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Abstract

Computation of the Cramer-Rao bound (CRB) on esti-
mator variance requires the inverse or the pseudo-inverse
Fisher information matrix (FIM). Direct matrix inversion
can be computationally intractable when the number of
unknown parameters is large. In this note we compare sev-
eral iterative methods for approximating the CRB using
matrix splitting and preconditioned conjugate gradient al-
gorithms. For a large class of inverse problems we show
that non-monotone Gauss-Seidel and preconditioned con-
jugate gradient algorithms require signi�cantly fewer ops
for convergence than monotone \bound preserving" algo-
rithms.

Key Words: Performance bounds, multi-dimensional
parameter estimation, monotone matrix splitting itera-
tions, Gauss-Seidel, preconditioned conjugate gradient.

I. Introduction

The Cramer-Rao (CR) bound is a widely used lower
bound on estimator covariance. When there are n un-
known parameters the calculation of the CR bound involves
calculation of the inverse or pseudo-inverse of the n � n
Fisher information matrix (FIM). Direct methods of ma-
trix inversion, requiringO(n2) bytes of memory storage and
O(n3) ops (oating point operations), are intractable if n
is large. Often only a few components of the n-dimensional
estimator are of interest in which case the entire inverse
FIM is not needed. For example in medical image analysis
one may be primarily interested in a small q-pixel region
of interest (ROI) corresponding to a tumor or lesion.

In [1] and [2] a recursive method was presented for ap-
proximating columns of the CR bound for unbiased esti-
mation of an element of the parameter vector and for non-
singular FIM. This method requires only O(n2) ops per
iteration per parameter so that, if convergence is fast, a
computational saving is achieved. The important feature
of this algorithm is its monotone convergence which guar-
antees a valid and improving lower bound on estimator co-
variance at each iteration. As will be shown in this paper,
the price of monotonicity is slow convergence.

In this paper we place the method of [1] in the setting
of a general class of iterative algorithms, known as station-
ary and non-stationary linear equation solvers [3]. In this
setting we develop rapidly convergent CR bound approxi-
mationmethods which can be applied to the cases of biased
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parameter estimation, estimation of a function of the pa-
rameters, and singular FIM. The following iterative equa-
tion solvers are considered: monotone and non-monotone
matrix splitting algorithms, such as the method of [1], Ja-
cobi, Gauss-Seidel, and preconditioned conjugate gradient
algorithms. The extension of these algorithms to singular
FIM is achieved by using matrix perturbation methods.

We illustrate these algorithms for an important class of
inverse problems arising in tomographic reconstruction, de-
convolution, and image restoration. We perform numerical
studies for the special case of uptake estimation in radio-
isotope imaging (PET). The uptake is the overall amount of
radio-isotope delivered to a region of interest, and the up-
take estimates are derived from a set of noisy tomographic
projections. After treating uptake estimation with full rank
FIM, we conclude the paper by treating the so-called \miss-
ing angle problem" where only a small range of projection
data is available and the FIM is singular.

II. The Cramer-Rao Bound

Let Y be an observed random variable with probability
density fY (y; �) dependent on an unknown parameter vec-
tor � = [�1; :::; �n]T lying in an open subset � of IRn. De�ne
the n � n Fisher information matrix (FIM)

FY = E�[r� lnfY (Y ; �) r
T
� ln fY (Y ; �)];

where r� denotes the column gradient operator. Let t =
t(�) be a known scalar function of the unknown parameter
vector and let t̂ = t̂(Y ) be an arbitrary estimator of t(�)
having known mean function m(�) = E�[t̂].

The CR bound on the variance of the estimator t̂(Y ) is
[4], [5]

var�(t̂) � _mTF+Y (�) _m; (1)

where _m = r�m is the column gradient vector

[ @m@�1 ; :::;
@m
@�n

]T , and F+Y denotes the Moore-Penrose pseudo-

inverse [6]. When FY is non-singular F+Y = F
�1
Y the ordi-

nary matrix inverse. Note that the pseudo-inverse form of
the CR bound is generally not generally achievable unless
the vector _m lies in the range space of FY [4].

Throughout this paper we will be interested in calculat-
ing the right hand side of (1). The method easily extends
to calculation of the uniform lower bound presented in [4]
for biased estimators.

