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Abstract: This paper analyzes the tradeoff between spatial resolution and
noise for simple pinhole imaging systems with position-sensitive photon-
counting detectors. We consider image recovery algorithms based on density
estimation methods using kernels that are based on apodized inverse filters.
This approach allows a continuous-object, continuous-data treatment of the
problem. The analysis shows that to minimize the variance of the emission-
rate density estimate at a specified reconstructed spatial resolution, the pin-
hole size should be directly proportional to that spatial resolution. For a Gaus-
sian pinhole, the variance-minimizing full-width half maximum (FWHM) of
the pinhole equals the desired object spatial resolution divided by

√
2. Sim-

ulation results confirm this conclusion empirically. The general approach is
a potentially useful addition to the collection of tools available for imaging
system design.
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1. Introduction

The design of imaging systems and image recovery algorithms generally involves tradeoffs be-
tween spatial resolution and noise. For example, in a simple pinhole imaging system, a larger
pinhole allows more photons to pass through, which reduces the relative uncertainty of the
measurements, but at a price of degraded spatial resolution. The problem of specifying sys-
tem parameters such as pinhole size is therefore frequently encountered in the system design
process. This paper considers the image recovery problem as an indirect density estimation
problem, and considers the following design criterion: minimize the variance of the object esti-
mate subject to a prespecified object spatial resolution. We show analytically that the variance-
minimizing spatial resolution of the imaging system is proportional to the desired spatial reso-
lution of the object estimate, when the kernel of the density estimator is based on an apodized
inverse filter. This is an intuitive relationship, but one that has not been previously established
theoretically to our knowledge.

There are a variety of methods that have been proposed for “optimal” choice of sys-
tem parameters in imaging system design. Each such design method has its own merits and
limitations, and it is unlikely that any single design method will be universally accepted as
the canonical choice. Since imaging systems are often built to serve multiple purposes, system
designers can benefit from exploring multiple design criteria. We make no pretense that the cri-
terion analyzed in this paper is always preferable over alternatives, but we believe that it is a
potentially useful addition to the collection of tools available for imaging system design.

One very principled approach to imaging system design is to optimize the system for
the performance of a certain task or collection of tasks,e.g. [1–10]. In the context of detect-
ing a known Gaussian signal in a stationary nonuniform background, Myerset al. [3] found
that the optimum aperture size was fairly close to the Gaussian signal width. One can evaluate
and optimize task performance with respect to system parameters using either human observers
or machine observers. When imaging systems are designed for specific tasks, such as detect-
ing myocardial perfusion defects [11], task performance is a natural metric for design. Often
imaging systems must serve multiple purposes, so more generic measures of performance, such
as spatial resolution and noise, are useful to complement task-specific performance measures.
Manufacturers of medical imaging instruments typically report only spatial resolution and sen-
sitivity, despite their indirect relationships to task performance.

Another approach to analyzing system performance is the Cramer-Rao (CR) bound.
The ordinary CR bound is applicable only to unbiased estimators, which limits its utility in
imaging problems where bias is typically inevitable. The uniform CR bound [12] is a recent
extension of the CR bound that allows for biased estimators. The uniform CR bound provides
the minimum achievable variance of an estimator whose bias-gradient length is below a speci-
fied threshold. Although the bias gradient is related to spatial resolution in some cases [13], in
general it is currently fairly challenging to interpret the tradeoff between variance and bias gra-
dient length. In particular, we have observed some counter-intuitive results concerning optimal
collimator resolution as a function of target image resolution, perhaps in part due to nonlinear
and system-dependent relationships between bias gradient length and spatial resolution [14,15].
Our intuition is that as one reduces the required reconstructed spatial resolution, the variance-
minimizing collimator size should increase1 This intuitive relationship has not always been
apparent in our uniform CR bound experiments, which motivated the work described in this
paper.

One appeal of the uniform CR bound is that it is estimator independent. However, data
from any system must eventually be reconstructed by some estimator, and the class of reason-

1This intuition is somewhat consistent with the findings of Myerset al. [3] on the relationship between optimum
aperture size and signal size in the context of signal detection, although low image variance need not necessarily be
associated with high detection SNR since correlation properties are also important.



able estimators is arguably fairly small. So as a part of exploration of system performance, it
is sensible to also investigate resolution/noise tradeoffs for broad classes of estimators, albeit
without the full generality of the uniform CR bound.

