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Abstract. The ordered subsets EM (OSEM) algorithm has enjoyed considerable interest for
emission image reconstruction due to its acceleration of the original EM algorithm and ease
of programming. The transmission EM reconstruction algorithm converges very slowly and
is not used in practice. In this paper, we introduce a simultaneous update algorithm called
separable paraboloidal surrogates (SPS) that converges much faster than the transmission EM
algorithm. Furthermore, unlike the “convex algorithm” for transmission tomography, the
proposed algorithm is monotonic even with nonzero background counts. We demonstrate that
the ordered subsets principle can also be applied to the new SPS algorithm for transmission
tomography to accelerate “convergence”, albeit with similar sacrifice of global convergence
properties as OSEM. We implemented and evaluated this ordered subsets transmission (OSTR)
algorithm. The results indicate that the OSTR algorithm speeds up the increase in the objective
function by roughly the number of subsets in the early iterates when compared to the ordinary
SPS algorithm. We compute mean square errors and segmentation errors for different methods
and show that OSTR is superior to OSEM applied to the logarithm of the transmission data.
However, penalized-likelihood reconstructions yield the best quality images among all other
methods tested.
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1. Introduction

Attenuation is an important factor that should be corrected for in emission computed
tomography. In modern PET and SPECT systems, transmission scans are performed in
addition to emission scans to correct for the effects of attenuation. Statistical methods can
be used to reconstruct attenuation maps, from which one can calculate attenuation correction
factors (ACFs) to yield quantitativelyaccurate emission images.

Many algorithms exist for maximum likelihood (ML) and penalized likelihood (PL)
transmission image reconstruction problems. Most of the recent ones (Sauer and Bouman
1993, Fessler, Ficaro, Clinthorne and Lange 1997) are based on direct maximization of
the objective function rather than on the famous expectation maximization (EM) algorithm
(Lange and Carson 1984) due to the fact that the EM algorithm for transmission reconstruction
converges very slowly (Ollinger 1994).

Recently, ordered subsets EM (OSEM) (Hudson and Larkin1994) for the emission
problem has been used extensively in emission image reconstruction, primarily because of
the following reasons.

• OSEM provides order-of-magnitude acceleration over EM in ML problems.

• The reconstructed images look good after only a few iterations.

• OSEM is implemented by slightly modifying the well-known EM algorithm.

• OSEM is easily implemented with any type of system model.

Although the images seem to look good, the resolution and variance properties of OSEM
are unclear. In addition it does not converge and may cycle. Due to its popularity, OSEM
has even been applied to transmission data after taking its logarithm. In the results section,
we show that this approach yields lower quality images than the ordered subsets transmission
(OSTR) algorithm that we introduce in this paper.

The ordered subsets principle can be applied to any algorithm which involves a sum over
sinogram indices. The sums over all the sinogram indices are replaced by sums over a subset
of the data and an ordered subsets version of the algorithm is obtained. However, it seems best
to apply this idea to algorithms which update the parameters simultaneously ateach iteration
rather than to sequential update algorithms. Simultaneous update algorithms take smaller
steps in the update direction than sequential update algorithms due to the requirement of a
separable surrogate function which has higher curvature than a nonseparable one. Sequential
update algorithms such as coordinate descent tend to update high frequencies faster (Sauer
and Bouman 1993). When only a subset of the data is used, as in ordered subsets, there is no
point in making high frequency details converge. For the algorithms that use only a portion
of the data at each iteration such as ART,underrelaxation along the update direction helps the
algorithm to converge (Browne and De Pierro 1996).

We introduce a new simultaneous update algorithm called separable paraboloidal
surrogates (SPS) algorithm in this paper. A paraboloidal surrogate (Erdoˇgan and Fessler
1998b) is a quadratic function that is designed to lie above the negative log-likelihood.
Using convexity (Fessler et al. 1997), we get a separable quadratic function that lies above
this paraboloid. Another separable surrogate can be obtained for the penalty part by using
De Pierro’s methods (De Pierro 1993, De Pierro 1995). The global separable surrogate
function can be minimized by a simple simultaneous update.

The SPS algorithm has three advantages as compared to previous simultaneous update
algorithms such as transmission EM algorithm (Lange and Carson 1984) and Lange’s Convex
algorithm (Lange and Fessler 1995) : 1) It requires much less flops per iteration than the
transmission EM algorithm and is comparable to the Convex algorithm, 2) SPS is derived for
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the PL problem which is a more general form than the ML problem, 3) SPS is guaranteed to
be monotonic, even with nonzero background events.

