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Abstract
Positron emission tomography (PET) measurements are usually precorrected for accidental
coincidence events by real-time subtraction of the delayed-window coincidences. Randoms
subtraction compensates on average for accidental coincidences but destroys the Poisson
statistics. We propose and analyze two new approximations to the exact log-likelihood of the
precorrected measurements, one based on a ‘shifted Poisson’ model, the other based on saddle-
point approximations to the measurement of probability mass function (PMF). The methods
apply to both emission and transmission tomography; however, in this paper we focus on
transmission tomography. We compare the new models to conventional data-weighted least-
squares (WLS) and conventional maximum-likelihood methods [based on the ordinary Poisson
(OP) model] using simulations and analytic approximations. The results demonstrate that the
proposed methods avoid the systematic bias of the WLS method, and lead to significantly
lower variance than the conventional OP method. The saddle-point method provides a more
accurate approximation to the exact log-likelihood than the WLS, OP and shifted Poisson
alternatives. However, the simpler shifted Poisson method yielded comparable bias-variance
performance to the saddle-point method in the simulations. The new methods offer improved
image reconstruction in PET through more realistic statistical modeling, yet with negligible
increase in computation time over the conventional OP method.
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1. INTRODUCTION

In PET measurements, accidental coincidence (AC) events
are a primary source of background noise. AC events
occur when photons that arise from separate annihilations
are mistakenly registered as having arisen from the same
annihilation. In transmission scans the photons that originate
from different transmission sources (rod or sector sources
rotating around the patient) cause AC events. The ratio of to-
tal AC events to ‘true’ events is usually small in transmission
scans compared to emission scans. Nevertheless, the effect
of AC events becomes severe for regions of high attenuation
coefficients, because projections through such regions result
in low true coincidence rates. These low count rates can
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become comparable to AC rates. Thus estimates of the AC
events are needed. One can use the ‘singles’ method (Casey
and Hoffman, 1986) for this purpose, however this approach
is not used widely because of the necessity for additional
hardware, and moreover usually singles rates vary during
data acquisition (Ollinger and Fessler, 1997). Therefore, in
most PET scans, the AC rates are estimated using delayed-
window coincidences and the data are precorrected for AC
events by real-time subtraction. Real-time subtraction of
delayed-window coincidences compensates on average for
AC events, but destroys the Poisson statistics (Hoffmanet
al., 1981). To avoid this problem, one needs to maintain
the transmission and randoms measurements as two separate
sinograms (Politte and Snyder, 1991; Mumcuoǧlu et al.,
1996). However even if a PET system allows one to collect
a randoms (delayed coincidences) sinogram separately, this
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process would double the storage space for the acquired
data. So in practice most PET centers collect and archive
only the randoms-precorrected data. We recommend separate
acquisition and storage of delayed coincidences wherever
feasible. The purpose of this paper is to provide accurate
statistical methods for PET measurements with presubtracted
delayed coincidences. Although our analysis and proposed
models apply to both emission and transmission tomography,
in this paper we focus on transmission tomography.

The exact log-likelihood for randoms-precorrected data is
intractable, so we describe and compare several approxima-
tions. For completeness, we first review the data-weighted
least-squares (WLS) method and the log-likelihood for the
ordinary Poisson (OP) model for PET measurements. Then,
we introduce a new ‘shifted’ Poisson (SP) model (Yavuz and
Fessler, 1996) which matches both the first- and second-
order moments of the model to the underlying statistics
of the precorrected data. We derive approximate analytic
expressions for the variance of the different estimators and
use the Cauchy–Schwarz inequality to show analytically that
the proposed SP method yields lower variance than the OP
method.

Secondly, we introduce a new saddle-point (SD) approx-
imation for the probability mass function (PMF) of pre-
corrected measurements. The corresponding log-likelihood
function is shown to have better agreement with the exact
log-likelihood than the previous approximations. We apply
the fast grouped-coordinate ascent algorithm (Fessleret al.,
1997) (with a few simple modifications) to maximize the
proposed saddle-point objective function.

We also show results of two-dimensional (2-D) simula-
tions showing that the WLS method leads to a systematic
bias and that the OP method leads to a higher variance than
SP and SD methods. We also observe that the SP and SD
methods yield equivalent bias/variance performance, whereas
SP requires less computation time. The contribution of
this work lies in the fact that the proposed methods offer
significant improvements in accuracy with minor increases in
computation time.