Another difficulty with CR bounds is that they (apparently) require an inherently dis-
crete formulation both for the detector space (which is often but not always natural) and for the
image space (which is somewhat unnatural since emission distributions are continuous entities).
The discrete formulation leads to large matrix inversion problems, and, as shown in [15], chal-
lenges in interpretation due to differences in performance even for neighboring pixels depending
on “small” discretization effects.

In this paper, we adopt a completely continuous formulation. The only discretiza-
tion is at the final step (numerical integration), which is fundamentally different from initially
formulating a discrete problem. The treatment is closely related to “indirect” density estima-
tion [16, 17]. A good reference on direct density estimation is [18]. Other publications that are
relevant to density estimation an image reconstruction include [19–24].

Section 2 describes the problem generally. Section 3 describes the density estimation
approach and analyzes it statistically. Section 4 focuses on the shift-invariant case, considers a
specific kernel for the density estimator based on an apodized inverse filter, and derives analytic
results for specific pinhole shapes. Section 5 reports numerical simulations that confirm the
analysis.

2. Problem

Consider an emitting object with emission-rate densityλ(x) having units emissions per unit
time per unit volume. The emission-rate densityλ(x) is defined over a subsetΩ of IRd, where
typically d = 2 for planar imaging andd = 3 for volumetric imaging. We assume that the
time-ordered sequence of emissions originate from statistically independent random spatial lo-
cations{X1, X2, . . .} drawn from a Poisson spatial point process [25]. In particular, the joint
probability that the firstn0 emissions originate in any (measurable) regionsBn ⊆ Ω is given
by2:

P

[
n0⋂
n=1

{Xn ∈ Bn}

]
=

n0∏
n=1

P [Xn ∈ Bn] =
n0∏
n=1

∫
Bn
λ(x) dx∫

Ω
λ(x) dx

.

Spatial locationsx ∈ Ω over which the emission-rate densityλ(x) has relatively greater values
are the “hot regions” of the object.

For any emission imaging system, not all emitted photons are detected. Lets(x) de-
note thesensitivity functionof the emission system,i.e., s(x) is the probability that a photon
emitted from locationx is detected (somewhere) by the system. Then when the system detects
an emission, the probability (density3) that that emission originated from spatial locationx is
given by

f(x) =
λ(x)s(x)∫
λ(x′)s(x′) dx′

=
λ(x)s(x)

r
, (1)

where

r
4
=

∫
λ(x)s(x) dx

is the total rate of detected events (with units detected counts per unit time4).
2All integrals overdx ared-dimensional.
3Strictly speaking this is a conditional pdf, conditioned on the event that the emission is detected. We consider only

the detected emissions, so for simplicity we omit the notation for conditioning on detection. With such notation, (1) is
just a form of Bayes rule.

4Without loss of generality, one can rescale the time axis exponentially to account for radioactive decay.



Unfortunately, emission imaging systems never observe the emission locations{Xn}
directly. Instead, thenth emitted photon is detected by a position-sensitive measurement de-
vice, which records a positionV n. (The detector may also record other event attributes such as
energy, and our formulation allows for this generality, but for simplicity one can think ofV n as
position.)

For a planar emitting object imaged by an ideal planar detector through an ideal pin-
hole located at the center of the transverse coordinates, the recorded spatial locations would
be related to the locations of the emissions through the simple relationshipV n = mXn, n =
1, 2, . . ., wherem is the (negative) source magnification factor [26]. In this hypothetical case
one could exactly recover the emission location from the measured event positions via the sim-
ple relationshipXn =

1
m
V n. Given the recorded positions of many such photonsV 1, . . . , V N ,

and therefore the positions of many emissions, one could estimate the densityf(x) by a variety
of well-known methods for density estimation, such as a simple kernel estimate:

f̂(x) =
1

N

N∑
n=1

1

β
k

(
x− V n/m

β

)
=
1

N

N∑
n=1

1

β
k

(
x−Xn
β

)
, (2)

wherek is a nonnegative 2D kernel function (e.g.a Gaussian kernel) that integrates to unity [18].
This type of problem is called “direct” density estimation, since the measurements{Xn} are
drawn directly from the densityf(x) that we wish to estimate. The “bandwidth” parameter
β controls the tradeoff between spatial resolution and “noise” (variance off̂ ). When more
detected events are available, one typically uses narrower kernels [18]. The problem of choosing
the bandwidth for kernel density estimation for direct observations is well studied, and data-
driven methods that are efficient in terms of mean squared-error are available [27]. However, in
the context of image recovery, the mean squared-error metric, which equally weights bias and
variance, may not be the appropriate loss function.