For non-singular FIM, the right hand side of the CR
inequality (1) can be computed in O(n3) ops by solving
for x in the equation

FY x = _m: (2)
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III. Recursive CR Bound Algorithms for

Non-Singular FIM

Here we describe the monotonically convergent algo-
rithm of [1] in the context of standard splitting iterations
[7, Sec. 10.1], also known as stationary iterations [3], for
approximating the solution to the linear equation (2).

A. Splitting Algorithms

Let F and N be n � n matrices which split FY in the
sense that F�N = FY . The matrix F is called a splitting
matrix and is assumed to be non-singular.

A.1 General Splitting Iterations

The following general splitting iteration for approxima-
tion of the CR bound requires an initial vector �(0)

i): u = N�(k) + _m

ii): Solve : F�(k+1) = u

�(k+1) = _mT �(k+1) (CRB APPROX)

(3)

For any square matrix M with eigenvalues f�Mi g the
root convergence factor is de�ned as �(M) = j�Mi jmax (also
known as the spectral radius ofM). If �(F�1N) < 1 then

�(k) converges to the vector F�1Y _m and the approximating

sequence �(k) converges to the CR bound _mTF�1Y _m [7].
Many algorithms are splitting iterations, such as the Ja-

cobi (J) and Gauss-Siedel (GS) iterations [7, Sec. 10.1]. Let
the FIM have the additive decomposition FY = D+U+L
where D is diagonal and U and L are upper and lower
triangular matrices with zero diagonal entries. The J it-
eration is obtained by making the identi�cations F = D,
N = �(U + L) in (3). For J iterations, the spectral ra-
dius of F�1N may exceed one and N is not generally non-
negative de�nite. Therefore, J iterations may not converge
and are generally not monotone. To ensure convergence
the Jacobi algorithm must be relaxed, corresponding to
using N = (1 �  )D �  (U + L) in place of �(U + L)
where  2 (1; 2) is an over-relaxation parameter. The GS
iteration is obtained from the general splitting iteration
by identifying F = D + L and N = �U in (3). Like J
iterations the GS iterations yield non-monotonic approxi-
mations. However, the GS iterations always converge for
positive de�nite FIM. Step (i) of (3) requires 2n2 ops while
step (ii) requires a number of ops depending on the spe-
ci�c form of the matrix F. When F is diagonal, as in J
iterations, step (ii) requires n ops. For GS iterations the
matrix F is lower triangular and step (ii) of (3) could be
accomplished using backsubstitution (n2 ops). However,
GS iterations are never implemented in this way since, by
rearranging the order of computation, steps (i) and (ii) of
(3) can be accomplished in only 2n2 ops (large n) via the
equivalent iteration:

for j = 1 to M (GS Iteration)

r = ( _mj � fj��(k))=fjj

�
(k)
j = r

�
(k)
[j]n+1

= 0

end

where [j]n = j mod n, fij denotes the ij-th element of FY
and fj� denotes the j-th row of FY .

A.2 Monotone Splitting (MS) Iterations

Assume that F is symmetric positive de�nite and
N = F � FY is symmetric non-negative de�nite. Then
it follows from [1, Eq. (9)] that �(k+1) � �(k) =

_mTF�
1

2 [F�
1

2NF�
1

2 ]kF�
1

2 _m � 0. Assume also that the

splitting algorithm (3) is initialized with �(0) = 0. Then the

approximating sequence �(k) is monotone non-decreasing in
k and, if �(F�1N) < 1, �(k) converges to the CR bound
from below. Such a monotonic splitting (MS) algorithm
yields a sequence of increasingly tight bounds on var�(t̂).

We can ensure that �(F�1N) = �(I � F�1FY ) < 1 by
selecting a matrix F for which F�FY is non-negative def-
inite [1]. This was accomplished by selecting a diagonal
matrix, denoted FEM , which was the FIM associated with
a complete data space.
We next present a general class of FIM-dominating split-

ting matrices F which ensure monotone convergence when
�(0) = 0. De�ne the (2p� 1)-diagonal banded matrix Dp

Dp = Q+ diag (jFY �Qj1) : (4)

where Q = ((fij))ji�jj�p is a (2p � 1)-diagonal banded

matrix, F = ((fij)), jAj = ((jaijj)), 1 = [1; : : : ; 1]T , and
diag(x) is a diagonal matrix with the elements of the vec-
tor x along the diagonal. In particular, D1 is a diagonal
matrix with i-th diagonal element