2. MEASUREMENT MODEL

In conventional PET scans, the data are precorrected for
AC events by real-time subtraction of the delayed-window
coincidences (Hoffmanet al., 1981). The system detects
coincidence events during two time windows: the ‘prompt’
window and ‘delayed’ window. For each coincidence event
in the prompt window, the corresponding sinogram bin
is incremented. The statistics of these increments should
be well approximated by a Poisson process. However,
for coincidence events within the delayed window, the

corresponding sinogram bin is decremented, so the resultant
‘precorrected’ measurements are not Poisson. Since prompt
events and delayed events are independent Poisson processes,
the precorrected measurements correspond to the difference
of two independent Poisson random variables with variance
equal to the sum of the means of the two random variables.
In other words, randoms subtraction compensates on average
for AC events, but it also increases the variance of the
measurement by an amount equal to the mean of AC events.

Let Y = [Y1, . . . ,YN ]′ denote the vector of precorrected
measurements. The precorrected measurement for thenth
coincidence detector pair is

Yn = Yprompt
n − Ydelay

n , (1)

where Yprompt
n and Ydelay

n are the number of coincidences
within the prompt and delayed windows respectively. Let
µ = [µ1, . . . , µM ]′ denote the vector of unknown linear
attenuation coefficients. For transmission scans, we assume
that Yprompt

n andYdelay
n are statistically independent Poisson

random variables with meansȳp
n and ȳd

n respectively as

E{Yprompt
n } = ȳp

n(µ) = bne−ln(µ) + rn (2)

E{Ydelay
n } = ȳd

n = rn, (3)

whereln(µ) =
∑M

j=1 anjµ j is the total attenuation between
thenth detector pair. Theanj ≥ 0 factors have units of length
and describe the tomographic system geometry. Thebn > 0
factors denote the blank scan counts and thern ≥ 0 factors
denote the mean of AC events.

SinceYprompt
n andYdelay

n are statistically independent and
Poisson:

E{Yn} = ȳp
n(µ)− ȳd

n = bne−ln(µ), (4)

Var{Yn} = ȳp
n(µ)+ ȳd

n = bne−ln(µ) + 2rn. (5)

3. EXACT LOG-LIKELIHOOD

Let y = [y1, . . . , yN ]′ be a realization of statistically
independent random variablesY given in (1). Under the usual
assumption of independence between different rays, one can
express the exact distribution ofY using total probability:

P(Y = y;µ)=
N∏

n=1

∞∑
m=0

P(Yprompt
n = yn +m;µ)

×P(Ydelay
n = m)

=
N∏

n=1

∞∑
m=b−ync+

[
ȳp

n(µ)
]yn+m

e−ȳp
n(µ)

(yn +m)!

r m
n e−rn

m!
,

(6)
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wherebxc+ = x if x > 0 and is 0 otherwise. The exact
log-likelihood forµ becomes

L(µ) = log P(Y = y;µ)

=
N∑

n=1

log

( ∞∑
m=b−ync+

[
ȳp

n(µ)
]yn+m

(yn +m)!

r m
n

m!

)
− (ȳp

n(µ)+ rn). (7)

Since image reconstruction is ill conditioned, usually one
includes a roughness penaltyR(µ) in the objective function.
From the Bayesian point of view, this roughness penalty
can be thought of as a log-prior forµ. Combining this
penalty with the log-likelihood yields a penalized-likelihood
objective function:

8(µ) = L(µ)− R(µ). (8)

The goal is to estimateµ by maximizing8(µ) over the non-
negative cone:

µ̂ = arg max
µ≥0

8(µ). (9)

Since the exact log-likelihood function in Equation (7)
contains infinite summations, the above maximization is
intractable. The following two sections develop tractable yet
accurate approximations toL(µ).

4. SIMPLE APPROXIMATIONS TO THE EXACT
LOG-LIKELIHOOD

In this section, we first review the conventional approxima-
tions to L(µ): the WLS model and the conventional OP
model. Then we introduce the SP model (Yavuz and Fessler,
1996).