An ideal pinhole does not allow very many photons to pass, so in practice one must
use a finite-sized pinhole. Furthermore, the position-sensitive detector does not record theexact
position of the incident photon, but rather a noisy version thereof. In general the recorded posi-
tions{V n} are onlyindirectly related to the emitted positions{Xn} through some conditional
pdf:

f(v|x)

which describes the “infinitesimal probability” that an emission at locationx that is detected
will be recorded at detector positionv. The pdff(v|x) includes both the pinhole collimator
response function as well as the detector response function. A maximum smoothed likelihood
approach to the indirect density estimation problem of estimatingf(x) from the measurements
{V n} is considered in [28], although without analyzing the variance or spatial resolution of the
estimator.

Note that sincef(v|x) is a conditional pdf, it integrates to unity overv. We assume
that this conditional pdf holds forall detected events,i.e.

f(v1, v2, . . . |x1, x2, . . .) =
∏
n

f(vn|xn).

This is reasonable assumption, except possibly at high count rates when deadtime factors and
pulse pile-up effects are significant,e.g.[29].

2.1 The estimation problem

Suppose the imaging system records a total ofN events during a prespecified period of timet0.
By assumption,N is a Poisson random variable with mean

E[N ] = t0

∫
λ(x)s(x) dx = t0r. (3)



Note that for a pinhole system the sensitivitiess(x) of the system increase with pinhole size,
and thus so does the expected number of recorded events. For each of theseN events the system
records independent and identically distributed position attributesV 1, . . . , V N that each have
the following marginal pdf

fV (v) =

∫
f(v|x)f(x) dx (4)

by total probability. This is a list-mode formulation [30,31].
We would like to estimateλ(x) from the observed random variablesN and{V n}

N
n=1.

We assume thatt0, s(x), andf(v|x) are known,i.e., previously determined by some combina-
tion of modeling and system measurements. If we can find an estimatef̂ (x) of f(x), then we
can also easily estimateλ(x). Combining (1) and (3) we see that

λ(x) =
f(x)

s(x)
r =
f(x)

s(x)

E[N ]

t0
.

Thus a natural estimator for the emission-rate densityλ(x) is simply

λ̂(x) =
f̂(x)

s(x)

N

t0
. (5)

We now turn to the problem of finding a suitable estimatorf̂ (x). This is called anindirect
density estimation problem, since the observed measurements{V n} are only indirectly related
to the densityf(x) of interest through (4).

3. Kernel-based indirect density estimator

In this paper, we consider the following class of kernel-based indirect density estimators5:

f̂(x) =
1

N

N∑
n=1

gβ(x, V n), (6)

wheregβ(x, v) is a user-defined function that typically partially inverts the blurring caused by
the system responsef(v|x). A concrete example ofgβ is given in (22) below. The functiongβ
depends on a user-selected parameterβ that determines the spatial resolution off̂ (x). For f̂ (x)
to be a valid pdf, it must integrate to unity. Therefore the functiongβ(x, v) should integrate to
unity overx:

1 =

∫
gβ(x, v) dx.

In direct density estimation, one usually chooses kernel functionsk(·) in (2) that are nonnega-
tive, sincef(x)must be nonnegative, although it is possible to reduce bias by allowing kernels
with negative values [18, p. 66]. In the context ofindirect density estimation, the functiongβ
generallymustcontain negative values in order to partially deconvolve the blur inf(v|x). In the
context of image reconstruction, one can think of the estimator (6) as an event-by-event back-
projector6, where the backprojector includes the ramp filter, apodizer, etc. Note that estimators
in this class are probably suboptimal since they treat all photons equally. Nevertheless it is a
useful class for examining resolution/noise tradeoffs.

5Silverman [18, p. 27] refers to such methods asgeneral weight function estimatesin the context ofdirect density
estimation.

