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Abstract Array of 4x10 photomultipliertubes 
We present the results of combining volume imaging with 

the PE" PET scanner with statistical image reconstruction 
methods such as the penalized weighted least squares (PWLS) 
method. The goal of this particular combination is to improve 
both classification and estimation tasks in PET imaging 
protocols where image quality is dominated by spatially- 
variant system responses and/or measurement statistics. The 
PENN-PET scanner has strongly spatially-varying system 
behavior due to its volume imaging design and the presence of 
detector gaps. Statistical methods are easily adapted to this 
scanner geometry, including the detector gaps, and have also 
been shown to have improved biadvariance trade-offs 

reconstruction method. The PWLS method requires fewer 
iterations and may be more tolerant of errors in the system 
model than other statistical methods. We present results 
demonstrating the improvement in image quality for PWLS 
image reconstructions of data from the PENN-PET scanner. 

Fig. 1. Geometry of the PENN-PET scanner. 

included via a maximum a posteriori (MAP) formulation of 
the estimation problem. 

The expected measurement statistics are usually assumed to 
be Poisson, often with the inclusion of attenuation and other 
effects, and the system response function of PET scanners is 
usually assumed to spatially invariant. Neither of these 
assumptions are completely accurate in practice. One solution 
is to derive a more accurate system model that explicitly takes 
into account all effects such as attenuation, scattered and 
random coincidences, resolution, and others [2]. 

tolerant 
of inaccuracies in system models that do not properly account 
for all effects is to assume Gaussian statistics and minimize a 
penalized weighted least squares (PWLS) objective function, 
rather than a poisson likelihood objective function [31, The 
PWLS objective function, essentially a regularized x 2  
functional, is given by, 

compared to the standard filcered-backprojection (FBP) possibly with the inclusion of an a priori regularizing term 

I. INTRODUCTION 

A. Statistical Image Reconstruction Methods. 
It is well recognized that statistical reconstruction 

algorithms, such as maximum-likelihood via expectation 
maximization (ML-EM), are particularly helpful in cases 
where measurement statistics dominate image quality [I]. To 
realize their full potential, these algorithms depend on accurate 
system models that describe the system response function and 
expected measurement statistics for a known object. 

Statistical iterative methods assume that the expected value 
of the projection data is given by y=E[y]=Ax,  where 
x = (x, I i = 1, ..., n] is a vector of the n voxel values of the 
image, y = ( y ,  I j = 1,. . .,m} are the m projection values, and 
A={Ap} is the m x n  system matrix that gives the 
probability of a photon emitted from voxel i being detected in 
projection bin j .  The measured projection data, on the 0 t h  
hand, is a random vector drawn from the Probability 
distribution function (PDF) given by an assumed Statistical 
model. The ML-EM method aSSumeS that the system model, 
A, accurately relates the PDF of the estimated image data to 
the Poisson-distributed sinogram data and seeks to maximize 
the log likelihood functional given by: 

alternative approach that may be may be 

(1) 

where a = {o, I j = 1,. . . , m} are the standard deviations for the 
projection data and p controls the influence of the modified 
quadratic roughness penalty functional, U(x), described by 
Fessler and Rogers [4]. The standard deviations are estimated 
based on the corrections applied to the raw sinogram data 
during the processing steps prior to the image reconstruction, 
and the effect of weighting the differences between estimated 
and measured projections takes into account the statistical 
quality of the data. 

Minimization of a PWLS objective function by successive 
over-relaxation (SOR) has been shown to be effective in cases 
where the data statistics are not Poisson [ 3 ] .  The SOR 
algorithm is a coordinate-descent method where image pixels 
are estimated in place. In other words, @(x,)is minimized 

advantages of estimating the image data directly, and allowing 
for the straightforward application of a non-negativity 
constraint on the estimated image. 
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sinogram data yc, for attenuation and adjusted the weights 
a-2 = {oi2 I j = 1,. . . , m) , appropriately. 

In addition, the PWLS+SOR may be more tolerant than 
other statistical methods of inaccuracies in the system model 
introduced by the SSRB rebinning and subsequent re- 
normalization steps, since it only takes into account the mean 
and variance of the sinogram data, and does not expect the 
entire probability distribution function (e.g. a Poisson 
distribution) to be characterized. 

B. The PENN-PET Scanner System Model 
The PENN-PET scanner at the University of Pennsylvania 

is a volume-imaging PET camera with an axial field of view 
(FOV) of 12.8 cm, a transverse FOV of 50 cm and gaps in 
coverage of -5 deg where the 6 planar detectors meet as 
illustrated in fig. 1 [SI. 

