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Abstract

Positron emission tomography (PET) measurements are usually precorrected for accidental
coincidence events by real-time subtraction of the delayed-window coincidences. Randoms
subtraction compensates on average for accidental coincidences but destroys the Poisson
statistics. We propose and analyze two new approximations to the exact log-likelihood of the
precorrected measurements, one based on a ‘shifted Poisson’ model, the other based on saddle-
point approximations to the measurement of probability mass function (PMF). The methods
apply to both emission and transmission tomography; however, in this paper we focus on
transmission tomography. We compare the new models to conventional data-weighted least-
squares (WLS) and conventional maximum-likelihood methods [based on the ordinary Poisson
(OP) model] using simulations and analytic approximations. The results demonstrate that the
proposed methods avoid the systematic bias of the WLS method, and lead to significantly
lower variance than the conventional OP method. The saddle-point method provides a more
accurate approximation to the exact log-likelihood than the WLS, OP and shifted Poisson
alternatives. However, the simpler shifted Poisson method yielded comparable bias-variance
performance to the saddle-point method in the simulations. The new methods offer improved
image reconstruction in PET through more realistic statistical modeling, yet with negligible
increase in computation time over the conventional OP method.
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1. INTRODUCTION become comparable to AC rates. Thus estimates of the AC
events are needed. One can use the ‘singles’ method (Casey
In PET measurements, accidental coincidence (AC) eventsand Hoffman, 1986) for this purpose, however this approach
are a primary source of background noise. AC eventsis not used widely because of the necessity for additional
occur when photons that arise from separate annihilationshardware, and moreover usually singles rates vary during
are mistakenly registered as having arisen from the samedata acquisition (Ollinger and Fessler, 1997). Therefore, in
annihilation. In transmission scans the photons that originatemost PET scans, the AC rates are estimated using delayed-
from different transmission sources (rod or sector sourceswindow coincidences and the data are precorrected for AC
rotating around the patient) cause AC events. The ratio of to- events by real-time subtraction. Real-time subtraction of
tal AC events to ‘true’ events is usually small in transmission delayed-window coincidences compensates on average for
scans compared to emission scans. Nevertheless, the effedAC events, but destroys the Poisson statistics (Hoffra@an
of AC events becomes severe for regions of high attenuational., 1981). To avoid this problem, one needs to maintain
coefficients, because projections through such regions resulthe transmission and randoms measurements as two separate
in low true coincidence rates. These low count rates cansinograms (Politte and Snyder, 1991; Mumglwoet al,
1996). However even if a PET system allows one to collect

:gz;ﬁ??ggjgﬁ%z“;ri‘g; o) a randoms (delayed coincidences) sinogram separately, this
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process would double the storage space for the acquiredcorresponding sinogram bin is decremented, so the resultant
data. So in practice most PET centers collect and archive‘precorrected’ measurements are not Poisson. Since prompt
only the randoms-precorrected data. We recommend separatevents and delayed events are independent Poisson processes,
acquisition and storage of delayed coincidences whereverthe precorrected measurements correspond to the difference
feasible. The purpose of this paper is to provide accurate of two independent Poisson random variables with variance
statistical methods for PET measurements with presubtractedequal to the sum of the means of the two random variables.
delayed coincidences. Although our analysis and proposedin other words, randoms subtraction compensates on average
models apply to both emission and transmission tomography,for AC events, but it also increases the variance of the
in this paper we focus on transmission tomography. measurement by an amount equal to the mean of AC events.
The exact log-likelihood for randoms-precorrected datais LetY = [Yi,..., Yn]' denote the vector of precorrected
intractable, so we describe and compare several approximaimeasurements. The precorrected measurement fontthe
tions. For completeness, we first review the data-weighted coincidence detector pair is
least-squares (WLS) method and the log-likelihood for the
ordinary Poisson (OP) model for PET measurements. Then, Yh = Yr?rompt— r?elay, (1)
we introduce a new ‘shifted’ Poisson (SP) model (Yavuz and prompt delay o
Fessler, 1996) which matches both the first- and second-where Yn and Y, " are the number of coincidences
order moments of the model to the underlying statistics Within the prompt and delayed windows respectively. Let
of the precorrected data. We derive approximate analytic # = [#1, ..., um]” denote the vector of unknown linear
expressions for the variance of the different estimators andattenuation coefficients. For transmission scans, we assume
use the Cauchy—Schwarz inequality to show analytically that that Y™™ and Yo °* are statistically independent Poisson
the proposed SP method yields lower variance than the OPrandom variables with meary§ andyg respectively as