6Our purpose here is to analyze such estimators for the goal of system design, not to argue the merits of such
estimators over alternatives.



Combining (6) with (5), the corresponding estimator for the emission-rate density is

λ̂(x) =
f̂(x)

s(x)

N

t0
=

1

t0s(x)

N∑
n=1

gβ(x, V n). (7)

This emission-rate density estimate is a function defined for allx. There are no pixels or voxels
involved, which simplifies the analysis. The effective number of “degrees of freedom” is de-
termined byN and byβ. In the following we examine the statistical properties of the above
estimator̂λ(x).

3.1 Mean function

The mean function for the estimatorλ̂(x) is derived as follows7:

µ(x) = E[λ̂(x)]

= EN [EV [λ̂(x)|N ]]

= EN

[
N

t0s(x)
EV [gβ(x, V )]

]

=
r

s(x)
EV [gβ(x, V )] (8)

=
r

s(x)

∫
gβ(x, v)fV (v) dv

=
r

s(x)

∫
gβ(x, v)

[∫
f(v|x′)f(x′) dx′

]
dv

=
r

s(x)

∫ [∫
gβ(x, v)f(v|x

′) dv

]
f(x′) dx′

=

∫ [
s(x′)

s(x)

∫
gβ(x, v)f(v|x

′) dv

]
λ(x′) dx′.

Thus we have the followinglinear relationship between the estimator mean and the true emis-
sion density:

µ(x) =

∫
psf(x, x′)λ(x′) dx′ (9)

where

psf(x, x′)
4
=
s(x′)

s(x)

∫
gβ(x, v)f(v|x

′) dv (10)

is effectively theoverall point-spread function (PSF) for the combined image acquisition / re-
construction process. This PSF depends on the system response, which is contained inf(v|x), as
well as the regularization in the reconstruction algorithm, which is contained ingβ. Equations
(9) and (10) are space-varying generalizations of equation (10.32) in Barrett and Swindell’s
text [32] for the mean of a filtered Poisson point process. If one uses agβ function that has neg-
ative values, then the PSF may also have negative values. The reconstructed spatial resolution is
controlled by the PSF (10), so for good spatial resolution,gβ must partially “deconvolve” any
blur caused byf(v|x).

3.2 Second-moment functions

Before computing the autocorrelation function ofλ̂, we first note that sinceN is Poisson,

E[N2] = Var {N}+ (E[N ])2 = E[N ] + (E[N ])2 = t0r + (t0r)
2

7Equation (8) is closely related to equation (3.6) on on p. 36 of [18] for direct density estimation; the remainder of
the derivation is distinct to indirect density estimation.



soE[N2 − N ] = (t0r)2. Then from (7), the autocorrelation function forλ̂(x) is derived as
follows:

Rλ̂(x1, x2) = E[λ̂(x1)λ̂(x2)]

= EN [EV [λ̂(x1)λ̂(x2)|N ]]

=
1

t20s(x1)s(x2)
EN

[
EV

[
N∑
n=1

N∑
m=1

gβ(x1, V n)gβ(x2, V m)

∣∣∣∣∣N
]]

=
1

t20s(x1)s(x2)
EN

[
(N2 −N)EV [gβ(x1, V )]EV [gβ(x2, V )]

+ NEV [gβ(x1, V )gβ(x2, V )]

]

=

(
r2

s(x1)s(x2)

)
EV [gβ(x1, V )]EV [gβ(x2, V )]

+
r

t0s(x1)s(x2)
EV [gβ(x1, V )gβ(x2, V )]

= µ(x1)µ(x2) +
r

t0s(x1)s(x2)
EV [gβ(x1, V ) gβ(x2, V )].

Therefore the autocovariance function forλ̂ is

Kλ̂(x1, x2) = E[λ̂(x1)λ̂(x2)]− µ(x1)µ(x2)

=
r

t0s(x1)s(x2)
E[gβ(x1, V )gβ(x2, V )].