Since the scanner has no septa, data are acquired in 3D 
mode, with on-line rebinning of the 3D data into standard 2D 
sinograms via the single-slice rebinning (SSRB) algorithm 
[6]. The gaps in the detector coverage lead to the missing 
sinogram regions shown in fig. 2. 

I missing sinogram data  I 

1 
Fig. 2 Sinogram of a cardiac study showing the missing data due to 
5 deg detector gaps. 

The corrected sinogram data, yc, can be described by: 

Y, =a . ( e ,  . e , . e 3 . ~ s s R ~ - b )  (2) 
where Y ~ ~ R B  is the SSRB rebinned sinogram data, b is the 
fitted scatter and randoms subtraction [5 ] ,  a is the attenuation 
correction, and ei are efficiency corrections for i=l:  axial 
variation due to SSRB rebinning of volume acquisition, i=2: 
sampling pattern from on-line rebinning, and i=3: detector 
efficiency variations. 

For conventional filtered-backprojection (FBP) image 
reconstruction, the constrained Fourier space method (CFSM), 
based on consistency conditions in the Fourier transform of 
the sinogram data, is used to estimate the missing sinogram 
data [5,7]. 

Statistical reconstruction methods are easily adapted to 
missing data situations, especially if there are still more 
measured sinogram samples than image voxels, and are 
particularly advantageous in protocols with poor statistics, 
such as whole-body imaging. These methods can directly 
incorporate constraints and prior information to partially 
compensate for the missing rays, unlike FBP, which must 
start with a complete data sinogram. The PWLS+SOR 
method is particularly well suited to reconstruct data from the 
PENN-PET scanner, as the weights associated with the 
regions of missing sinogram data can simply be set to zero. 
The effect of the correction steps in equation (2) on the non- 
zero weights in equation (1) are straightforward to calculate and 
are described by Fessler [3]. To account for the effect of 
attenuation correction, for example, we pre-corrected the 

11. ESTIMATION OF MISSING DATA 

To compare the effectiveness of the PWLS+SOR and 
CFSM-FBP methods in reconstructing the incomplete data 
from the PENN-PET scanner, images were reconstructed of a 
simulated cylinder. LThe notation PWLS "+" SOR 
symbolizes the addition of a positivity constraint in the SOR 
algorithm). The simulation did not include any other effects 
than Poisson noise and detector gaps. The reduction in 
statistical noise is shown in figs. 3 and 4. The missing 
sinogram data are effectively compensated for with both 
methods, as there is sufficient frequency information to for the 
CFSM algorithm to estimate the missing sinogram data [7] .  

Fig. 3a. Simulated uniform Fig. 3b. Simulated uniform 
cylinder data reconstructed by cylinder data reconstructed by 
CFSM-FBP method. the PWLS+SOR method. 

200 cc 

-50 t ~ ! ! ! ! ! ! ! ! ! ! : ! ! ! ! ! ! ! ~  
0 32 64 96 128 

Fig. 4. Transverse line profiles through the center of the images 
(shown above) reconstructed by FBP and PWLS. Pixels are 2 mm. 

Figs. 3 and 4 also illustrate a reduction in the image noise 
for the PWLS+SOR method for similar image resolutions as 
the CFSM-FBP image, where the matched resolution is 
shown by the closeness of the profiles at the edges of the 
cylinder. 
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111. POINT SPREAD FUNCTION 
Reconstructing an image of a point source with missing 

data is more challenging than for a cylinder, as there are more 
missing spatial frequencies in the sinogram data. To 
investigate the effects on the PSF, a slightly off-center line 
was imaged in air and reconstructed without applying any 
corrections for scatter or attenuation. The reconstructed 
images were carefully matched between the two methods to 
have the same FWHM (12 mm) and FWTM (25 mm), which 
are typical of clinical whole-body imaging, and is the same 
resolution used in the phantom and patient images below. 
Surface plots of the central plane of a 3D line source image 
reconstructed by both methods are shown in fig. 5. 

CFSM-FBP PWLS+SOR 
Fig 5. Surface plot of central plane of a 3D line source image 
reconstructed by both methods with equal resolution as determined 
by FWHM and FWTM. The plots are displayed on the same scale. 

CFSM-FBP PWLS+SOR 

Fig 6. Same plots as shown in fig. 5, but thresholded to the 
FWTM for each image. The plots are displayed on the same scale. 