method. _ _ prompt _p b.en(1) 2
Secondly, we introduce a new saddle-point (SD) approx- EYn "7} = Yn(u) = bne tin 2)
imation for the probability mass function (PMF) of pre- E(yee® — gd =, 3)

corrected measurements. The corresponding log-likelihood
function is shown to have better agreement with the exact wherely(n) = Zjle anjuj is the total attenuation between
log-likelihood than the previous approximations. We apply thenth detector pair. The,; > 0 factors have units of length

the fast grouped-coordinate ascent algorithm (Fesglat, and describe the tomographic system geometry. bhhe 0
1997) (with a few simple modifications) to maximize the factors denote the blank scan counts andrthe O factors
proposed saddle-point objective function. denote the mean of AC events.

We also show results of two-dimensional (2-D) simula-  Since Y™™

tions showing that the WLS method leads to a systematic Poisson:

bias and that the OP method leads to a higher variance than

SP and SD methods. We also observe that the SP and SD E(Ya) = Yh(n) — ¥§ = bpe™ ), 4
methods yield equivalent bias/variance performance, whereas Var{Y,} = yﬁ(u) 4 yg — bre W 4 or,. (5)
SP requires less computation time. The contribution of

this work lies in the fact that the proposed methods offer 3. EXACT LOG-LIKELIHOOD

significant improvements in accuracy with minor increases in

and Y2 are statistically independent and

computation time. Let y = [y1,...,yn]" be a realization of statistically
independent random variablggyiven in (1). Under the usual
2. MEASUREMENT MODEL assumption of independence between different rays, one can

express the exact distribution ¥fusing total probability:
In conventional PET scans, the data are precorrected for

AC events by real-time subtraction of the delayed-window N 0 prompt
coincidences (Hoffmaret al, 1981). The system detects FTQ =YW= I1 . P(¥n = Yn+ M0

coincidence events during two time windows: the ‘prompt’ n=1m=

window and ‘delayed’ window. For each coincidence event x P(Yr?elayz m)

in the prompt window, the corresponding sinogram bin [Yﬁ(u)]Yﬁm e hw) Mg
is incremented. The statistics of these increments should = l_[ Z | 0 T
be well approximated by a Poisson process. However, n=1m=|—ynl+ (¥ +m): m:

for coincidence events within the delayed window, the (6)
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where|x]; = x if x > 0 and is 0 otherwise. The exact projections pass through less dense objects and consequently

log-likelihood for . becomes have higher signal to noise ratio (SNR) values.
Alternatively, the choice of62=1 results in the un-
L(n) = logP(Y =y; ) weighted least-squares (ULS) approach, which leads to
_ ilog( i [Yﬁ(u)]yﬁm £> estimates with much higher variance.
= _ (Yo +m)! m i i imati
n=1 m=|—Ynl+ 4.2. Ordinary Poisson (OP) approximation

— (YR(w) +rn). (7 The conventional approach is to assume (approximate) that
{Yn}r’}':l are distributed as independent Poisson random
Since image reconstruction is ill conditioned, usually one variables with meagy (1) = bpe ™" asin (4), i.e.
includes a roughness penal(.) in the objective function. \ )
From the Bayesian point of view, this roughness penalt [Yn ()Y e ¥n ()
yesian p e i PO =y~ [

can be thought of as a log-prior for. Combining this L) Yn! (11)
penalty with the log-likelihood yields a penalized-likelihood h
objective function: The log-likelihood corresponding to this OP approximation is

O () = L(n) — R(w). 8 N
(=1L = R0 ®) Lop(1) = Y Yn10gJn (1) — (1)
n=1

The goal is to estimate by maximizing® () over the non-
negative cone:

z

= ) Ynlog(bne ") — e ™ (12)

= arg Max® (). 9) n=1
"= disregarding the constants independent of

Since the exact log-likelihood function in Equation (7)

contains infinite summations, the above maximization is 4.3. Shifted Poisson (SP) approximation

intractable. The following two sections develop tractable yet A better approach is to match both the first- and second-

accurate approximations to(u). order moments by approximating the random variables

{Yn + 2rn}r’}‘:l as having Poisson distributions with means

4. SIMPLE APPROXIMATIONS TO THE EXACT {Yn(w) +2rn}. This model leads to our proposed SP objective
LOG-LIKELIHOOD function:

N
In this section, we first review the conventional approxima- | o o
_ _ +2rp)lo +2rp) — + 2rn),
tions to L(n): the WLS model and the conventional OP se(k) — (¥ n) 109(¥n (1) n) = () n)

n=1

model. Then we introduce the SP model (Yavuz and Fessler, _ _ .