The ordered subsets principle has been applied to other transmission ML algorithms.
Mangloset al (Manglos, Gagne, Krol, Thomas and Narayanaswamy 1995) applied the
ordered subsets idea to the transmission EM method for ML problem. Although ordered
subsets accelerates the original transmission EM algorithm, it still converges slowly. Nuytset
al (Nuyts, Man, Dupont, Defrise, Suetens and Mortelmans 1998) tested an ordered subsets
version of an approximate simultaneous update algorithm they developed. Their algorithm
disregards background counts (such as random coincidences in PET) and the convergence
properties are unknown. Kamphuis and Beekman (Kamphuis and Beekman 1998) applied the
ordered subsets principle to Lange’s Convex algorithm to accelerate ML transmission image
reconstruction, also ignoring the background counts.

In this paper, we apply the ordered subsets principle to the SPS algorithm for both ML
and PL transmission tomography problems. We show that ordered subsets accelerates the
initial speed of the original SPS algorithm. However, OSTR is not guaranteed to be monotonic
and does not converge to the true optimum for number of subsets greater than one. Browne
and Depierro (Browne and De Pierro 1996) developed a new algorithm called RAMLA which
is similar to OSEM with a relaxation parameter incorporated to the algorithm. For a certain
class of relaxation parameters, they prove that RAMLA converges to the true ML solution for
emission tomography. It might be possible to obtain a convergent version of OSTR by similar
means. However, our results show that, even without relaxation, the PL images reconstructed
with OSTR are very similar to the ones obtained by convergent algorithms.

In the rest of the paper, we first introduce the problem and the OSTR algorithm
for general penalized-likelihood (PL) objective. Then, we present results on real PET
transmission data with ML and PL reconstructions. We analyze the algorithms in terms of
their mean squared error. We also perform hard segmentation on the reconstructed images to
analyze their tissue classification performance.

2. The Problem

For transmission scans, it is realistic to assume the following statistical model if the raw
(prompt) measurements{yi} are available:

yi ∼ Poisson{bie
−[Aµ]i + ri}, i = 1, . . . , N, (1)

whereN is the number of measured rays,µj is the average linear attenuation coefficient
in voxel j for j = 1, . . . , p, andp denotes the number of voxels. The notation[Aµ]i =∑p
j=1 aijµj represents the line integral of the attenuation mapµ, andA = {aij} is theN×p

system matrix. We assume that{bi}, {ri} and{aij} are known nonnegative constants, where
ri is the mean number of background events,bi is the blank scan count andyi represents the
number of coincident transmission events counted by theith detector pair. Although we adopt
PET terminology throughout, the algorithm is also applicable to SPECT and X-ray CT.

For most PET systems, the delayed coincidences are pre-subtracted from true (prompt)
coincidences by the device hardware in an attempt to remove the background counts. The
subtracted data is no longer Poisson (Fessler 1994, Yavuz and Fessler 1997), but a difference
of two Poisson random variables:

ysi ∼ Poisson{bie−[Aµ]i + ri} − Poisson{ri}. (2)

In this case, the model (1) is not accurate. Yavuz and Fessler (Yavuz and Fessler1997) showed
that an accurate model is achieved by adding a sinogram which is a good estimate of twice the
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mean background events (ri’s) to the subtracted data and assuming that this resultant random
vector has the distribution:

ysi + 2ri ∼ Poisson{bie
−[Aµ]i + 2ri}, i = 1, . . . , N.

This “Shifted Poisson” model matches the mean and variance of the data and yields more
accurate images than the PWLS method (Yavuz and Fessler1997). For the rest of the paper,
we focus on the model (1). However extension to the Shifted Poisson model can easily be
done by replacingyi by ysi + 2ri andri by 2ri.

The negative log-likelihood function for the independent transmission data is:

−L(µ) =
N∑
i=1

hi([Aµ]i), (3)

wherehi(l) = bie
−l + ri − yi log (bie

−l + ri), ignoring the constant terms. Directly
minimizing−L(µ) (ML method) results in a very noisy estimatêµ. Segmentation of the
attenuation map is commonly performed to reduce noise afterwards. Penalized-likelihood
(PL) (or MAP) methods regularize the problem and reduce the noise by adding a roughness
penalty to the objective function as follows:

µ̂ = argmin
µ≥0

Φ(µ), Φ(µ) = −L(µ) + βR(µ).