4.1. Quadratic approximations
The quadratic approximation to the exact log-likelihood
function results in the data-weighted least-squares objective
functionLWLS(µ) (Sauer and Bouman, 1993):

LWLS(µ) = −1

2

N∑
n=1, yn>0

(ln(µ)− l̂n)
2 1

σ̂ 2
n
, (10)

wherel̂n = log(bn/yn) is the method-of-moments estimate
of the line integral of the attenuationln(µ) and σ̂ 2

n =
(yn + 2rn)/y2

n. The nth weighting factorσ̂ 2
n is an estimate

of the variance ofl̂n(yn) based on a second-order Taylor
expansion around̂ln(ȳn). This weighting is critical for
the WLS method. The errors corresponding to projections
with large values ofyn are weighted more heavily. These

projections pass through less dense objects and consequently
have higher signal to noise ratio (SNR) values.

Alternatively, the choice ofσ̂ 2
n = 1 results in the un-

weighted least-squares (ULS) approach, which leads to
estimates with much higher variance.

4.2. Ordinary Poisson (OP) approximation
The conventional approach is to assume (approximate) that
{Yn}Nn=1 are distributed as independent Poisson random
variables with mean̄yn(µ) = bne−ln(µ) as in (4), i.e.

P(Y = y;µ) ≈
N∏

n=1

[ ȳn(µ)]yn e−ȳn(µ)

yn!
. (11)

The log-likelihood corresponding to this OP approximation is

LOP(µ) =
N∑

n=1

yn log ȳn(µ)− ȳn(µ)

=
N∑

n=1

yn log(bne−ln(µ))− bne−ln(µ), (12)

disregarding the constants independent ofµ.

4.3. Shifted Poisson (SP) approximation
A better approach is to match both the first- and second-
order moments by approximating the random variables
{Yn + 2rn}Nn=1 as having Poisson distributions with means
{ȳn(µ)+2rn}. This model leads to our proposed SP objective
function:

LSP(µ) =
N∑

n=1

(yn + 2rn) log(ȳn(µ)+ 2rn)− (ȳn(µ)+ 2rn),

where ȳn(µ) is defined by Equation (4). Note that although
both LWLS andLSP match two moments of the measurement
distribution, in WLS the second moment ofl̂n(yn) is ‘fixed’ to
σ̂ 2

n independently ofµ, whereas in the SP model the moments
vary with ȳn(µ) appropriately.

We have previously shown empirically that the SP model
better agrees with the exact log-likelihood than either the
WLS or OP model (Yavuz and Fessler, 1996). Next we
provide an analytical result that corroborates those results.

4.4. Variance analysis
To analyze the variance of each estimator, we apply the
analytic approximations suggested by Fessler (1996). If
Ȳ = E{Y}, then using a first-order Taylor expansion ofµ̂(Y)
leads to the following approximation for the covariance ofµ̂

(Fessler, 1996):

Cov{µ̂} ≈ P Cov{Y} PT (13)
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where P = [−∇208(µ̄, Ȳ)]−1∇118(µ̄, Ȳ) and µ̄ =
arg maxµ 8(µ, Ȳ). The ( j, k)th element of operator∇20

is ∂2/∂µ j ∂µk and the( j, n)th element of operator∇11 is
∂2/∂µ j ∂Yn.

We apply Equation (13) to find approximate expressions
for the variance of the maximum-likelihood estimators:
µ̂OP = arg maxµ LOP(µ) and µ̂SP = arg maxµ LSP(µ).
For this purpose we considered a highly simplified version
of transmission tomography where the unknown is a scalar
parameter, i.e.M = 1. This highly simplified problem
provides insight into the estimator bias and variance without
the undue notation of the multi-parameter case. The objective
functions described above can be expressed in the form:

8(µ,Y) =
N∑

n=1

hn(µ,Y).

Since the measurements are statistically independent, for
the scalar problem the above approximation Equation (13)
reduces to

Var{µ̂} ≈
(

N∑
n=1

∂2hn(µ̄, Ȳ)

∂µ2

)−2

×
N∑

n=1

[
∂2hn(µ̄, Ȳ)

∂µ ∂Yn

]2

Var{Yn}. (14)

With some tedious algebra, one can derive the following
approximate expressions for the variance ofµ̂OP andµ̂SP:

Var{µ̂OP} ≈
∑N

n=1 a2
n(ȳn(µt )+ 2rn)(∑N

n=1 a2
n ȳn(µt )

)2
(15)

Var{µ̂SP} ≈
[

N∑
n=1

a2
n ȳn(µt )

2

ȳn(µt )+ 2rn

]−1

, (16)

whereµt denotes the true attenuation coefficient value and
ȳn(µ) = bne−anµ.