1996). whereyn(w) is defined by Equation (4). Note that although
both Lw s andL sp match two moments gf the measurement

4.1. Quadratic approximations distribution, in WLS the second momentlgtyy) is ‘fixed’ to

The quadratic approximation to the exact log-likelihood 67 independently of., whereas in the SP model the moments

function results in the data-weighted least-squares objectiveVary With yn (1) appropriately.

function Lwis(w) (Sauer and Bouman, 1993): We have previously shown empirically that the SP model
better agrees with the exact log-likelihood than either the
WLS or OP model (Yavuz and Fessler, 1996). Next we

~ 1

2

Lwis(w) = ) Z (In(0) = 1n) 52 (10) provide an analytical result that corroborates those results.
n=1, yn>0 n

N

4.4. Variance analysis

L _ N To analyze the variance of each estimator, we apply the
of the line éntegral of th? aFtenuanol”,»l(éu) and n = analytic approximations suggested by Fessler (1996). If
(Yn + 2rn)/.yn. TheAnth weighting factoréy is an estimate Y = E{Y}, then using a first-order Taylor expansionafY)

of the variance ofln(yn) based on a second-order Taylor |ga4s to the following approximation for the covarianceiof
expansion aroundn(¥n). This weighting is critical for (Fessler, 1996):

the WLS method. The errors corresponding to projections

with large values ofy, are weighted more heavily. These Cov{i} ~ P Cov{Y} PT (13)

wherel, = log (bn/yn) is the method-of-moments estimate
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where P = [-V®®(n, V)] Ve, Y) and o = so that within the accuracy of Equation (13)

argmay, ®(u, Y). The (j,kyth element of operator2°

is 82/djduk and the(j, n)th element of operatow*! is Var{jisp) < Var{jiop), (17)
32/014j9Yn.

We apply Equation (13) to find approximate expressions it equality if, and only if, thern/Jn ratios are equal. For

for the variance of the maximum-likelihood estimators: pet gy stems; these ratio terms are never constant, and in fact
fiop = argmax Lop(n) and asp = argmax Lse(i).  ¢an pe quite disparate. Thus we have shown the following
For this purpose we considered a highly simplified version roq ¢ for the above scalar problem: the variance of the SP
of transmission tomography where the unknown is a scalar ggtimator is lower than the variance of the OP estimator. This

parameter, i.eM = 1. This highly simplified problem 5.\ 4ic result is corroborated by multi-parameter empirical
provides insight into the estimator bias and variance without results in Section 6.

the undue notation of the multi-parameter case. The objective

functions described above can be expressed in the form: 5. SADDLE-POINT (SD) APPROXIMATION

N
D(p,Y) = Zhn(“’ Y). An alternative to the previous approximations for the ex-
n=1 act PMF (6) of precorrected measurements is to make
Since the measurements are statistically independent, forsecond-order Taylor series approximations inztteansform
the scalar problem the above approximation Equation (13) domain. Snydeet al. (1995) (see also Helstrom, 1978) have

reduces to applied the saddle-point approximation to the distribution
N 42h (7. ¥ -2 of the sum of independent Gaussian and Poisson random

var{i) ~ (Z ”(V; )> variables. Here we apply the saddle-point method to the

= distribution of the difference of two independent Poisson

N o - o2 random variables. We performed a quadratic approximation
8 Z [a hn(it, Y)} var(Ya. (14) to the probability generating function and then carried out the
ap 0Yn inverse transform to find the PMF.

LetU ~ Poissorix), V ~ Poissorig) andY = U — V
with PMFs Py (k), Py (k) and Py (k) respectively. WhetJ
andV are independent the generating functiorydé

n=1

With some tedious algebra, one can derive the following
approximate expressions for the variancgigb andisp:

YN L 82(Yn (i) + 2rn)

Var{jiop} ~ 5 (15) Gv(2) = 5" KBk — Gri(2) G (21
<Zr’:l:1ar%yn(llt)> v(@ Zk: Pv(k) = Gu(@Gv(z )
-1
Var{jisp} ~ N M (16) whereGy (z) = expla(z — 1)) andGy (2) = exp(8(z — 1)).
reR = Yn(ue) +2rn | In terms of the generating functio®y (k) is given by the

. - contour integral
where u; denotes the true attenuation coefficient value and 9