For simplicity we focus here on a roughness penaltyR of this form:

R(µ) =
1

2

p∑
j=1

∑
k∈Nj

wjkψ(µj − µk),

whereNj represents a neighborhood of voxelj, ψ is a symmetric and convex function that
penalizes neighboring pixel differences. The method easily generalizes to other forms of
penalty functions.

In the following discussion, we use the PL formulation to derive the new algorithm.
Settingβ = 0 in the following discussion yields the ML estimator.

3. The SPS Algorithm

In this section, we describe a new simultaneous update algorithm called separable
paraboloidal surrogates (SPS) algorithm.

3.1. The Likelihood Part

3.1.1. Nonseparable Paraboloidal SurrogateWe presented the paraboloidal surrogates
algorithm for transmission tomography previously (Erdoˇgan and Fessler 1998b, Erdoˇgan and
Fessler 1998a). We first find a one-dimensional surrogate parabolaqi(l; l

n
i ) that is tangent

to the marginal negative log-likelihood functionhi(l) at the current iteratelni = [Aµ
n]i and

lies above it for alll > 0. Then, we sum up these parabolas like (3) to obtain an overall
(nonseparable) paraboloidal surrogate function for the negative log-likelihood as follows:

Q1(µ;µ
n)
4
=

N∑
i=1

qi([Aµ]i ; l
n
i ) ≥ −L(µ), ∀µ ≥ 0,

where

qi(l; l
n
i )
4
= hi(l

n
i ) + ḣi(l

n
i )(l − l

n
i ) +

1

2
ci(l

n
i )(l− l

n
i )
2.
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The optimum curvature that provides the fastest convergence rate while preserving
monotonicity was shown to be (Erdoˇgan and Fessler 1998b)

ci(l
n
i ) =




[
2
hi(0)− hi(l

n
i ) + ḣi(l

n
i )(l

n
i )

(lni )
2

]
+

, lni > 0[
ḧi(0)

]
+
, lni = 0

=




[
(2/(lni )

2)

{
bi(1 − e−l

n
i ) − yi log

bi + ri
ȳni

+ lni bie
−lni

(
yi

ȳni
− 1

)}]
+

, lni > 0[
bi

(
1−

yiri
(bi + ri)2

)]
+

, lni = 0
,(4)

where ȳni = bie
−lni + ri. This surrogate functionQ1(µ;µn) and eachqi(l; lni ) are

naturally convex. Previously, we used coordinate descent to minimize this function
(Erdoǧan and Fessler 1998b). That approach leads to a very fast and monotonic algorithm.
However, the computational advantages only exist if the system matrix is precomputed and
column accessible (Fessler1992). For implementations in which the system matrix is not
precomputed (e.g. software that uses projector/backprojector subroutines which compute
theaij on the fly), algorithms that update all the parameters simultaneously are preferable
since column access to the system matrix is not needed. Moreover, simultaneousupdate
algorithms parallelize more readily than sequential updates. A simultaneous update algorithm
can be obtained from the above paraboloidal surrogate by finding another separable surrogate
function that lies above it for all possible feasible parameter valuesµ. The additive
separability of the surrogate

the optimization problem for each parameter, so each parameterµj can be updated
independently from the others. To obtain this separable function we use the convexity tricks
employed in (De Pierro 1993, De Pierro 1995).

3.1.2. Separable SurrogateLange (Lange and Fessler 1995) applied De Pierro’s ideas
(De Pierro 1993, De Pierro 1995) to transmission tomography to get a separable function
that is tangent to the negative log-likelihood and lies above it everywhere when it is convex.
It can be based on rewriting the sum

[Aµ]i =

p∑
j=1

aijµj =

p∑
j=1

αij

{
aij
αij
(µj − µ

n
j ) + [Aµ

n]i

}
, (5)

where
p∑
j=1

αij = 1, ∀i andαij ≥ 0. (6)

Using the convexity ofqi, we can show that:

qi([Aµ]i ; l
n
i ) ≤

p∑
j=1

αijqi

(
aij

αij
(µj − µ

n
j ) + [Aµ

n]i ; l
n
i

)
. (7)

The form of the right hand side of (7) ensures that the function value and gradient of the left
hand side are equal to those of the right hand side at the current iterateµ = µn. In other words
the curves are tangent at the current iterate. One possible choice forαij that has been used in
(De Pierro 1993, Lange and Fessler 1995) is:

αij =
aijµ

n
j

[Aµn]i
. (8)
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We call this choice ofαij’s as “multiplicative” form. Using the inequality (7) with theseαij ’s,
we get a separable surrogate function forQ1(µ;µ

n) as follows:

QM2 (µ;µ
n) =

N∑
i=1

p∑
j=1

αijqi

(
[Aµn]i µj

µnj
; lni

)
.