Letting sn = a2
n ȳn(µt ) and tn = a2

n (ȳn(µt )+ 2rn), one
can rewrite Equations (15) and (16) as

1

Var{µ̂OP} ≈
(∑

n sn
)2∑

n tn
,

1

Var{µ̂SP} ≈
∑

n

s2
n

tn
.

Let a, b ∈ Rn such thatan = sn/
√

tn, bn = √tn. Using the
Cauchy–Schwarz inequality:|aTb| ≤ ‖a‖2 ‖b‖2,

∑
n

sn ≤
(∑

n

s2
n

tn

)1/2 (∑
n

tn

)1/2

(∑
n

s2
n

tn

)−1

≤
∑

n tn(∑
n sn

)2 ,

so that within the accuracy of Equation (13)

Var{µ̂SP} ≤ Var{µ̂OP}, (17)

with equality if, and only if, thern/ȳn ratios are equal. For
PET systems, these ratio terms are never constant, and in fact
can be quite disparate. Thus we have shown the following
result for the above scalar problem: the variance of the SP
estimator is lower than the variance of the OP estimator. This
analytic result is corroborated by multi-parameter empirical
results in Section 6.

5. SADDLE-POINT (SD) APPROXIMATION

An alternative to the previous approximations for the ex-
act PMF (6) of precorrected measurements is to make
second-order Taylor series approximations in thez-transform
domain. Snyderet al. (1995) (see also Helstrom, 1978) have
applied the saddle-point approximation to the distribution
of the sum of independent Gaussian and Poisson random
variables. Here we apply the saddle-point method to the
distribution of the difference of two independent Poisson
random variables. We performed a quadratic approximation
to the probability generating function and then carried out the
inverse transform to find the PMF.

Let U ∼ Poisson(α), V ∼ Poisson(β) andY = U − V
with PMFs PU (k), PV (k) and PY(k) respectively. WhenU
andV are independent the generating function ofY is

GY(z) =
∑

k

zk PY(k) = GU (z)GV (z
−1)

whereGU (z) = exp(α(z− 1)) andGV (z) = exp(β(z− 1)).
In terms of the generating function,PY(k) is given by the
contour integral

PY(k) = 1

2π j

∮
C+

z−k−1GY(z) dz= 1

2π j

∮
C+

e8k(z) dz,

(18)

where j= √−1 and the contourC+ must lie in the region of
convergence ofGY(z) and enclose the origin, and

8k(z) = −(k+ 1) log(z)+ α(z− 1)+ β(z−1− 1)
d8k(z)

dz
= 8

(1)
k (z) = − (k+ 1)

z
+ α − β

z2

d28k(z)

dz2
= 8

(2)
k (z) = (k+ 1)

z2
+ 2β

z3
.
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Figure 1. Deformation of the contourC+ in the complex plane
into a vertical lineC0 through the saddle pointx0 and a semicircle
C1 around the left half-plane at infinity. The singularities of the
integrand are atz= 0 andz= ∞+ j0 for k ≥ 0.

We observe that8k(z) (and hence the integrand e8k(z)) is
convex forz ∈ R, z > 0 andk ≥ 0. The integrand has a
minimum atx0 ∈ R, x0 > 0 which is called the saddle point,
i.e.

8
(1)
k (x0) = − (k+ 1)

x0
+ α − β

x2
0

= 0 and x0 > 0

which yields

x0 = (k+ 1)+ vk

2α
= 2β

−(k+ 1)+ vk
, (19)

wherevk = x2
08

(2)
k (x0) =

√
(|k| + 1)2+ 4αβ.

Following Helstrom (1978), we deform the contourC+
in Equation (18) into a vertical lineC0 through the saddle
point x0, asz = x0 + jy,−∞ < y < ∞ and a semicircle
C1 around the left half-plane at infinity (Figure 1). This
contour is permissible fork ≥ 0, since the only singularities
of the integrand are atz = 0 andz = ∞ + j0. If |z| →
∞ for Re[z] < x0 then e8k(z) → 0. Hence the contribution
of the semicircle around the left half-plane at infinity vanishes
and Equation (18) reduces to

PY(k) = 1

2π

∫ ∞
−∞

e8k(x0+jy) dy. (20)

Expanding8k(z) in Taylor’s series aroundz = x0, one
obtains:

exp[8k(z)] = exp

[
8k(x0)+ 1

28
(2)
k (x0)(z− x0)