The increased fluctuations in the tails for the CFSM-FBP 
algorithm are evident in fig. 6, which shows the same plots as 
in fig. 5 but thresholded to the FWTM for each image. The 
differences between the two methods are due to the non- 
negativity constraint, which in principle could also be applied 
to the CFSM-FBP method using the technique developed by 
O'Sullivan et a1 [8]. 

IV. RESOLUTION, CONTRAST, AND NOISE 
To evaluate the effects of the non-negativity constraint and 

the incorporation of statistical noise properties by the 
PWLS+SOR method, a cylinder with a hot line source (off- 
center), a warm background and a cold cylindrical insert was 
imaged on the PENN-PET scanner to simultaneously measure 
resolution, contrast, and noise. The phantom was scanned for 
two different imaging conditions, one of low statistics (-50k 
events per image slice), and one or moderate statistics (-250k 
events per image slice). The images were reconstivcted over a 
range of parameters to control the usual biashesolution trade- 
off. For the CFSM-FBP method this was done by setting the 
cut-off frequency of the apodizing Hamming window to 2.0, 

1.0, 0.67, 0.5, and 0.4 of the Nyquist frequency (0.25 mm-l), 
while for the PWLS+SOR method this was done by 
controlling the influence of the regularizing term by setting 
the parameter p in equation (1) to 2-4, where q = 14.0, 12.8, 
9.0, 7.0, 5.9, and 4.7. For the SOR minimization algorithm, 
20 iterations were used, although 10 iterations would likely 
have given similar results. 

The PSF of a PET scanner (with or without detector gaps) 
is not well characterized by estimating a FWHM from a fitted 
Gaussian profile. This is especially true for asymmetric PSFs 
of off-center points. For our purposes resolution was 
calculated using 

FWHM = I/(FWHMi + FWHM+)/2 (3) 

where FWHMR and FWHMT are the radial and tangential 
FWHM directly measured using linear interpolation on 
profiles through the reconstructed line source. This root- 
mean-square measure tends to penalize more asymmetrically- 
shaped PSFs than a simple average of the radial and tangential 
FWHM values. A similar measure was used to determine the 
FWTM. 

Contrast was measured from ROIs of the same diameter as 
the cold cylindrical insert placed over the background and the 
cold insert (determined from a high statistics scan), and 
calculated as the ratio (background - cold)/background. 

Noise was calculated as the standard deviation of the 
background or cold ROIs normalized to the background level. 
The validity of this type of measurement is discussed below. 

A. Resolution versus Noise 
Fig. 7 shows no significant difference in resolution 

(FWHM and FWTM as calculated by equation 3) versus noise 
between the CFSM-FBP and PWLS+SOR methods. For the 
CFSM-FBP algorithm the trade-off was controlled by 
changing the cut-off frequency of the apodizing Hamming 
window, while for the PWL,S+SOR method this was done by 
changing the parameter /? in equation (1) as described above. 
Also shown in fig. 7 are the FWHM and FWTM 
corresponding to the reconstruction parameters used in section 
V, as indicated by the vertical arrows. 

B. Contrast versus Noise 
Fig. 8 shows the contrast vs. noise for the background and 

cold regions for the low and moderate statistics cases. The 
PWLS+SOR demonstrates an improved contrasthoise ratio. 
Similar to fig. 7, vertical arrows for the moderate statistics 
case indicate the contrast corresponding to the reconstruction 
parameters that are used in section V. 

C. Contrast versus Resolution 
Fig. 9 directly compares the contrast versus resolution 

(FWHM as calculated by equation 3) for the two methods, and 
shows an improved contrast for the PWLS+SOR method for a 
given resolution. 
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Fig. 7. Background noise vs. resolution as measured by the 
FWHM and FWTM of a line source in a warm cylinder. The 
vertical arrows indicate the FWHM and FWTM used for the 
reconstructions in section V. I 
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Fig. 8. Contrast vs. noise for two different imaging conditions. 
Note the change in vertical scale between the two count levels. 
The vertical arrows indicate the contrast corresponding to the 
reconstruction parameters used in section V. 

Over the range shown in fig. 9, the contrast versus resolution 
for CFSM-FBP varies linearly for different cut-off frequencies 
of the Hamming window, while for the PWLS+SOR method 
there is a non-linear relation between contrast and resolution. 
The improvement is likely due to both the non-negativity 
constraint and the incorporation of statistical information. 
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Fig. 9. Contrast vs. resolution LFWHM as calculated by equation 
3) as measured from a cylinder with a hot line source, a warm 
background and a cold insert. 