This is the separable surrogate obtained using the “multiplicative” form (8), hence we useM
in the superscript.

Another possible set ofαij ’s is given in (Fessler et al. 1997):

αij =
aij
γi
,

whereγi =
∑p

k=1 aik is the projection of an image of all ones. We call this choice the
“additive” form, which results in a separable surrogate as follows:

Q2(µ;µ
n) =

N∑
i=1

p∑
j=1

aij
γi
qi
(
γi(µj − µ

n
j ) + [Aµ

n]i ; l
n
i

)
.

The functionQ2(µ;µn) is separable inj and quadratic, so that the exact minimization is
reduced to minimization ofp 1D parabolas each of which depend on one pixel valueµj only.

The separable surrogate obtained from the multiplicative form has some problems with
convergence speed due to the fact that the curvature is inversely proportional to the current
iterate valueµnj :

∂2

∂2µj
QM2 (µ

n
j ;µ

n
j ) =

1

µnj

N∑
i=1

aij [Aµ
n]i ci(l

n
i ).

The surrogate parabola becomes infinitely thinner whenµnj gets close to zero and slows down
the convergence for zero regions in the image. The convergence rates of the two algorithms
based on multiplicative and additive forms (PL problem with optimum curvature (4)) are
shown in Figure 1. This figure reveals that the additive form yields a faster algorithm than the
multiplicative form does. Hence, we focus on the additive form for the rest of the paper.

3.2. The Penalty Part

Section 3.1 derived separable surrogate functions for the log-likelihood function. A similar
separable surrogate is needed for the penalty partR(µ) to obtain a simultaneous update for
the PL objective function. We exploit the convexity of the potential functionψ(t) to obtain the
surrogate. For completeness, we repeat the arguments in (De Pierro 1995, Lange and Fessler
1995):

ψ(µj − µk) = ψ

(
1

2

[
2µj − µ

n
j − µ

n
k

]
+
1

2

[
−2µk + µ

n
j + µ

n
k

])

≤ ψ̂jk(µ;µ
n)
4
=
1

2
ψ(2µj − µ

n
j − µ

n
k)

+
1

2
ψ(2µk − µ

n
j − µ

n
k) (9)

Using this inequality, one gets the following separable surrogate function for the penalty:

S(µ;µn)
4
=
1

2

p∑
j=1

∑
k∈Nj

wjkψ̂jk(µ;µ
n) ≥ R(µ), ∀µ ∈ IR (10)
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One can verify that this surrogate function is tangent toR(µ) at the current iterate and lies
above it for allµ values. Furthermore, the curvature of the surrogate at the current iterateµn

is exactly twice the curvature of the original penalty function.

3.3. The SPS Algorithm

We designed separable surrogate functions for both the likelihood and the penalty parts in the
preceding sections. By combining those, we define the global surrogate function

φ(µ;µn)
4
= Q2(µ;µ

n) + βS(µ;µn)

which satisfiesφ(µ;µn) ≥ −L(µ) + βR(µ) = Φ(µ), ∀µ ≥ 0, and is tangent toΦ(µ) at
current iterateµn, i.e.

Φ(µn) = φ(µn;µn), ∇Φ(µn) = ∇φ(µn).

We minimize (or decrease) the functionφ(µ;µn) at each iteration and repeat the procedure
iteratively,

µn+1 = argmin
µ≥0

φ(µ;µn).

We call this algorithm separable paraboloidal surrogates (SPS) algorithm. One can show
(Erdoǧan and Fessler 1998b) that decreasing the surrogate functionφ(µ;µn) also decreases
the original objective functionΦ(µ). Hence, this algorithm is intrinsically monotonic. The
minimization of φ(µ;µn) is easy. Due to the additive separability, the update foreach
parameter only involves the parameter itself andµn. When a quadratic penalty is used,i.e.
ψ(t) = t2/2 and the nonnegativityconstraint is ignored, the maximization can be done exactly
in a single step via Newton’s algorithm as follows:

µn+1 = µn −D−1∇′Φ(µn) (11)

where∇′Φ(µn) is the column gradient ofΦ at µn andD is a p × p diagonal matrix with
diagonal entries

Djj = d
n
j + 2β

∑
k

wjk, for j = 1 . . . p.