)_’n (/’L) = bne—anll. 1 1
Letting s, = a2¥n(ut) andty = a3 (Yn (i) + 2rn), one Py (k) = o 55 7% 1Gy(z)dz = o yg e @ dz,
can rewrite Equations (15) and (16) as ) Jet ) Je+

, (18)
1 (Zn Sn) 1 Z

EXS

~

Var{ior} ~ Yath ~ Var(isp}

Leta, b € R" such thaa, = s,/+/th, bn = /In. Using the
Cauchy—Schwarz inequalitya’™b| < |lall2 Ibll2,

th where j= +/—1 and the contou€ ™ must lie in the region of
convergence o6y (z) and enclose the origin, and

P(z) = —(Kk+Dlog2)+az—1)+p(z1-1)
2\!/2 12 do(z @, (k+1) B
RTINS e e
: : n 2o k+1) 2
k(2) CD(kz)(z):( :-2 )_‘_Z_/:

-1
iz < Zntn dz?
(Xn: tn) T (Ces)®
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Im Expanding®k(z) in Taylor's series around = X, one
obtains:
T
_ 1@ w2
exp[®k(2)] = exp| Pk(Xo) + 3P~ (X0)(Z — Xo)
C o~ 1om |
c, 0 + IZ; [0 (X0) (2~ %o) }
X Re = exp[@k(X0) + 3P (X0)(Z — X0)?]
x[1+ 202 (xo)(z — x0)° + -],
sinced” (xo) = 0. The integral (20) becomes
]
—_ PY(k) _ e k(Xo) ooe%q)(kZ)(XO)(jy)z
2 )
x[1+ 307 00) () + -+ ] dy
Figure 1. Deformation of the contou€™ in the complex plane ePk(X0)
into a vertical lineCq through the saddle poingy and a semicircle = —[1+R]
C; around the left half-plane at infinity. The singularities of the /zﬂqp(kz) (Xo0)
integrand are & = 0 andz = oo + jO fork > 0. P
Xg €T
=9 ___ [1+R] (21)
27 vk
We observe tha®y(z) (and hence the integrand%?) is
convex forz € R, z > 0 andk > 0. The integrand has a Where @
minimum atxg € R, xg > 0 which is called the saddle point, R— P, " (Xo)
i - 2
l.e. 8[(1)'((2)()(0)]
o (x0) = — k+D toa— ﬁz —0 and x>0 Using the algorithm by Rice (1968), the residutircan be
X X5 written as
which yields _ 1 [—5 +12/1+1n-91+ n)]
24Kk +1) 1+ n)3/?
k+1 2
Xo=( +2)+vk= (k+,f)+ ’ (19) o 1 \2
o Vk —k T 1

wherevy = x§<I>(k2)(xo) = /(K| + 12 + 4ap.

Following Helstrom (1978), we deform the contoQr
in Equation (18) into a vertical lin€y through the saddle
point Xo, asz = Xp + jy, —00 < Yy < oo and a semicircle
C;1 around the left half-plane at infinity (Figure 1). This
contour is permissible fdk > 0, since the only singularities

wheren = 4a8/(k + 1)2. The residuum goes asymptotically
to zero ak — oo and more importantly we have observed
empirically that the approximation error is negligibly small
even for very small values df. NeglectingR in Equa-

tion (21) results in our saddle-point approximation for the

of the integrand are & = 0 andz = oo + jO. If |2 — PMF Py (k) as
oo for Rez] < xo then €« — 0. Hence the contribution Kot
= o ; s Xg ‘evk—a—h
of the seml_cwcle around the left half-plane at infinity vanishes Py (k) >~ Py(k) = e k>0. (22)
and Equation (18) reduces to V£V
1 [oo ' Fork < 0 the integrand in Equation (18) is not guaranteed
Py (k) = > / ety gy . (20) to be convex forz > 0. Moreover, the integrand does

—00 not vanish along the semicircle around the left half-plane at
infinity. Thus we use the change of variabes= 1/z in
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Figure 2. Representative comparison of the exact log-likelihood
function with objective functions of different models as a function of
line integralln (). The randoms rate is 5%. The proposed saddle-
point approximation agrees with the exact log-likelihood method

significantly better than the other models.

Equation (18), so that

1
27]
1

= — ¢ ey 23
27] £+ v (23)

Pr(k) = f WGy (wY) dus
C+

where
dy(w) = (k — D log(w) + a(w™ — 1) + B(w — 1).