Pn
j=1 jfijj and D2 is a

tridiagonal matrix [8].
The following lemma follows directly from the diagonal

dominance of the matrix Dp � FY = diag (jFY �Qj 1) �
(FY �Qp) [9, Corollary 7.2.1] and the easily veri�able fact
that when FY has non-negative entries: (Dp �FY )1 = 0.
Lemma 1: If FY is an n�n symmetric matrix thenDp�

FY is non-negative de�nite. Furthermore, if FY has only
non-negative entries, then Dp�FY has rank at most n�1.
One can show that a necessary condition for a (2p� 1)-

diagonal banded matrix F to minimize the root conver-
gence factor �(I � F�1FY ) subject to F� FY � 0, is that
F � FY be rank de�cient. Lemma 1 asserts that F = Dp

satis�es this condition when FY has non-negative entries.
Such Fisher matrices FY arise in many applications includ-
ing the inverse problem considered in Sec. VI.

IV. Preconditioned Conjugate Gradient

Algorithm

When the FIM FY is positive de�nite, the precondi-
tioned conjugate gradient (CG) algorithm can be used to
approximate the solution x [7, Sec. 10.3] giving an approx-
imation to the CR bound _mTx. The CG algorithm con-
verges to the exact solution x in n iterations when run with
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in�nite precision arithmetic. However, when run to termi-
nation it is not computationally competitive with Gaussian
elimination. We will show that with proper precondition-
ing matrix F the following prematurely stopped precondi-
tioned CG algorithm [7, Algorithm 10.3.1] is quite com-
petitive with direct methods and has signi�cantly faster
convergence than MS iterations.

A. Preconditioned CG Recursion for CRB

The following preconditioned CG iteration requires ini-
tialization of �(0) and r(0) = _m�FY �

(0):

Solve: Fz(k) = r(k)

�(k) =

(
0; k = 0

<r(k);z(k)>

<r(k�1);z(k�1)>
; k > 0

p(k) =

�
z(0); k = 0

z(k) + �(k) p(k�1); k > 0

�(k) =
< r(k); z(k) >

< p(k);FY p(k) >

r(k+1) = r(k) � �(k) FY p
(k)

�(k+1) = �(k) + �(k) p(k)

�(k+1) = _mT �(k+1) (CRB APPROXIMATION)

When the preconditioner F is a banded p-diagonal ma-
trix the CG algorithm requires the same number of ops
per iteration (2n2 + 2np2) as the splitting algorithms pre-
viously described. In the CG recursion r(k) is the forward
residual r(k) = _m � FY �

(k) = FY��
(k) where ��(k) is

the approximation error ��(k) = F�1Y _m� �(k). The speed
of convergence of preconditioned CG generally improves as
the eigenvalue spread of F�1FY decreases. The asymptotic
rate of decrease of kr(k)k2 = [��(k)]TFY [��

(k)] is upper

bounded by 2k��(0)kFY

�p
��1p
�+1

�k
, where � is the spectral

condition number of the matrix F�1FY , de�ned as the ra-
tio of its largest to the smallest magnitude eigenvalues [3,
Sec. 2.3.1].

V. CRB Approximation for Singular FIM

The splitting iterations and CG algorithm described in
the previous sections are only applicable to non-singular
FIM FY . If it is known that _m lies in the range space of
FY the CR bound _mTF+Y _m for singular FY can be found
in 4n3=3 ops using the QR factorization to solve for the
min-norm solution x to FY x = _m [7, Alg. 5.7.2]. However,
typically the range space of FY is unknown and much more
computationally intensive algorithms are required, e.g. the
singular value decomposition (SVD) (20n3 ops). Here we
present an iterative approximation to the pseudo-inverse
form of the CR bound for the case of singular FIM and
FY _m 6= 0.
Consider the following matrix

G(�)
def
= (FY + �I)�1FY (FY + �I)�1;

where � > 0 is a free parameter. G(�) is a convergent
approximation to the pseudo-inverse of FY in the sense

F+Y = lim
�!0+

G(�): (5)

The representation (5) can be easily established by con-
sidering the eigendecomposition of FY

F+Y �G(�) =
rX
i=1

� (2�i + �)

�i (�i + �)2
uiu

T
i ; (6)

where �1 �; :::;� �r > 0 are the r non-zero eigenvalues
of FY arranged in decreasing order, and fuig

n
i=1 is an

orthonormal set of eigenvectors. Observe that the range
space of G(�) corresponds to the range space of FY for all
� > 0.
Note that F+Y �G(�) � 0 so that _mTG(�) _m � _mTF+Y _m.