The factor2 in the denominator comes from the curvature of the separable surrogateS(µ;µn)
in (10). The denominator termsdnj are:

dnj =

N∑
i=1

aijγici(l
n
i ). (12)

For transmission tomography, it is advantageous to use edge-preserving nonquadratic
penalties, such as (Lange 1990):

ψ(t) = δ2 [|t/δ| − log(1 + |t/δ|)] , (13)

whereδ > 0 is predetermined. We used this penalty in our PL reconstruction results.
In the nonquadratic penalty case, exact minimization ofφ(µ;µn) is not easy, but one

can monotonically decrease the surrogate objective by doing one or more of the following
Newton-Raphson type subiteration(s):

µ̂j :=


µ̂j − ∂

∂µj
φ(µ̂;µn)

dnj + 2β
∑
k∈Nj

wjkωψ(µ̂j − µnk )



+

, (14)
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whereωψ(t) = ψ̇(t)/t. The detailed explanation of theωψ(t) function can be found in
(Erdoǧan and Fessler 1998b, Fessler 1997). The partial derivative of the surrogateφ with
respect toµj can be found as:

∂

∂µj
φ(µ̂;µn) =

N∑
i=1

aijḣi(l
n
i )+d

n
j (µ̂j−µ

n
j )+β

∑
k∈Nj

wjkψ̇(µ̂j−µ
n
k ),(15)

whereḣi(l) =

(
yi

bie−l + ri
− 1

)
bie
−l.

Next, we apply the ordered subsets idea to the simultaneous update algorithm developed
above.

3.4. Ordered Subsets

The ordered subsets principle can be used with any algorithm that involves sums over
sinogram indices. The SPS algorithm (14) contains sums over sinogram indices in computing
the denominatordnj terms (12) and the gradient terms∂∂µj φ (15). We apply the ordered subsets
idea to this algorithm.

Ordered subsets methods group projection data into an ordered sequence of subsets
or blocks and processes each block at once. These blocks are usually chosen so that the
projections within one block correspond to projections of the image with downsampled
projection angles. It was reported (Hudson and Larkin 1994) that it is best to order the subsets
such that the projections corresponding to angles with maximum angular distance from
previously used angles are chosen at each step. This accelerates convergence as compared to
random or sequential ordering of the subsets. This is due to the fact that the rows of the system
matrix corresponding to subsets are chosen to be as orthogonal as possible to previously used
subsets.

LetM be the number of subsets chosen in the projection domain. LetS1, . . . , SM denote
the subsets in the order selected. At stepm the following objective function corresponding to
the subsetSm should be minimized (or decreased):

Φm(µ) =M

{∑
i∈Sm

hi([Aµ]i)

}
+ βR(µ). (16)

The scaling of the negative log-likelihood function ensures that effectiveβ value is
independent of the number of subsets. Note that the original objective function can be written
in terms of the objective functions (16) as follows:

Φ(µ) =

M∑
m=1

1

M
Φm(µ). (17)

The success of the ordered subsets methods depends on the following approximation:

Φ(µ) ≈ Φm(µ), (18)

which should be reasonable if the subsets are chosen by subsampling the projection angles.
One iteration is completed when the algorithm cycles through all the projections by using

all the subsets. An update performed using a single subset is called a subiteration. The
modification of the SPS algorithm to incorporate ordered subsets idea is relatively easy. We
call the resulting algorithm ordered subsets transmission (OSTR) algorithm. The algorithm
outline is shown in Table 1.
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Precomputedj if possible
for each iterationn = 1, . . . ,niter

for each subset m=1,. . . ,M

l̂i =

p∑
j=1

aijµ̂j , ḣi =

(
yi

bie−l̂i + ri
− 1

)
bie
−l̂i , ∀i ∈ Sm (19)

µold = µ̂

for j = 1, . . . , p

L̇j =M
∑
i∈Sm

aij ḣi (20)

dj = M
∑
i∈Sm

aijγici(l̂i) (21)

µ̂j :=

[
µ̂j −

L̇j + β
∑

k
wjkψ̇(µ̂j − µ

old
k )

dj + 2β
∑

k
wjkωψ(µ̂j − µoldk )

]
+

(22)

end
end

end

Table 1. OSTR algorithm outline

The form of the update (22) requires the gradient and curvature associated with the
penalty term to be computed for each subset. Although the contribution of that computation is
only about4− 5% in SPS, it might be costly for a large number of subsets since it is repeated
for each subset. Other approaches might be possible such as to consider the penalty function
as one of the subsets and update it separately at the end ofeach cycle (De Pierro and Yamagishi
1998). It might also be possible to break down the penalty term similar to the likelihood part
to reduce computation at each iteration. The choice we made in this paper follows naturally
from the approximation (16) of the PL objective function. Further investigation is required to
reduce this computation.