2

+
∞∑

l=3

1

l !
8
(l )
k (x0)(z− x0)

l
]

= exp
[
8k(x0)+ 1

28
(2)
k (x0)(z− x0)

2]
×[1+ 1

68
(3)
k (x0)(z− x0)

3+ · · · ],
since8(1)k (x0) = 0. The integral (20) becomes

PY(k) = e8k(x0)

2π

∫ ∞
−∞

e
1
28

(2)
k (x0)(jy)2

×[1+ 1
68

(3)
k (x0)(jy)

3+ · · · ] dy

= e8k(x0)√
2π8(2)k (x0)

[1+ R]

= x−k
0 evk−α−β
√

2πvk
[1+ R] (21)

where

R= 8
(4)
k (x0)

8
[
8
(2)
k (x0)

]2
+ · · · .

Using the algorithm by Rice (1968), the residuumR can be
written as

R = 1

24(k+ 1)

[−5+ 12
√

1+ η − 9(1+ η)
(1+ η)3/2

]
+O

[(
1

k+ 1

)2
]

whereη = 4αβ/(k+ 1)2. The residuum goes asymptotically
to zero ask → ∞ and more importantly we have observed
empirically that the approximation error is negligibly small
even for very small values ofk. Neglecting R in Equa-
tion (21) results in our saddle-point approximation for the
PMF PY(k) as

PY(k) ' Ps
Y(k) =

x−k
0 evk−α−β
√

2πvk
, k ≥ 0. (22)

Fork < 0 the integrand in Equation (18) is not guaranteed
to be convex forz > 0. Moreover, the integrand does
not vanish along the semicircle around the left half-plane at
infinity. Thus we use the change of variablesw = 1/z in
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Figure 2. Representative comparison of the exact log-likelihood
function with objective functions of different models as a function of
line integralln(µ). The randoms rate is 5%. The proposed saddle-
point approximation agrees with the exact log-likelihood method
significantly better than the other models.

Equation (18), so that

PY(k) = 1

2π j

∮
C+
wk−1GY(w

−1) dw

= 1

2π j

∮
C+

e8̄k(w) dw (23)

where

8̄k(w) = (k− 1) log(w)+ α(w−1− 1)+ β(w − 1).

Following similar steps as for the case wherek ≥ 0, the
saddle-point approximation fork < 0 can be shown to be

PY(k) ' Ps
Y(k) =

wk
0evk−α−β
√

2πvk
, k < 0 (24)

where

w0 = −(k− 1)+ vk

2β
= 2α

(k− 1)+ vk
.

Thus, combining Equations (22) and (24) the saddle-point
(SD) approximation for the log-likelihood (7) is

LSD(µ) =
N∑

n=1

log Ps
Y(yn; ȳn(µ))

=
N∑

n=1

hs
n(µ) (25)

where

hs
n(µ) =


yn log

(
ȳn(µ)+ rn

yn + 1+ un(µ)

)
− tn(µ), yn ≥ 0

yn log

(
ȳn(µ)+ rn

yn − 1+ un(µ)

)
− tn(µ), yn < 0

(26)

with

tn(µ) = ȳn(µ)− un(µ)+ 1
2 logun(µ),

un(µ) =
√
(|yn| + 1)2+ 4(ȳn(µ)+ rn)rn,

and disregarding constants independent ofµ.
Note that the approximation Equation (25) is considerably

simpler than the exact log-likelihood Equation (7), since no
infinite sums or factorials are needed. Nevertheless, it is
remarkably accurate as shown below. Also, one can observe
that asrn→ 0, hs

n(µ)→ [yn log ȳn(µ)− ȳn(µ)] = LOP(µ)

(to within constants independent ofµ), which is expected,
because forrn = 0 the ordinary Poisson model is appropriate.

Figure 2 shows a representative comparison of the exact
log-likelihood function and the approximations for noiseless
data as a function ofµ. LWLS(µ) is particularly poor, in part
because of the conditionyn > 0 in Equation (10). Although
LSP(µ) fits the exact log-likelihood better thanLWLS(µ) and
LOP(µ), clearly LSD(µ) has the best agreement with the
exact log-likelihoodL(µ). In a large number of additional
comparisons not shown due to space considerations, we have
observed thatLSD(µ) agrees remarkably well with the exact
log-likelihoodL(µ) and clearly better than the other models.

