantom on an CTI ECAT 921 EX-
ACT PET scanner. This scan produced 920653 prompt
coincidences, which is quite noisy data. The sinogram
size was 160 radial bins by 192 angles, with 0.3375 cm
radial spacing, son = 30720. Prompt and random coinci-
dences were collected separately. The mean contributions
of randoms were estimated by time scaling the delayed co-
incidences from a 15 hour blank scan, as described in [48].

The reconstructed images were128 × 128 pixels of
width 0.42 cm. We reconstructed a FBP image by first
smoothing the ratio of the transmission over the blank
scan with the “constrained least squares” filter described
in [30, 49], computing the logarithm, and finally applying
the ramp filter prior to pixel-driven backprojection. This
approach closely matches the spatial resolution of the FBP
image with that of the quadratically penalized statistical
methods.

The log-likelihood for Poisson transmission data is non-
quadratic [50], and therefore not directly of the form given
in (2). A conventional approach is to make a ray-by-ray
2nd-order Taylor expansion of the log-likelihood [5, 51]
to yield a quadratic functional of the form (2). Un-
fortunately that approximation leads to systematic bias
[51, 52]. Therefore, we used the FBP image to initialize
the grouped-coordinate ascent algorithm of [50], which
was run for two iterations to produce an intermediate es-
timate x̃. We then computed a 2nd-order Taylor expan-
sion of the transmission log-likelihood about the reprojec-
tion of x̃ to produce a quadratic data-fit term of the form
given in (2). Regularized versions of this objective func-
tion were then minimized using the PCG algorithm. The
exact form foryi andW ii are given in [33]. The system
modelG used for reconstruction assumed parallel strip in-
tegrals of width 0.3375 cm.

We investigated the convergence rates of the PCG algo-
rithm with both the FBP image and a zero image as the ini-
tial imagex0. The FBP initialization always led to faster
convergence [33], so we report only those results here. A
manually determined subset of the pixels (see Fig. 2) was
reconstructed, which specifies the matrixT in (11).

To compare convergence rates, we examined the nor-
malized l2 distance between thenth iteratexn and the
limiting value x∞: ‖xn − x∞‖/‖x∞‖. (We also exam-
ined thel1 and l∞ norms, which led to comparable con-
clusions [33].) The PCG algorithms were implemented
in ANSI C [53] using single floating-point precision on a
DEC AlphaStation 600/5-333 workstation. However, to
computex∞, we implemented a grouped-coordinate as-
cent algorithm similar to that described in [50] in Mat-
lab using double precision. Several hundred iterations of
this algorithm were run, until the change in the estimates
reached the limiting precision. This provided a limiting
valuex∞ that, while of course not “exact,” is about 7 dig-
its of precision more accurate than the single precision val-
ues computed in C.

We investigated three choices for the objective func-
tion. The simplest was quadratically-penalizedun-
weightedleast squares (QPULS), whereW = I, giv-
ing equal weight to all ray measurements. In this case
we used the standard first-order 2D quadratic roughness
penalty withψk(t) = t2/2. As illustrated by the image of
x∞ shown in Fig. 2, QPULS is a poor choice of an ob-
jective function since it ignores the statistics. However,
this case has been extensively studied previously since the
Hessian ofΦ is approximately block-circulant. Therefore
we include it for comparison. Fig. 3 shows that the circu-
lant preconditioner (12) provides significant acceleration
for this nearly shift-invariant problem, as expected from
previous reports.

The second objective function was quadratically penal-
ized weightedleast squares (QPWLS), whereW is the
curvature term in the 2nd-order Taylor expansion of the
transmission log-likelihood [33, 51]. In this case we used
the modified penalty that provides more uniform spatial
resolution [30]. As illustrated in Fig. 2, the QPWLS ob-
jective function leads to a less noisy image, since ray mea-
surements with greater uncertainty are given lower weight.
However, this nonuniform weighting leads to significant
shift-variance. As illustrated in Fig. 4, for QPWLS the
standard circulant preconditioner performs very poorly.
However, the proposed combined diagonal/circulant pre-
conditioner (32) provides significant acceleration, with
negligible increase in computation time per iteration over
the circulant preconditioner.