To simplify, note that

E[gβ(x1, V )gβ(x2, V )] =

∫
gβ(x1, v)gβ(x2, v)fV (v) dv

=

∫
gβ(x1, v)gβ(x2, v)

[∫
f(v|x′)f(x′) dx′

]
dv

=

∫ [∫
gβ(x1, v)gβ(x2, v)f(v|x

′) dv

]
f(x′) dx′,

so the autocovariance function is

Kλ̂(x1, x2) =
1

t0s(x1)s(x2)

∫ [∫
gβ(x1, v)gβ(x2, v)f(v|x

′) dv

]
s(x′)λ(x′) dx′. (11)

In particular, the variance function is

σ2(x)
4
= Var

{
λ̂(x)

}
= Kλ̂(x, x) =

1

t0s2(x)

∫ [∫
g2β(x, v)f(v|x

′) dv

]
s(x′)λ(x′) dx′.

(12)
(This equation is a space-variant generalization of (10.31) in [32].) Note that the variance de-
pends inversely on the scan timet0, which is expected.

For a specific imaging systemf(v|x), objectλ(x), and reconstruction methodgβ of
interest, one could compute (9) and (12) for a range ofβ values or pinhole sizes to investigate
the resolution/noise tradeoff. The computational tractability of such evaluations will depend on
the complexity off(v|x) andgβ . To obtain insight into the tradeoffs, we consider the simpler
shift-invariant case in the remainder of this paper.



4. Shift-invariant case

Suppose the system is shift-invariant,i.e.f(v|x) = h(v− x), where for exampleh is a normal-
ized pinhole response function. A pinhole that is mechanically scanned over the emitting object
is an example of a shift-invariant system8. Such systems have been used for many years [26] and
continue to find specialized applications,e.g.[33]. Note that sincef(v|x) is a pdf, it must inte-
grate to unity overv, so we must also haveh integrate to unity. Suppose also that the reconstruc-
tion algorithm is shift invariant,i.e. gβ(x, v) = gβ(x − v) (with a slight notation abuse/reuse).
Finally, assume that the sensitivity is also space-invariant,i.e. s(x) = s0 for some positive
constants0. Then the above expressions simplify as follows.

The mean expression (9) becomes:

µ(x) =

∫ [∫
gβ(x, v)f(v|x

′) dv

]
λ(x′) dx′

=

∫ [∫
gβ(x− v)h(v − x

′) dv

]
λ(x′) dx′

=

∫ [∫
gβ(x− x

′ − x′′)h(x′′) dx′′
]
λ(x′) dx′

=

∫
(gβ ∗ h)(x − x

′)λ(x′) dx′,

wherex′′ = v − x′ and∗ denotesd-dimensional convolution. Thus we have the following
convolution relationship (cf (10.11) of [32]):

µ = gβ ∗ h ∗ λ, (13)

i.e., the estimator mean is the convolution of the underlying emission-rate density with the
system PSFh(·) and the recovery kernelgβ(·). Therefore the spatial resolution is controlled by

psf(x)
4
= (gβ ∗ h)(x), (14)

with corresponding frequency response or overall transfer function

PSF(u)
4
= Gβ(u)H(u), (15)

whereF (u)
4
=
∫
f(x)e−i2πu·x dx denotes thed-dimensional Fourier transform off(x).

Similarly, the inner variance term in (12) becomes:∫
g2β(x, v)f(v|x

′) dv =

∫
g2β(x− v)h(v − x

′) dv

=

∫
g2β(x− x

′ − x′′)h(x′′) dx′′

= (g2β ∗ h)(x− x
′),

which is equivalent to the “noise kernel” of (10.35) of [32]. Thus, in the shift-invariant case the
variance function (cf (10.10) of [32]) simplifies to

σ2(x) =
1

t0s0

∫
(g2β ∗ h)(x− x

′)λ(x′) dx′

=
1

t0s0
(g2β ∗ h ∗ λ)(x). (16)

Therefore in the shift-invariant case it is straightforward to compute variances (approximately)
using FFTs to calculate the convolutions.

8Neglecting edge effects at the boundaries of the field-of-view, and assuming that any magnification factor has
already been accounted for in theV n’s [26].