6. TWO-DIMENSIONAL SIMULATIONS

To study bias and variance properties of the estimators based
on the above approximations, we performed 2-D simulations.
For µ we used the synthetic attenuation map shown in
Figure 3, which represents a human abdomen with a linear
attenuation coefficient of 0.0096 mm−1. The image was a
128× 128 array of 4.7 mm pixels. We simulated a PET
transmission scan with 192 radial bins and 256 angles spaced
uniformly over 180◦. Theanj factors correspond to 3.1 mm
wide strip integrals on 3.1 mm center-to-center spacing. The
bn factors were generated using pseudo-random log-normal
variates with a standard deviation of 0.3 to simulate detector
pairs with non-uniform detector efficiencies and scaled so that∑

n ȳn was 3.6×106 counts. Thern factors corresponded to a
uniform field of 10% random coincidences. Pseudo-random
transmission measurements were generated according to
Equations (2) and (3). For regularization, we used the
modified quadratic penalty (Fessler and Rogers, 1996).
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Figure 3. Simulated abdomen attenuation map.

We generated 150 independent realizations of the trans-
mission measurements. For each measurement realization,
an estimate of the attenuation map was reconstructed using
20 iterations of the grouped-coordinate ascent algorithms
(Fessleret al., 1997) applied to the objective functions (10),
(12), (13) and (25). AlthoughLOP(µ) is globally convex,
LSP(µ) is only locally convex (Fessler, 1995). In our
simulations, we initialized the iterations with a FBP image
and always observed monotonic increase in the log-likelihood
for all methods. Nevertheless, further investigation of global
convergence properties is necessary forLSP(µ) andLSD(µ).

We computed both the sample mean and sample standard
deviation images for all methods. Figure 4 shows horizontal
profiles through the sample mean images. These profiles
show that WLS is systematically negatively biased (Fessler,
1995), whereas the OP, SP and SD models are free of
systematic bias.

To study the variance, we computed the ratio of sample
standard deviation images of different estimators, over all
interior pixels. Figure 5 shows the histogram of the standard
deviation ratios. The OP model yields, on the average, 19%
higher standard deviation than the both SP and SD models. In
other words, to achieve the same noise level, the OP method
would require about 40% greater scan time.

Although the standard deviation values could be decreased
by using higher count rates, the ratio of standard deviations of
different estimators will remain approximately the same for
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Figure 4. Horizontal profile through the sample mean images for
abdomen phantom. The WLS method has a systematic negative bias.
The OP, SP and SD methods are free of this systematic negative bias.
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Figure 5. Histogram of the ratio of standard deviations in
reconstructions of the abdomen phantom. The OP method yields, on
average, 19% higher standard deviation than the proposed SP and
SD methods.

higher count rates (Fessler, 1996). This follows from the fact
that analytic approximations (15) and (16) will be more ac-
curate with increasing count rates, and these approximations
show that for a set of fixed system parameters, the ratio of the
standard deviation of different estimators remains constant
independent of the count rate.

We performed additional simulations using a digital thorax
phantom with non-uniform attenuation (Yavuz and Fessler,
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Table 1. Local impulse response and the local sample standard
deviation for the central pixel

FWHM (pixels)
Estimator Horizontal Vertical Average % Std dev.

FBP 2.66 2.68 2.67 18.20± 1.05
OP 2.13 3.22 2.67 9.94± 0.57
SP 1.94 3.40 2.67 7.70± 0.44
SD 1.93 3.41 2.67 7.94± 0.45

1996). The reductions in noise with the proposed methods
were comparable.

It is well known in tomographic image reconstruction that
one can compromise between the resolution and noise in the
reconstructed image. In the simulations reported here, we
have used the modified quadratic penalty (Fessler and Rogers,
1996), which matches the spatial resolution of both least-
squares-based and Poisson-based estimators. In order to show
that the noise reduction with the proposed SP and SD methods
does not come with the price of lower resolution (compared to
the OP method), we have investigated the local resolution and
the standard deviation of a pixel at the center of the abdomen
phantom.

We computed the linearized local impulse response
(Fessler and Rogers, 1996) of different estimators at the
central pixel of the abdomen phantom. Table 1 shows
the full width at half maximum (FWHM) values of local
impulse response functions and the local sample standard
deviation for the central pixel estimates. The table also
reports the standard errors for the sample standard deviation
estimates. These results show that the reductions in the
standard deviations are truly due to the improved statistical
modeling rather than resolution differences.