The third objective function wasnonquadratically-
penalized weighted least squares (NPWLS). We used one
of the penalties proposed in [54] forψk:

ψ(t) = δ2 [ |t/δ| − log (1 + |t/δ|) ] , (35)

with δ = 0.004 cm. This function is approximately
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quadratic for|t| � δ, but is approximately linear for|t| �
δ, which provides a degree of edge preservation. We did
not use the modified penalty weighting of [30] here, since
its effect is currently unknown for nonquadratic penalties.
The nonquadratic penalty provides shift-variant smooth-
ing, which, as illustrated in Fig. 2, can lead to (somewhat)
improved image quality (particularly for nearly piecewise-
constant objects. The nonquadratic penalty leads to sig-
nificant additional shift-variance, so the circulant precon-
ditioner again performs very poorly, as shown in Fig. 5.
However, the proposed preconditionerM9 leads to signif-
icant improvement in convergence rate, with only a mod-
est increase in computation time per iteration (see Tables 1
and 2).

To implementM9 we usedm = 4 and η̃k =
{0.05, 0.2, 1., 2.} · β/κ̄2, whereκ̄2 = 1

p

∑p
j=1 κ

2
j . This

range reflects the fact thatβ/κ2 would be the effectiveη
in the shift-invariant case, and thatψ̈k(t) ≤ ψ̈k(0) so most
of the required values ofηj in (16) are smaller thanβ/κ2.
Increasingm gave negligible improvements, which is ex-
pected from Table I of [33]; increasingmmay makeM9 a
better approximation toH−15 , but that can only accelerate
convergence slightly sinceH5 is an imperfect approxima-
tion toH .

Table 1 summarizes the CPU time per iteration of the
PCG algorithm (as reported by the UNIXclock() func-
tion) for the various preconditioners and objective func-
tions for the data described above. The additional CPU
time needed for the proposed preconditioners over con-
ventional circulant preconditioning is modest (less than
15%). The resulting improvements in convergence rate
surpass the small increase in computation per iteration. A
more realistic system model would use a more dense ma-
trix G, which would further enhance the relative benefits
of the proposed preconditioners. Table 1 also shows the
required number of flops per iteration for this problem,
as reported by Matlab’sflops command. The precondi-
tioners require only a modest increase in computation per
iteration.

Table 2 summarizes how many iterations and what total
CPU time is required for the PCG algorithm to “converge”
for the various preconditioners and objective functions,
where we define convergence here by the iterates having
reached 99.9% of the asymptotic value of the objective
function, i.e.Φ(xn)−Φ(x0) ≥ 0.999 · [Φ(x∞)−Φ(x0)].
Table 2 clearly shows that even though the precondition-
ers require a slight increase in computation per iteration,
the reduced number of iterations that result will more than
compensate for this expense. Thus FFT-based precondi-
tioners are very practical and effective for tomographic

imaging problems.
We also compared the CG algorithm using the proposed

preconditioners to the coordinate-descent algorithms of
[5, 27]. As in [5], we found that coordinate-descent often
converged faster thanunpreconditionedCG [33]. How-
ever, we consistently found that the CG algorithmwith the
proposed preconditionersconverged significantly faster
than coordinate descent [33]. How a nonnegativity con-
straint would affect the results requires further evaluation.

VI. D ISCUSSION

We have described new conjugate-gradient precondi-
tioning methods for shift-variant imaging problems, and
have presented representative results that demonstrate that
the proposed preconditioners lead to significantly im-
proved convergence rates over previous diagonal and cir-
culant preconditioners for PET image reconstruction.

The development of the preconditioners used several
heuristics about the properties of the Hessian for image
reconstruction problems. Although the results show that
the methods work, the derivation is somewhat less theo-
retically satisfying than the optimality results known for
circulant preconditioners for Toeplitz problems [15–19].
Whether such results can be extended to the more compli-
cated structure of shift-variant problems remains an invit-
ing challenge.

Circulant-based methods are perhaps inherently poorly
suited to shift-variant problems. Our preconditioner par-
tially circumvents this drawback by essentially using sep-
arate Fourier transforms for each pixel (i.e. for each col-
umn of the Hessian), which is then simplified through
the interpolation approximation (29). A more direct ap-
proach might begin with bases that better accommodate
shift-variance, such as wavelets.

Although this paper focuses on image reconstruction,
the preconditioning methods are also useful for calculating
analytical metrics related to imaging system performance,
such as bias, variance, and spatial resolution [30, 52, 55].
Many of these calculations require iterative methods for
solving large-scale linear systems of equations involving
the Hessian of the objective function.