Following similar steps as for the case whére> 0, the
saddle-point approximation fé&r < 0 can be shown to be

(o
Py (k) =~ Py(k)zﬁ, k<0 (24)
where
—(k—=1) + vk 2
T T T kD t+u

where
Yn(p) +rn )
log| ——— | —th (), >0
. Yn g(Yn+1+Un(lL) n(w) Yn
Ma(k) = Yn(u) + 1
0 —) (). yn <0
Yn g(yn "1t un(p) n(1t) Yn
(26)
with

tn(1) = Yn(i) — Un(p) + 3 logun(p),
Un(0) = /(Ynl + D2 + 4Fn() + M,

and disregarding constants independent of

Note that the approximation Equation (25) is considerably
simpler than the exact log-likelihood Equation (7), since no
infinite sums or factorials are needed. Nevertheless, it is
remarkably accurate as shown below. Also, one can observe
thatasn — 0, hj(n) — [Yn10g ¥n (1) — ¥n(w)] = Lop(i)
(to within constants independent gf), which is expected,
because for,, = 0 the ordinary Poisson model is appropriate.

Figure 2 shows a representative comparison of the exact
log-likelihood function and the approximations for noiseless
data as a function qf.. Lws(u) is particularly poor, in part
because of the conditioyy, > 0 in Equation (10). Although
Lsp(u) fits the exact log-likelihood better thdany s(i) and
Lop(n), clearly Lsp(u) has the best agreement with the
exact log-likelihoodL (11). In a large number of additional
comparisons not shown due to space considerations, we have
observed that sp(i) agrees remarkably well with the exact
log-likelihood L (i) and clearly better than the other models.

6. TWO-DIMENSIONAL SIMULATIONS

To study bias and variance properties of the estimators based
on the above approximations, we performed 2-D simulations.
For u we used the synthetic attenuation map shown in
Figure 3, which represents a human abdomen with a linear
attenuation coefficient of.0096 mnt!. The image was a
128 x 128 array of 4.7 mm pixels. We simulated a PET
transmission scan with 192 radial bins and 256 angles spaced
uniformly over 180. Thea;j factors correspond to 3.1 mm
wide strip integrals on 3.1 mm center-to-center spacing. The

Thus, combining Equations (22) and (24) the saddle-point b, factors were generated using pseudo-random log-normal

(SD) approximation for the log-likelihood (7) is

N
Lso(w) = Y 10g Pg(¥n; (1))

n=1

N
= > MW (25)
n=1

variates with a standard deviation of 0.3 to simulate detector
pairs with non-uniform detector efficiencies and scaled so that
> n Ynwas 36 10° counts. The, factors corresponded to a
uniform field of 10% random coincidences. Pseudo-random
transmission measurements were generated according to
Equations (2) and (3). For regularization, we used the
modified quadratic penalty (Fessler and Rogers, 1996).
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Figure 4. Horizontal profile through the sample mean images for
abdomen phantom. The WLS method has a systematic negative bias.
The OP, SP and SD methods are free of this systematic negative bias.

Figure 3. Simulated abdomen attenuation map.

Histogram of the ratio of standard deviation of OP method to SP method
T T

We generated 150 independent realizations of the trans- N
mission measurements. For each measurement realization
an estimate of the attenuation map was reconstructed using
20 iterations of the grouped-coordinate ascent algorithms
(Fessleret al, 1997) applied to the objective functions (10),
(12)' (13) and (25) A|thougnop(ﬂ) is g|oba"y convex, w00 ‘ His\ogr?mofthera‘lioofsland‘avddevian?nofOPm(‘ethodlcSD‘melhod ‘
Lsp() is only locally convex (Fessler, 1995). In our
simulations, we initialized the iterations with a FBP image
and always observed monotonic increase in the log-likelihood
for all methods. Nevertheless, further investigation of global
convergence properties is necessanifgp(u) andLsp(u).

We computed both the sample mean and sample standard s 1 105 11 115 12 125 13 1%
deviation images for all methods. Figure 4 shows horizontal
profiles through.the samplt_a mean |m§ges. .These prOfII(:"S'Figure 5. Histogram of the ratio of standard deviations in
show that WLS is systematically negatively biased (Fessler, reconstructions of the abdomen phantom. The OP method yields, on
1995), whereas the OP, SP and SD models are free ofaverage, 19% higher standard deviation than the proposed SP and
systematic bias. SD methods.