The OSTR algorithm reduces to the SPS algorithm (14) whenM = 1. Since the
projections and backprojections are performed for only the elements of a single block,
processing of each block in an OSTR algorithm withM subsets (OSTR-M ) roughly takes
1/M of time that it would take for one iteration of the SPS algorithm for the ML problem. For
PL problem, actually it would take more than1/M of the time since the CPU time required
for computing the gradient and curvatures of the penalty surrogate at each full iteration is
multiplied by the number of subsets. Yet, one hopes that processing of one block increases
the objective function as much as one iteration of the original algorithm. That is, the objective
increase forM iterations of OSTR-1 should be close to that increase for one full iteration of
OSTR-M . This intuition is verified in the initial iterations and for up to a reasonable number
of subsets in the results section.
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3.5. Precomputed Denominator OSTR

We obtained the OSTR algorithm above from a monotonic simultaneous update algorithm.
However, the monotonicity is destroyed by doing ordered subsets iterations. So, the algorithm
is monotonic only when one subset is used which is equivalent to SPS.

Since the monotonicity is destroyed at the end anyway, we can remove the condition that
the surrogate paraboloidQ1(µ;µn) lie above the original objective function and obtain a yet
faster algorithm (Erdoˇgan and Fessler 1998b). Our aim is to precompute the denominator
termsdnj before iterating and save computation by not updating them. This “precomputed
curvature” idea was introduced in (Fessler et al. 1997, Erdoˇgan and Fessler 1998b) for
algorithms that used all the data at once unlike the OS algorithms. We can generalize this
idea to ordered subsets easily. First, we notice that we can replace the curvatureci(l

n
i ) terms

with the Newton curvatures̈hi(lni ) in (21) and obtain a new algorithm which is no longer
guaranteed to be monotonic (even for single subset). We notice that the second derivative
of hi does not change very rapidly and the projections remain very close to the values

l∗i
4
= log

(
bi

yi − ri

)
during the iterations (which is actually the minimum forhi(l) over l).

So, as a second approximation, we replaceḧi(l
n
i ) with ḧi(l∗i ) ‡. The third approximation is

to replaceM times the sum of the curvaturesḧi(l∗i ) over the subsetSm in (21) with the sum
over all sinogram indices{1, . . . , N}. This is an accurate approximation if the projectionsl∗i
vary slowly with respect to the projection angle and each subset is chosen by subsampling the
projection angles. So, we can precompute and fix the denominator termsdnj by:

dnj =M
∑
i∈Sm

aijγiḧi(l
n
i )

≈ d∗j
4
=

N∑
i=1

aijγiḧi

(
log

(
bi

yi − ri

))
=

N∑
i=1

aijγi
(yi − ri)2

yi
. (23)

This approximation further reduces CPU time. The minimization step is similar to (14) but
the gradient terms in (20) are computed using just a subset of the data. We also found
that doing more than one subiteration (14) does not improve “convergence” and costs a lot
computationally in the ordered subsets case. So, we only perform one subiteration to improve
“convergence” and CPU time.

The algorithm looks very simple for the ML problem. The updates are done as follows
in ML reconstruction using the fast precomputed denominator:

Precompute and store:d∗j =
∑N

i=1 aijγi(yi − ri)
2/yi, whereγi =

∑
j aij

for each subset Compute:l̂i, ḣi as in (19) in Table 1
Update:

µj :=

[
µj −

M
∑

i∈Sm
aijḣi

d∗j

]
+

. (24)

end
This ML-OSTR algorithm is very easy to implement using any kind of system matrix.
Precomputed denominator is applicable to PL problem as well. Figure 1 shows that PL-OSTR

‡ l∗i can only be evaluated whenyi > ri. Otherwise,hi(l) is a convex function which is monotonically decreasing

asl→∞. Whenri ≥ yi , liml→∞ ḧi(l) = 0, so we replacëhi(l∗i ) with zero or a very small number in that case.
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with precomputed denominators converge faster than PL-OSTR with optimum curvature. We
used this precomputed denominator approach for the results presented next.