4.1 Spatially smooth objectsλ(x)

If the object is spatially smooth,i.e. the scale of the spatial variations of(h ∗ λ)(x) is large
relative to the support ofg2β(x), then the variance expression simplifies as follows.

t0s0σ
2(x) = (g2β ∗ h ∗ λ)(x)

=

∫
g2β(x

′) (h ∗ λ)(x − x′) dx′

≈ (h ∗ λ)(x)

∫ ∞
−∞
g2β(x

′) dx′

= λ̃(x)

∫
g2β(x

′) dx′,

where we definẽλ
4
= h ∗ λ (cf (10.41) of [32]). For smallβ or for spatially smooth objects

this approximation should be fairly accurate9. For pinhole imaging,gβ is a real function, so by
combining the above approximation with Parseval’s theorem:

σ2(x) ≈
λ̃(x)

t0s0

∫
g2β(x

′) dx′ =
λ̃(x)

t0s0

∫
|Gβ(u)|

2 du. (17)

This is a very tractable approximation to the estimator variance.

4.2 Resolution-noise tradeoffs

In general, both the sensitivitys0 and the overall transfer functionPSF(u) = Gβ(u)H(u)
depend on the pinhole size. Therefore the expression (17) does not immediately provide the
optimal choice for the pinhole size. In the following we consider a specific class of choices
for gβ(·), and show that the variance-minimizing pinhole size is proportional to the specified
reconstructed spatial resolution.

The relationships (15) and (17) epitomize the resolution-noise tradeoff. For good spa-
tial resolution in (15), we would likeGβ(u) ≈ 1/H(u), but ifH(u) is small, then such aGβ(u)
is large, which amplifies the variance term in (17).

4.3 Apodized inverse filter

Consider a general pinhole with transmissivity functiont(x) ≥ 0, which we assume is nor-
malized so that

∫
t(x) dx = 1. Let T (u) be thed-dimensional Fourier transform oft(x). The

design problem is to choose the pinhole sizew, where the normalized pinhole response function
is defined byh(x) = 1

wd
t(x/w) for whichH(u) = T (wu). Define the apodized inverse filter

Gβ(u)
4
=
A(βu)

H(u)
=
A(βu)

T (wu)
, (18)

whereA(βu) is a user-chosen apodizing function which we assume to be real and symmetric.
Without loss of generality, we assumeA(u) has been defined so that the FWHM ofa(x) has
unit length. From (15), the overall transfer function of this system is

PSF(u) = Gβ(u)H(u) = A(βu),

so the overall PSF is simplypsf(x) = β−da(x/β). Therefore the FWHM of the overall PSF is
preciselyβ for this estimator for any pinhole sizew. We now show that the variance-minimizing
choice for the pinhole widthw is directly proportionalto β.

9As a further approximation, one can assumeλ̃ ≈ λ if the scale of the spatial variations inλ is large relative to the
FWHM of h.



We assumes0 = c0wp for some constantc0 independent ofw and for some power
p > 0. Typically p = d; for example, the sensitivity of a circular pinhole is proportional to its
area, which is proportional tow2. From (17) the variance is approximately:

σ2(x) ≈
λ̃(x)

t0c0wp

∫
|Gβ(u)|

2 du

=
c1

wp

∫
|T (wu)|−2A2(βu) du

=
c1

wp+d

∫
|T (z)|−2A2(zβ/w) dz (19)

wherez
4
= wu andc1

4
= λ̃(x)/t0c0. To find the pinhole widthw that minimizes the variance,

we zero the partial derivative of the varianceσ2 with respect to the widthw:

0 =
−(p+ d)c1
wp+d+1

∫
|T (z)|−2A2(zβ/w) dz

+
c1

wp+d

∫
|T (z)|−22A(zβ/w)Ȧ(zβ/w)

(
−zβ

w2

)
dz

or, by definingα = β/w:

0 =

∫ p+d
2 A

2(αz) +A(αz)Ȧ(αz)αz

|T (z)|2
dz.

The above equality dependsonly on the ratioα = β/w. So if there is a rootα0 > 0 that corre-
sponds to a global minimizer of the varianceσ2, then the variance-minimizingw is proportional
to the reconstructed spatial resolutionβ through the relationshipwmin = α

−1
0 β.

4.4 Relationship to sieves

The above apodized inverse filter is closely related to the method of sieves for density estimation
[34], in the sense that̂λ(x) is an unbiased estimate ofβ−da(x/β) ∗ λ(x).

4.5 Gaussian pinhole example

l

0 rr
b

Figure 1: Profile through an approximate Gaussian pinhole.