To study the variance, we computed the ratio of sample
standard deviation images of different estimators, over all
interior pixels. Figure 5 shows the histogram of the standard higher count rates (Fessler, 1996). This follows from the fact
deviation ratios. The OP model yields, on the average, 19% that analytic approximations (15) and (16) will be more ac-
higher standard deviation than the both SP and SD models. Incurate with increasing count rates, and these approximations
other words, to achieve the same noise level, the OP methodshow that for a set of fixed system parameters, the ratio of the
would require about 40% greater scan time. standard deviation of different estimators remains constant

Although the standard deviation values could be decreasedindependent of the count rate.
by using higher count rates, the ratio of standard deviations of We performed additional simulations using a digital thorax
different estimators will remain approximately the same for phantom with non-uniform attenuation (Yavuz and Fessler,
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Table 1. Local impulse response and the local sample standard 15

deviation for the central pixel

FWHM (pixels)
Estimator Horizontal Vertical Average % Std dev.

FBP 2.66 2.68 2.67 180+ 1.05
OP 2.13 3.22 2.67 .94+ 0.57
SP 1.94 3.40 2.67 .70+ 0.44
SD 1.93 3.41 2.67 %4+0.45

[EnY
(=]
.
3
o

)]
.

1996). The reductions in noise with the proposed methods
were comparable.

It is well known in tomographic image reconstruction that .
one can compromise between the resolution and noise in the
reconstructed image. In the simulations reported here, we : . .
have used the modified quadratic penalty (Fessler and Rogers, 0 5 10 15
1996), which matches the spatial resolution of both least- Blank Delayed—-Event Rate
squares-based and Poisson-based estimators. In order to show
that the noise reduction with the proposed SP and SD methodd-igure 6. Scatter plot of the delayed coincidence event of blank and
does not come with the price of lower resolution (compared to transmission scans.
the OP method), we have investigated the local resolution and
the standard deviation of a pixel at the center of the abdomen
phantom. symmetric impulse response at the center. For the central

We computed the linearized local impulse response pixel (where all methods have the same impulse response) the
(Fessler and Rogers, 1996) of different estimators at the reductions in standard deviation with the proposed SP and SD
central pixel of the abdomen phantom. Table 1 shows Methods were around 24% compared to the OP method.
the full width at half maximum (FWHM) values of local
impulse response functions and the local sample standard7. ESTIMATES OF THE AC RATES
deviation for the central pixel estimates. The table also
reports the standard errors for the sample standard deviatiorOne must know the mean of the AC eventg) (o compute
estimates. These results show that the reductions in theLsp(u) and Lsp(u). Since ther, terms are not readily
standard deviations are truly due to the improved statistical available from the real (precorrected) data, some estimates of
modeling rather than resolution differences. the randoms must be used. Fortunately, for PET transmission

Although the local impulse response functions are asym- scans we can obtain reasonable estimates from a blank scan.
metric with respect to the horizontal and vertical axis, the  Figure 6 displays the scatter plot of real delayed co-
‘average’ resolution of each method is matched. As expectedincidence sinograms for blank scan and transmission scan
the non-statistical FBP method yields a much higher standarddata. Each point in the plot corresponds to a specific
deviation than statistical methods. The standard deviations ofdetector pair. The similarity of both delayed coincidence
the proposed SP and SD estimators are about 27% lower thamimeasurements suggests that one can acquire the delayed
the OP method. coincidence events during the blank scan and use them

The asymmetry of the local impulse responses is caused(after properly normalizing for different scan durations) as
partly by the eccentricity of the abdomen phantom (Figure 3), an estimate of the AC rates for transmission scans performed
(Fessler and Rogers, 1996) and we plan to include a newon the same PET system. The above technique is only
penalty with a symmetric impulse response in our future applicable to transmission scans. For emission scans some
work. In Table 1 the resolution of SP and SD models are other method will be necessary. However as described below
observed to be more asymmetric than the OP model. In orderthe suggested methods are robust to errors in the estimates
to investigate this effect we performed additional simulations of AC events. We performed additional simulations (not
using a circularly symmetric disk phantom which yields a shown) in which we substituted a simple constant faiather

Transmission Delayed—-Event Rate
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than the true values into the SP and SD objective functions. transmission tomography are common, particularly in 3-D
This approximation resulted in only a slight increase in the PET. Moreover, in 3-D PET, very large data sets are likely to
standard deviation (around 2%) of the SP and SD estimatespreclude separate acquisition of random coincidences, so the
without any systematic bias. These results demonstrate thateal-time subtraction methods are usually used for emission
both the SP and SD approximations are robust to errors in thescans. So the potential benefit of the proposed models should
rn estimates. be even greater.
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