Hence _mTG(�) _m is a valid lower bound on var�(t̂) which

converges to the CR bound _mTF+Y _m as � ! 0. In view of
(5) we have the representation _mTG(�) _m = TFY  where
 is the solution to the linear equation [FY + �I] = _m.
Since the perturbed matrix [FY +�I] is non-singular for � >
0 the CG, GS and other previously discussed algorithms
can be applied to approximating .
Both the speed of convergence and the normal-

ized asymptotic approximation error � = _mT (F+Y �
G(�)) _m=( _mTF+Y _m) increase as � increases. It is eas-
ily shown via Eq. (6) that for � � �min =
mini=1;:::;rf�ig: _mT (F+Y � G(�)) _m � 2�kF+Y _mk2. Hence
the normalized asymptotic approximation error is � �
2�kF+Y _mk2= _mTF+Y _m. The right hand side of this relation
can be bounded (see Appendix) to yield

2�
_mTFY _m

kFY _mk2
� � �

2�

�min
; (7)

which is valid for � � �min. In the following Section,
relation (7) will be used to select an appropriate value of
� to attain a desired magnitude of asymptotic normalized
error.

VI. Application to an Inverse Problem

We illustrate the iterative CR bound approximations for
the inverse problem consisting of estimating the vector �
from the model

Y = A� + w;

where A is an m � n matrix of coe�cients, w is a vector
of independent random noises, and � is the parameter of
interest. This model arises in computed tomography (CT),
such as X-ray CT and emission CT, where Y is a vector of
m projections of a non-negative object attenuation map (X
ray CT) or object intensity (emission CT) �, A is a matrix
of transition probabilities, and w is Gaussian distributed
(X ray CT) or Poisson distributed (emission CT) random
vector with diagonal covariance C. For this model the FIM
is the non-singular n� n matrix

FY (�) = AT C�1 A: (8)
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In many cases the matrix A is sparse with mn� nonzero
entries, � � 1 being the matrix sparsity factor. Due to
the simple form (8) of the FIM the matrix-vector product

FY �
(k) (2n2 ops) can be performed in two nested vector-

matrix multiplications: FY �
(k) = AT

h
C�1A�(k)

i
(4mn�

ops). Furthermore, FY need not be precomputed (2mn2�
ops) or stored (n2 bytes): only storage of the mn� non-
zero elements of A and the m non-zero elements of C is
necessary. Therefore, for matrix sparsity factors � < 0:05
(more than 95% of all elements of A are zero) commonly
encountered in tomography, use of iterative methods for
computing the CR bound can give a substantial reduction
in storage and computation.

In this note we consider a positron emission tomography
PET application similar to that considered in [1]. A down-
sampled 32 � 32 Ho�man brain phantom was used as the
true image intensity �. Here the unknown parameter vec-
tor � consisted of a lexicographical ordering of the n = 640
pixel intensities within an ellipsoidal brain boundary. A
system matrix A corresponding to axially collimated PET
was constructed which acquires projections of the planar
phantom over 40 detector angles and 80 radial detector
bins. This yields a matrix A with m = 3600 rows, n = 640
columns and sparsity factor � = 0:0427. The goal was
to perform unbiased estimation of the integral of � over
a speci�ed region; the so called uptake estimation prob-
lem. Speci�cally, we de�ned t(�) = 1Tregion� where 1region
is a vector indicator function of a square 9-pixel region of
interest within the right ventricle of the brain phantom.
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Fig. 1. Trajectories of iterative algorithms for approximating the
non-singular CR bound for estimates of uptake in the 9-pixel
neighborhood of pixel (21;16). Dotted line labeled CRB de-
notes the true value of the CR bound. Rapidly convergent non-
monotoneGauss-Seidel and preconditionedconjugate gradiental-
gorithms are unlabeled curves at far left of graph (see Figure 2).