Although the preconditioner development was pre-
sented for 2D imaging, the entire argument also applies
to higher dimensions, such as 3D PET imaging, or “2.5D”
imaging, in which each image in a stack is imaged sepa-
rately but a 3D penalty is used during reconstruction to
provide regularization both within and between planes.
We expect these preconditioners will be particularly useful
for fully 3D PET [10]. The inherent shift-variance ofG′G
for such systems will add to the challenge. For 3D SPECT
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reconstruction, one may be able to form suitable precon-
ditioners by adapting linear methods such as in [56]. We
plan to investigate such methods in the near future.
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[37] J. J. Moré and G. Toraldo, “On the solution of large
quadratic programming problems with bound con-
straints,”SIAM J. Optim., vol. 1, no. 1, pp. 93–113,
Feb. 1991.

[38] M. Bierlaire, P. L. Toint, and D. Tuyttens, “On itera-
tive algorithms for linear least squares problems with
bound constraints,”Linear Algebra and its Applica-
tions, vol. 143, pp. 111–43, 1991.

[39] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling,Numerical recipes in C, Cambridge
Univ. Press, 1988.

[40] M. Al-Baali and R. Fletcher, “On the order of con-
vergence of preconditioned nonlinear conjugate gra-
dient methods,”SIAM J. Sci. Comp., vol. 17, no. 3, ,
May 1996.

[41] A. K. Jain, Fundamentals of digital image process-
ing, Prentice-Hall, New Jersey, 1989.

[42] P. J. Huber,Robust statistics, Wiley, New York,
1981.

[43] P. Charbonnier, L. Blanc-F´eraud, G. Aubert, and
M. Barlaud, “Two deterministic half-quadratic reg-
ularization algorithms for computed imaging,” in
Proc. IEEE Intl. Conf. on Image Processing, vol. 2,
pp. 168–171, 1994.



14 IEEE Transactions on Image Processing, 8(5):688-99, May 1999

[44] D. Geman and G. Reynolds, “Constrained restora-
tion and the recovery of discontinuities,”IEEE Tr.
Patt. Anal. Mach. Int., vol. 14, no. 3, pp. 367–383,
Mar. 1992.

[45] D. Geman and C. Yang, “Nonlinear image recov-
ery with half-quadratic regularization,”IEEE Tr. Im.
Proc., vol. 4, no. 7, pp. 932–46, July 1995.

[46] P. Charbonnier, L. Blanc-F´eraud, G. Aubert, and
M. Barlaud, “Deterministic edge-preserving regular-
ization in computed imaging,”IEEE Tr. Im. Proc.,
vol. 6, no. 2, , Feb. 1997.

[47] J. A. Fessler, “Grouped coordinate descent algo-
rithms for robust edge-preserving image restoration,”
in Proc. SPIE 3071, Im. Recon. and Restor. II, pp.
184–94, 1997.

[48] M. Yavuz and J. A. Fessler, “New statistical mod-
els for randoms-precorrected PET scans,” inInfor-
mation Processing in Medical Im., J. Duncan and
G. Gindi, editors, vol. 1230 ofLecture Notes in Com-
puter Science, pp. 190–203, Springer Verlag, Berlin,
1997.

[49] J. A. Fessler, “Resolution properties of regularized
image reconstruction methods,” Technical Report
297, Comm. and Sign. Proc. Lab., Dept. of EECS,
Univ. of Michigan, Ann Arbor, MI, 48109-2122,
Aug. 1995.

[50] J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and
K. Lange, “Grouped-coordinate ascent algorithms
for penalized-likelihood transmission image recon-
struction,”IEEE Tr. Med. Im., vol. 16, no. 2, pp. 166–
75, Apr. 1997.

[51] J. A. Fessler, “Hybrid Poisson/polynomial objec-
tive functions for tomographic image reconstruction
from transmission scans,”IEEE Tr. Im. Proc., vol. 4,
no. 10, pp. 1439–50, Oct. 1995.

[52] J. A. Fessler, “Mean and variance of implicitly de-
fined biased estimators (such as penalized maximum
likelihood): Applications to tomography,”IEEE Tr.
Im. Proc., vol. 5, no. 3, pp. 493–506, Mar. 1996.