As a concrete example, consider the Gaussian pinhole illustrated in Fig. 1 ford = 2 di-
mensional imaging. To simplify notation, definer = ‖x‖ andρ = ‖u‖ for circularly symmetric
2D imaging.



The exact transmissivity of this aperture is

τw(r) =

{
e−µl(r/rb)

2

, r ≤ rb
e−µl, r ≥ rb

.

However, ifµl is sufficiently large, then we can approximate this transmissivity by

τw(r) = exp

(
−π
( κ
w
r
)2)

wherew is the FWHM of the pinhole response (i.e.τw(w/2) = 1/2) and

κ
4
= 2

√
ln 2

π
. (20)

The sensitivity of this pinhole is therefore

sw =

∫
τw(‖x‖) dx =

(w
κ

)d
, (21)

which is proportional towd as expected. The normalized transmissivity (for unit pinhole width
w = 1) is

t(r) =
τ1(r)

s1
= κde−π(κr)

2

,

with corresponding frequency response

T (ρ) = e−π(ρ/κ)
2

.

We choose a Gaussian apodizing functionA(u) = e−π(ρ/κ)
2

so that the PSF corre-
sponding toA(βρ) has FWHMβ. The corresponding recovery filter is thus

Gβ(u) =
A(βρ)

T (wρ)
=
e−π(βρ/κ)

2

e−π(wρ/κ)2
= exp

(
−π
(
ρ
√
β2 − w2/κ

)2)
,

with corresponding space-domain recovery kernel

gβ(x) =
κ2

β2 − w2
exp

(
−π
(
rκ/
√
β2 − w2

)2)
. (22)

SubstitutingA(·) into (19), the variance function is approximately

σ2(x) ≈ λ̃(x)
κd

t0w2d

∫∫
eπ2(ρ/κ)

2

exp

(
−π2

(
ρβ

wκ

)2)
du

= λ̃(x)
κd

t0w2d

∫∫
exp

(
−πρ2

2

κ2

((
β

w

)2
− 1

))
du

= λ̃(x)
κd

t0w2d

[
2

κ2

((
β

w

)2
− 1

)]−d/2

= λ̃(x)
κ2d

2d/2t0

(
β2w2 − w4

)−d/2
,

where we have applied Parseval’s theorem in conjunction with the Hankel transform to eval-
uate the integral. Note that we must havew < β for the integral to be finite,i.e. the pinhole



width must be no larger than the desired spatial resolution. Figure 2 plots the variance versus
pinhole widthw. Differentiating the variance with respect tow and zeroing yields the following
relationship:

wmin =
β
√
2
. (23)

Taking the second derivative confirms that this is the variance-minimizing choice. A plot of the
variance as a function of pinhole width is shown in Figure 2.

Therefore, we have shown that for a Gaussian pinhole imaging system and an apodized
inverse filter reconstruction method, the variance-minimizing pinhole width is proportional to
the desired reconstructed spatial resolution.
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Figure 2: Standard deviation of estimate versus Gaussian pinhole width.

5. Laplacian pinhole example

A somewhat more conventional pinhole is the Laplacian10 pinhole shown in Fig. 3. The exact
transmissivity of such a pinhole is

τw(r) =

{
e−µlr/rb , r ≤ rb
e−µl, r ≥ rb.

If µl is sufficiently large, we can approximate this transmissivity by

τw(r) = e
−γr/w,

whereγ = 2 log 2 andw is the FWHM of the pinhole response. The sensitivity of this pinhole
is

sw =

∫
τw(‖x‖) dx = 2π

(
w

γ

)2
,

10The transmissivity of the 1D version of this pinhole has the form of the Laplacian pdf1
2
e−|x|, hence the name—for

lack of a better name.
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Figure 3: Profile through an approximate Laplacian pinhole.

which is also proportional tow2. The normalized transmissivity is

t(r) =
τ1(r)

s1
=
γ2

2π
e−γr

which has corresponding frequency response [35]

T (ρ) =
γ3

[(2πρ)2 + γ2]3/2
.