Although the local impulse response functions are asym-
metric with respect to the horizontal and vertical axis, the
‘average’ resolution of each method is matched. As expected
the non-statistical FBP method yields a much higher standard
deviation than statistical methods. The standard deviations of
the proposed SP and SD estimators are about 27% lower than
the OP method.

The asymmetry of the local impulse responses is caused
partly by the eccentricity of the abdomen phantom (Figure 3),
(Fessler and Rogers, 1996) and we plan to include a new
penalty with a symmetric impulse response in our future
work. In Table 1 the resolution of SP and SD models are
observed to be more asymmetric than the OP model. In order
to investigate this effect we performed additional simulations
using a circularly symmetric disk phantom which yields a
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Figure 6. Scatter plot of the delayed coincidence event of blank and
transmission scans.

symmetric impulse response at the center. For the central
pixel (where all methods have the same impulse response) the
reductions in standard deviation with the proposed SP and SD
methods were around 24% compared to the OP method.

7. ESTIMATES OF THE AC RATES

One must know the mean of the AC events (rn) to compute
LSP(µ) and LSD(µ). Since thern terms are not readily
available from the real (precorrected) data, some estimates of
the randoms must be used. Fortunately, for PET transmission
scans we can obtain reasonable estimates from a blank scan.

Figure 6 displays the scatter plot of real delayed co-
incidence sinograms for blank scan and transmission scan
data. Each point in the plot corresponds to a specific
detector pair. The similarity of both delayed coincidence
measurements suggests that one can acquire the delayed
coincidence events during the blank scan and use them
(after properly normalizing for different scan durations) as
an estimate of the AC rates for transmission scans performed
on the same PET system. The above technique is only
applicable to transmission scans. For emission scans some
other method will be necessary. However as described below
the suggested methods are robust to errors in the estimates
of AC events. We performed additional simulations (not
shown) in which we substituted a simple constant forrn rather
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than the true values into the SP and SD objective functions.
This approximation resulted in only a slight increase in the
standard deviation (around 2%) of the SP and SD estimates
without any systematic bias. These results demonstrate that
both the SP and SD approximations are robust to errors in the
rn estimates.

8. DISCUSSION

AC events are a primary source of background noise in
positron emission tomography. After the AC events are pre-
corrected, the measurement statistics are no longer Poisson.
For transmission scans, the WLS method and the ML method
based on the OP model lead to a systematic bias and a higher
variance, respectively, compared to our proposed SP model
for measurement statistics which matches both the first- and
second-order moments.

We proposed a new approximation for the exact log-
likelihood which is derived using a saddle-point approxima-
tion to the PMF of precorrected measurements. Both the
analysis of the error term and the log-likelihood plots and
one-dimensional (1-D) simulations (not shown due to space
considerations) show that the new approximation agrees very
closely with the exact log-likelihood compared to previous
approximations.

Our 2-D simulations yielded comparable performance for
the SP and SD models. They were both free of systematic bias
and yielded a reduced standard deviation (∼19%) compared
to the OP model. We further analyzed the resolution and
sample standard deviation at a central pixel of the phantom
and showed that with our proposed methods the standard
deviation is still reduced when the resolution of all estimators
are matched. We observed very close agreement between
the exact log-likelihood and the SD approximation both from
the log-likelihood plots and 1-D simulations. Therefore we
were expecting the SD method to perform better than the SP
method. However, for the 2-D simulations reported here, the
SP method performed as well as the SD method. Thus the SP
method is particularly attractive since it requires comparable
computation to the OP method but has reduced variance.
We plan to compare the SD and SP methods to the uniform
Cramer–Rao bounds (Heroet al., 1996).

The high correlation between delayed coincidence events
of blank and transmission scans suggest that one can use
AC rates estimated from blank scans. We have seen that
even using constant AC rates in 2-D simulations resulted in
only a slight increase in the standard deviation without any
systematic bias. Thus the proposed SP and SD methods are
robust enough for practical use.

We plan to apply the proposed method to emis-
sion tomography, where even higher AC rates than the

transmission tomography are common, particularly in 3-D
PET. Moreover, in 3-D PET, very large data sets are likely to
preclude separate acquisition of random coincidences, so the
real-time subtraction methods are usually used for emission
scans. So the potential benefit of the proposed models should
be even greater.
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