4. Phantom Data Results

We acquired a 15-hour blank scan (bi’s) and a 12-min transmission scan data (yi’s) using
a Siemens/CTI ECAT EXACT 921 PET scanner with rotating rod sources for transmission
scans. The phantom used was an anthropomorphic thorax phantom (Data Spectrum, Chapel
Hill, NC). Delayed coincidence sinograms were collected separately ineach scan. The
blank and transmission scan delayed-coincidence sinograms were shown to be numerically
close (Yavuz and Fessler 1997), so we used a time-scaled version of blank scan delayed
coincidences as theri factors with no other processing. The projection space was 160 radial
bins and 192 angles, and the reconstructed images were128 × 128 with 4.2 mm pixels.
The system matrixaij was computed by using 3.375 mm wide strip integrals with 3.375
mm spacing, which roughly approximates the system geometry.

4.1. Reconstructions

The attenuation map was reconstructed for both ML and PL methods using OSTR algorithm
with 1, 2, 4, 8, 16 and 32 subsets. In all the reconstructions, precomputed denominator (23)
was used. Figure 2 shows objective function decrease for the ML reconstructions initialized
with a uniform image. The order-of-magnitude acceleration can be seen by the horizontal
dashed lines in this plot for initial iterations. One iteration of ML-OSTR-16 decreases the
objective almost as much as 16 iterations of ML-OSTR-1 and 4 iterations of ML-OSTR-4
for initial iterations. Although, whenM > 1, the algorithm does not converge to the true
ML solution, in practice one would only do a few iterations using ML-OSTR-M . In the ML
problem, exact maximization is not desired since the ML image is extremely noisy.

Figure 3 shows objective function decrease versus iterations for PL reconstructions
(β = 210 and nonquadratic Lange’s penalty (13)). The iterations are initialized with an
FBP image. There is a speed-up in using more subsets, but as the number of subsets
increase, the order-of-magnitude acceleration does not hold. For example, one iteration of
PL-OSTR-16 decreases the objective more than one iteration of PL-OSTR-32 (not shown).
So, more than 16 subsets did not seem to improve “convergence” for this configuration
and data. For comparison, the image is also reconstructed with the optimum curvature
paraboloidal surrogates coordinate descent (PL-PSCD) method which is a fast monotonic
algorithm (Erdoǧan and Fessler 1998b). The CPU times for one iteration of PL-PSCD and
one iteration of PL-OSTR-1 are similar. It is clearly seen that PL-OSTR-M algorithms do not
converge to the true minimum whenM > 1. To assure convergence, one could sequentially
decrease the number of subsets with each iteration.

4.2. Mean Squared and Segmentation Errors

The reconstructions were done using real data. We wished to find mean squared errors and
segmentation errors on the reconstructed images. The true image of course was unknown.
We acquired a long 14 hour scan of the thorax phantom which was almost noise free. We
reconstructed the data with FBP with a sharp filter. Then, we performed a 4 level hard
thresholding segmentation on this image with attenuation map parameters assumed to be
average standard attenuation map values for air, soft tissue, lungs and bone. We obtained
regions for each attenuation level. Then, we eroded these regions with a 5x5 window to get
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more conservative estimates of the regions and calculated the average value of the FBP image
in these regions. These new values were assumed to be the true attenuation coefficient levels
for the image (air = 0, lungs = 0.035, soft tissue (water) = 0.093, bone (teflon) = 0.164 cm−1).
Then, the FBP image was segmented by thresholding using new levels to obtain the “true”
phantom image shown in Figure 4.

We computed normalized mean squared errors (NMSE) for each reconstruction method
by comparing to the true phantom image in Figure 4. The reconstructed images were
also hard-segmented with the thresholds found above and we evaluated their segmentation
performance by counting the number of misclassified pixels.

We also applied the emission ML-OSEM algorithm to the logarithm of the transmission
data− log{(yi − ri)/bi}. Although there is no theoretical basis for this approach, it has
nevertheless been used by many groups. Our results show that this approach is inferior to the
ML-OSTR method and that it should be avoided.

Figure 5 shows NMSE versus iterations for ML-OSTR, ML-OSEM, PL-OSTR and PL-
PSCD methods. Figure 6 shows the percentage of segmentation errors versus iterations for
the same methods. These results show that ML-OSTR algorithms get noisy after a certain
number of iterations and that the iterations should be stopped before convergence. For this
transmission scan, the ML-OSTR-16 algorithm should be stopped at the third iteration for
lowest NMSE. ML-OSEM applied to the logarithm of the transmission data is inferior in
quality to all other methods we tried, regardless of number of subsets. PL reconstructions have
better quality than ML reconstructions in terms of both lower mean squared errors and lower
segmentation errors. Although PL-OSTR-16 algorithm does not converge to the minimum of
Φ in Figure 3, remarkably it appears to be comparable to the convergent PL-PSCD algorithm
in terms of NMSE and segmentation performance. In fact, the normalized mean squared
difference between images reconstructed by PL-PSCD and PL-OSTR-16 is less than 0.015%
at iteration 30 of each algorithm.