V. APPLICATION TO WHOLE BODY IMAGING 

A. Phantom Study 
An anthropomorphic torso phantom with hot (10: 1 and 3: 1 

ratios of activity to background concentrations, 1 cc each) and 
a cold sphere insert (16 cc) was imaged to examine the 
reduction in noise for the same reconstruction parameters 
indicated by the arrows in figs. 7 and 8, which produced a 
FWHM resolution of 12 mm for the line source in a warm 
background as described above. Attenuation correction was 
performed using a singles transmission source [9]. 

I 1  cc (10:11 16 cc 

CFSM-FBP PWLS+SOR 

hot sphere 

Transverse . Transverse -- 
Frontal Frontal 

Fig. 10. Sections of reconstructed 3D images of an 
anthropomorphic phantom which has hot and cold sphere inserts. 
Imaging and reconstruction parameters are similar to those 
indicated by the arrows in figs. 7 and 8. 

Fig. 10 shows transverse and frontal sections of 3D images 
reconstructed using both methods. Imaging and reconstruction 
parameters were similar to those of the whole-body patient 
study described next to give a basis for comparing the patient 
images. The reconstruction parameters are typical for whole- 
body oncology imaging, with the exception of using no axial 
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smoothing to allow for a more direct comparison of the two 
algorithms. 

Measured contrast and standard deviation values are given 
in table 1. Contrast was measured from ROIs of the same 
diameter as the spherical inserts placed over inserts (determined 
from a high statistics scan), and calculated as the ratio 
lbackground - coldllbackground. Pixel standard deviation was 
averaged from large ROIs placed in each of the 'lung' regions 
of the phantom. 
Table 1. Contrast of spheres and standard deviation of lung 
regions expressed as a percentage of the mean of the warm 
background. 

Contrast Std. dev. 
sphere 1 cc 1 cc 16 cc 

hot hot  cold 
( 1 O : l )  (3:l) 

Ideal contrast 9 2 1 .o  
CFSM-FBP 6 .4  1.6 0.76 - 31% 
PWLS+SOR 7.2 1.8 0.80 -20% 

Table 1 shows higher contrast ratios for the hot and cold 
spheres and a lower pixel standard deviation in the lung 
regions of the phantom. 

B. Patient Study 
A whole body study for breast cancer recurrence was 

performed with typical imaging parameters (approximately 
200k counts per plane). The CFSM-FBP and PWLS+SOR 
images were reconstructed using the parameters described 
above. In addition, the same amount of axial Gaussian 
smoothing (12 mm FWHM) was applied to both of the 
reconstructed images. The 3D reconstructed images were 128 
voxels on a side, with 2 mm voxels. Sections through the 
reconstructed images are shown in fig. 11 and 12. 

While it is not possible to make any conclusions about 
improved tumor detectability, figs. 11 and 12 show a reduction 
in statistical noise for PWLS+SOR compared to CFSM-FBP 
at the resolution shown above (FWHM=12 mm). 

VI. DISCUSSION 
The relative reconstruction times of the algorithms given 

in table 2 show that the ratio in reconstruction times between 
CFSM-FBP and PWLS+SOR is 1:6.5. For the 128-plane 
whole-body image in fig. 12 the reconstruction time for 20 
iterations of SOR is 13 minutes on a DEC Alpha 600 51333 
workstation. We observed that the results of the PWLS+SOR 
method did not change significantly after 10 iterations of the 
SOR algorithm, which would reduce the computation time to 
only 6.5 minutes. 

Table 2. Relative reconstruction times 

Algorithm Relative reconstruction time 

Fig. 11. Frontal and transverse views of a CFSM-FBP 
reconstruction of a whole body oncology study. Cross hairs are 
centered on a metastasis from a primary breast tumor. 

Fig. 12. PWLS+SOR images of the same whole body oncology 
study shown in fig. 1 I .  

Images reconstructed with PWLS+SOR have favorable 
noiselcontrast tradeoffs compared to those reconstructed with 
CFSM-FBP due to (i) the non-negativity constraint and (ii) 
reduced propagation of statistical noise. 

While noise calcblated as the standard deviation of the 
background or cold ROIs does not represent the true pixel 
variance, it can to some extent be considered indicative of 
trends in image noise. The results obtained here are consistent 
with a simulation study (for a scanner without detector gaps) 
where true pixel variance was calculated from multiple 
realizations and showed that PWLS+SOR had improved bias- 
noise trade-offs in comparison to FBP [3 ] .  

The incorporation of statistical information into the 
PWLS+SOR method could be done by other statistical 
methods. Given the imperfect corrections that always occur in 
practice, however, a statistical model that is insensitive to 
departures from the assumed shape of the data distribution is 
probably preferable. 
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