[53] J. A. Fessler, “ASPIRE 3.0 user’s guide: A
sparse iterative reconstruction library,” Technical
Report 293, Comm. and Sign. Proc. Lab., Dept.
of EECS, Univ. of Michigan, Ann Arbor, MI,
48109-2122, July 1995. Available on WWW from
http://www.eecs.umich.edu/ ∼fessler .

[54] K. Lange, “Convergence of EM image reconstruc-
tion algorithms with Gibbs smoothing,”IEEE Tr.
Med. Im., vol. 9, no. 4, pp. 439–446, Dec. 1990. Cor-
rections, June 1991.

[55] A. O. Hero, M. Usman, A. C. Sauve, and J. A.
Fessler, “Recursive algorithms for computing the
Cramer-Rao bound,”IEEE Tr. Sig. Proc., vol. 45, no.
3, pp. 803–7, Mar. 1997.

[56] W. Xia, R. M. Lewitt, and P. R. Edholm, “Fourier
correction for spatially variant collimator blurring in
SPECT,”IEEE Tr. Med. Im., vol. 14, no. 1, pp. 100–
15, Mar. 1995.



Fessler and Booth: Preconditioned Tomographic Reconstruction 15

CPU Seconds| Mflops
M Per Iteration

QPULS QPWLS NPWLS

I 0.63 18.5 0.64 18.5 0.89 25.3
MD 0.63 18.5 0.64 18.5 0.92 25.3
MC 0.72 21.2 0.73 21.2 0.99 28.1
MCDC – – 0.73 21.2 – –
M9 – – – – 1.12 30.8

Table 1: CPU seconds and megaflops per PCG iteration
for the three objective functions, for the various precondi-
tioners. Each PCG iteration with the proposed precondi-
tioner requires 10% more flops and about 13% more CPU
time than with the conventional circulant preconditioner.

Total Iterations| Total CPU Time
M QPULS QPWLS NPWLS

I 6 5.1 15 11.3 15 14.6
MD 6 5.3 8 7.1 15 15.2
MC 2 2.9 9 8.3 22 23.2
MCDC – – 5 5.5 – –
M9 – – – – 7 9.7

Table 2: Number of iterations and total CPU seconds re-
quired for the PCG iterates to “converge,” as defined in
text. Although the proposed preconditioner slightly in-
creases computation per iteration, the reduced number of
iterations leads to significantly less overall computation.

Unpreconditioned Diagonal Precon.

Circulant Precon. Combined Precon.

Figure 1: Images of the preconditioned HessianMH for
an 8-by-8-pixel test image for a small tomographic imag-
ing problem. Preconditioners:I, MD, MC, MCDC.
The diagonal elements ofMCH range from .55 to 1.48,
whereas the diagonal elements ofMCDCH range from
.77 to 1.04. The eigenvalues ofMCDCH are also more
narrowly spread than forMCH, which leads to faster
convergence for the proposed preconditioner.
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FBP Reconstruction Support

QPULS QPWLS NPWLS

0.0/cm

0.13/cm

Figure 2: Grayscale images of the reconstructed FBP image, the reconstruction support (the set of pixels estimated),
and the images reconstructed using each of the three objective functions: QPULS, QPWLS, NPWLS.
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Figure 3: Normalizedl2 distance to solutionx∞ versus it-
erationn for the quadratically-penalizedunweightedleast
squares (QPULS) objective function. Shown is CG with
no preconditioning, with the diagonal preconditioner (8),
and with the circulant preconditioner (12). In the QPULS
case, the Hessian is nearly block-circulant, so the circulant
preconditioner provides remarkable acceleration.
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Figure 4: Normalizedl2 distance to solutionx∞ versus
iterationn for the quadratically-penalizedweightedleast
squares (QPWLS) objective function. Shown is CG with
no preconditioning, with the diagonal preconditioner (8),
with the circulant preconditioner (12), and with the com-
bined diagonal/circulant preconditioner (32). The new
preconditionerMCDC leads to significantly faster conver-
gence than the ordinary circulant preconditioner for this
shift-variant problem.
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Figure 5: Normalizedl2 distance to solutionx∞ versus
iteration n for the nonquadratically-penalized weighted
least squares (NPWLS) objective function. Shown is CG
with no preconditioning, with the diagonal preconditioner
(8), with the circulant preconditioner (12), and with the
proposedM 9 preconditioner (30). The proposed precon-
ditioner provides significant acceleration in convergence
rate over conventional preconditioners.