Figure 7 shows reconstructed images and their segmentations for FBP, ML-OSTR, ML-
OSEM, PL-OSTR and PL-PSCD methods. Each image is the best among their kind. For
example, to obtain the FBP image, we performed 20 different FBPs with Hanning windows
with different cutoff frequencies and picked the one with lowest NMSE. ML-OSTR image
is obtained by 16 subsets at 3 iterations. ML-OSEM image is obtained by 8 subsets at 2
iterations. PL images are the images at10th iterations of their corresponding algorithms. The
bars show the levels of NMSE and segmentation errors. We conclude that PL reconstruction
images are much better than the images obtained using other methods.

5. Patient Data Results

We applied the new OSTR algorithm to patient transmission and FDG emission data
obtained from ECAT EXACT 921 scanner. We reconstructed emission images using ACFs
obtained from the transmission scan. ACFs were computed using two different methods: 1)
conventional (or FBP reconstructed and reprojected) and 2) Nonquadratic penalty PL-OSTR-
16 reconstructions with precomputed denominators and 5 iterations. Attenuation maps were
both post-smoothed axially with the same Gaussian shaped filter with 5 mm FWHM to reduce
noise. Emission reconstructions were done with 1) FBP and 2) Quadratic penalty PL-SAGE
(Fessler and Hero 1994). The resolutions of the emission images were matched at 6.6 mm
FWHM.

There was only a 12 minute transmission scan data available. The transmission randoms
were pre-subtracted, so we used the shifted Poisson model (2) for the data. The randoms
were assumed uniform and the percentage of randoms were estimated from total delayed
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counts which was available in the file header. To obtain the 2 minute transmission data, we
thinned the 12 minute transmission dataysi + 2ri by generating binomial random variables
with parametersn = max{0, ysi + 2ri} andp = 2/12. Here,n is an approximately Poisson
random variable with mean̄n. This binomial thinning approach yields a new (approximately)
Poisson random variable with a reduced mean ofpn̄. The 2 minute scan randoms level was
adjusted to 2 minutes as well. We also used shifted Poisson model and uniform randoms
estimate for the emission data. Scatter and deadtime effects were ignored.

In Figure 8, we show two emission reconstructions in the top row with ACFs obtained
from 12 minute transmission scan. The image obtained from statistical method shows some
improvement in the image quality over the conventional method. The bottom four images
are emission images obtained from different combinations of image reconstruction methods
with a 2 minute transmission scan. With the 2 minute transmission scan, the improvements
in image quality are more apparent for the statistical method as compared to the conventional
method as shown in Figure 8. These images show that statistical image reconstruction
in transmission scans is more important than that in emission scans especially for short
transmission scan times.

6. Conclusion

We introduced a new ordered subsets algorithm for ML and PL image reconstruction in
transmission tomography. Although the algorithm does not converge for number of subsets
greater than one, it seems to rapidly decrease the objective function value in the early
iterations. The images reconstructed from real PET data with ML method are worse in quality
than images reconstructed with PL method. However, ML-OSTR is superior to ML-OSEM
applied to the logarithm of transmission data for this particular data. The new algorithm is
easy to implement with any type of system model and does not require column access to the
system matrix unlike sequential update algorithms such as coordinate descent. It is also easily
parallelizable.

Kudoet al (Kudo, Nakazawa and Saito 1999) claim that for a general convex objective
function, it is possible to obtain convergent ordered subsets algorithms by using appropriate
relaxation schemes. The general form in (Kudo et al. 1999) includes OSTR algorithm as
a special case. So it might be possible to obtain convergent algorithms by incorporating a
relaxation parameter to the OSTR algorithm.

We conclude that if an approximate minimum is acceptable due to practical time and
programming constraints, then the OSTR algorithm offers faster convergence than prior
methods. However, for guaranteed global convergence to the minimum, other methods must
be used, such as (Erdoˇgan and Fessler 1998b).
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Figure 8. FBP (denoted E-FBP) and quadratically penalized PL (denoted E-PL) emission
image reconstructionswith attenuation correction factors obtained using conventional (denoted
T-FBP) and nonquadratic penalty PL (denoted T-PL) attenuation map reconstructions using
OSTR algorithm. The top row shows emission images obtained using ACFs from a 12 minute
transmission scan. The bottom two rows show emission images reconstructed using the ACFs
obtained from a 2 minute transmission scan.