We again choose a Gaussian apodizing functionA(ρ) = e−π(ρ/κ)
2

whereκwas defined in (20),
so the PSF again has FWHMβ. Substituting into (19), the estimate variance is approximately

σ2(x) ≈
λ̃(x)

t02πw2/γ2

∫ 2π
0

∫ ∞
0

1

γ6
[(2πρ)2 + γ2]3 exp

(
−π2

(
ρβ

wκ

)2)
ρ dρ dθ

=
λ̃(x)

t0w2
1

γ4

∫ ∞
0

ρ[(2πρ)2 + γ2]3 exp

(
−π2

(
ρβ

wκ

)2)
dρ.

After some tedious integration, we arrive at

σ2(x) ≈
λ̃(x)

t0

1

2(βκ)4
[6y2 + 6y + 3 + y−1] where y = 2π

(
w

κγβ

)2
.

The variance-minimizing pinhole size can be found numerically to bewmin ≈ 0.3β.
The variance for the Laplacian pinhole is also plotted in Fig. 2. The minimum standard

deviation for the Gaussian pinhole is about 2.4 times lower than that of the Laplacian pinhole,
presumably because the Gaussian pinhole is better matched to the Gaussian-apodized inverse
filter.

6. Simulation results

Since the analytical development for the variance-minimizing pinhole width involved approxi-
mations, we performed Monte Carlo simulations to evaluate the empirical variance of the esti-
mators as a function of pinhole size.

We used a 1D object of the form

λ(x) ∝ 9δ(x− 146) + rect((x − 208)/64) + 2Λ((x− 64)/44),



whereΛ(x) = (1 − |x|) rect(x/2) is the unit triangular function. The desired reconstructed
spatial resolution was arbitrarily chosen to beβ = 3 mm. The system responsef(v|x) was a
1D Gaussian pinhole whose FWHMw varied from 0.9 to 2.9 mm. For each pinhole size, we
performed 4000 realizations, where the mean number of photons per realization was100w, i.e.
the sensitivity increased linearly with pinhole size (see (21)). An estimateλ̂(x) was computed
for each realization using the apodized inverse filter (18), which in this case corresponds to a
Gaussian filter with FWHM

√
β2 − w2, as shown in (22).

Figure 4 shows the sample means of the 4000 realizations for each of the 21 pinhole
sizes considered, ranging from 0.9 to 2.9 mm FWHM in 0.1 mm increments. The 21 curves
are indistinguishable because we are fixing the reconstructed spatial resolution toβ = 3mm
FWHM, as confirmed by Figure 4. We also computed the sample standard deviations from the
4000 realizations for each pinhole size. Three of the 21 curves are shown in Fig. 5. Note that the
variance-minimizing pinhole size is3/

√
2 ≈ 2.1mm FWHM, which has the lowest empirical

variance of the three curves shown. (The plot would be difficult to interpret if all 21 curves
were shown.) To verify that the theoretically predicted variance-minimizing pinhole size indeed
yields the lowest variance, Fig. 6 shows the relative empirical standard deviations for each of
the 119 spatial positionsx for whichλ(x) > 0 as a function of pinhole sizew. All of the curves
have a minimum near the predicted value of 2.1 mm FWHM.
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Figure 4: Sample means of 4000 realizations of the estimates ofλ(x), for 21 Gaussian pinhole
sizes ranging from 0.9 to 2.9 mm FWHM. The 21 mean curves are virtually indistinguishable
since the reconstructed spatial resolution has been held fixed at 3mm FWHM.

7. Discussion

We have analyzed the performance of a kernel-based indirect density estimation method for im-
age recovery from list-mode measurements. We showed, under a few simplifying assumptions,
that the variance-minimizing pinhole width is proportional to the desired reconstructed spatial
resolution. The simplifying assumptions include consideration of a shift-invariant imaging sys-
tem, a spatially smooth emitting object, and a particular kernel based on an apodized inverse
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filter. Empirical results confirmed that the predicted variance-minimizing pinhole size yielded
the lowest variability estimates, even for an object that was far from “spatially smooth.” We
conjecture that there should be a monotonic relationship between desired reconstructed spatial
resolution and variance-minimizing pinhole width even for broader classes of image recovery
methods and more general imaging systems. Exploring this conjecture will be the subject of
future work.

Although we have focused on pinholesizein this paper, a more general question would
be ‘what is the optimal pinhole transmissivity function for a given target reconstructed spatial
resolution?’. We conjecture that the density estimation approach described in this paper may be
useful for exploring this question.
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