Figures 1 and 2 show the convergence trajectories of eight
algorithms. MD1, MD2 and MD50 denote the monotone
splitting algorithms obtained by using the respective pre-
conditioning matrices D1, D2 and D50 de�ned in Sec. III-
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Fig. 2. A magni�ed view of the non-monotone algorithms includ-
ing Gauss-Seidel (GS) and preconditioned conjugate gradient al-
gorithms shown in Figure 1. CGD is a conjugate gradient al-
gorithm using the standard diagonal Jacobi preconditioner and
CGDF uses a preconditioner tailored to the A matrix considered
here.

A.2. These algorithms have convergence rates which im-
prove with the number 2p�1 of non-zero o�-diagonal bands
inDp. The monotone algorithm labeled EM uses the diago-

nal splittingmatrixF = diagi

�
AT
�i1=�i

�
given in [1], where

A�i is the i-th column of A and diagi(ai) denotes a diago-
nal matrix with the scalars ai arranged along the diagonal.
It is interesting that while this latter algorithm beats MD1-
MD50 in the early iterations, it considerably undershoots
the CRB in the later iterations and ends up converging to
the CRB at a much slower asymptotic rate. The JOR al-
gorithm is a Jacobi iteration implemented with relaxation
parameter numerically selected to minimize the root con-
vergence factor:  = 2=[min(j�ij)+max(j�ij)], where f�igi
are the eigenvalues of [diag(FY )]�1FY . The standard un-
relaxed Jacobi algorithm diverged for all cases studied and
is not shown. The JOR algorithm converges faster than
the monotone EM, MD1, MD2, and MD50 algorithms and
appears to be monotonic. However, quantitative enumera-
tion of the JOR trajectory reveals non-monotone behavior
after the �rst 60 iterations.
In Fig. 2 we zoom into the trajectories of the non-

monotone algorithms graphed in Fig. 1. The conjugate
gradient algorithm labeled CGD uses the standard diag-
onal Jacobi preconditioning matrix F = diag(FY ). The
conjugate gradient algorithm labeled CGDF uses a special
preconditioning matrix F consisting of a diagonal matrix,
chosen to make FY approximately circulant, followed by
a Fourier-type preconditioner. The preconditioner used in
CGDF is tailored to the spatially invariant PET applica-
tion and is described in [10] in the context of fast least
squares PET reconstruction algorithms. The GS algorithm
shows very rapid convergence which is only slightly out-
done by CGDF. However, the GS displays a prominent
(2%) overshoot which does not occur in any of the other
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Alg. Asy. Conv. Factor 5% 0.5% Break Even

EM � = 0:9999998 143 521 540
MD0 � = 0:9983984 160 383 540
MD1 � = 0:9983889 153 362 540
MD50 � = 0:9977878 109 259 108
JOR � = 0:9975000 60 152 540
GS � = 0:9376000 3 6 540

CGD �
0

= 0:9317000 8 12 540

CGDF �
0

= 0:7940000 3 4 540

TABLE I

Asymptotic and finite convergence properties of the

iterative algorithms. The columns labeled 5% and 0.5% are

actual number of iterations required for convergence to

within a tolerance of 5% and 0.5% of the CRB. Column

labeled \Break Even" indicates the number of iterations

for which the total number of flops of each algorithm

would be comparable to direct computation of the CRB.

algorithms.
The convergence properties of these algorithms are quan-

ti�ed in Table 1. The asymptotic convergence factors (sec-
ond column of Table 1) are de�ned for the splitting algo-

rithms as � = maxfj�I�F
�1FY

i jgni=1, and for the conjugate

gradient algorithms as the ratio �
0

=
p
��1p
�+1

, where � is the

spectral condition number � = �F
�1FY

max =�F
�1FY

min of F�1FY .
The third and fourth columns show the actual number of
iterations to achieve convergence to within a 5% and a
0.5% tolerance of the CRB, respectively. The �fth column
shows the number of iterations for which each algorithm
would lose its advantage relative to direct computation of
the CRB (2mn� ops to compute FY plus n3=3 ops to
compute F�1Y _m via Cholesky decomposition). For all al-
gorithms except MD50 the number of ops required per
iteration is approximately 4mn� = 0:4 Mops. MD50 re-
quires an additional 1:6 Mops per iteration to solve the
preconditioning equationD50�

(k) = u. Note that while the
entries in the fourth columnmonotonicallydecrease as � in-
creases, the third column is not monotone decreasing. This
illustrates the fact that the asymptotic convergence factor
can be a poor predictor of the non-asymptotic behavior of
matrix iterations [11].
Next we turn to the case of singular FIM arising in the

so-called \missing angle problem" where image parame-
ters must be estimated from a greatly reduced number and
range of projections. For this study only 10 angles from
0 to �=4 and 40 radial bins per angle were used; corre-
sponding to decimating the rows of A by a factor of eight.
This resulted in a matrix A of dimension 400� 640 with
rank 400 and range-space condition number on the order of
1000. The matrix perturbation method discussed in Sec-
tion V was used to approximate the CR bound for uptake
estimation.
We selected a maximum allowable asymptotic normal-

ized error criterion as � = 0:05, or 5%, and � = 0:00074
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Fig. 3. The error bounds on the asymptotic normalized error � as a
function of perturbationparameter � for the case of singular FIM.
Also shown is the exact calculated curve � = �(�) (labeled \true")
and the average of the upper and lower bounds. Note that this
average is close to the exact curve for all values of � < 0:15, i.e.
15% error or less.
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Fig. 4. The trajectories of the Gauss-Siedel (GS) and conjugate-
gradient with diagonal Jacobi preconditioner (GCD) for the case
of singular FIM and uptake estimation. CGD settles to within
5% of the true CR bound in fewer than 15 iterations.

was selected according to (7) as the average of the in-
duced lower and upper bounds on �: � = [ 1

2
��min +

1

2
kFY _mk2=( _mTFY _m)]=2 (see Figure 3). To implement this

selection scheme the minimumpositive singular value �min

ofFY must be available. In practice, �min can be estimated
using successive power iterations [7] or using a slightlymod-
i�ed implementation of the preconditioned conjugate gra-
dient algorithm [3].

Figure 4 illustrates the trajectories of the GS and CGD
iterations. The limiting value of both of these algorithms
is 41.3 which, as expected, lies below the true CR bound
numerically calculated to be 43.5, by approximately 5%.
Note that the GS algorithm has a highly oscillatory trajec-
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tory which does not converge to within 5% of the limit until
after 250 iterations. However, the CGD algorithm settles
down to within 5% of the limit in fewer than 15 iterations.
Finally, while space limitations prevent showing any sup-
porting numerical results, it was observed that a signi�cant
tradeo� exists between the convergence rate and �. This is
because decreasing � forces smaller � and [FY +�I] becomes
increasingly ill-conditioned.

VII. Conclusion

The main conclusions of this paper are: 1) iterative equa-
tion solving methods are e�ective for approximating the
CRB on estimators of any scalar function of the parame-
ters; 2) for sparse-matrix inverse problems these methods
can be implemented with signi�cant savings in memory
and computation load; 3) if monotonicity can be sacri�ced
for the user's application, the non-monotone Gauss-Seidel
and pre-conditioned conjugate gradient methods should be
implemented due to their advantage of very rapid conver-
gence.

Appendix: Bounds on Asymptotic Error

Lemma 2: Assume that _m does not lie in the nullspace
of FY and let � be the normalized asymptotic error � =
_mT (F+Y �G(�)) _m=( _m

TF+Y _m). Assume that � is dominated
by the smallest positive singular value �min of F so that to

o(�): � = 2� _m
T

[F+
Y
]2 _m

_mTF+
Y
_m
. Then

2�
_mTFY _m

kFY _mk2
� � � 2�

1

�min
; (9)

Proof: By assumption _mTF+Y _m > 0 so the inequalities
are well de�ned. We �rst show the lower inequality. The
Cauchy-Schwarz inequality states that juT vj2 � uTu � vT v

for any two vectors u and v. Letting u = F
k=2
Y w and

v = F
k=2+1
Y w we obtain

wTFk+1Y w

wTFk+2Y w
�

wTFkYw

wTFk+1Y w
:

Setting w = F+Y _m and applying the above for k = 2; 1; 0
we obtain

_mTFY _m

_mTF2Y _m
�

_mTPFY _m

_mTFY _m
�

_mTF
+
Y _m

_mTPFY _m
�

_mT [F+Y ]
2 _m

_mTF+Y _m
;

where PFY = F+YFY = FYF
+
Y is a symmetric idempotent

matrix which projects vectors onto the column space of
FY . Since _mTF2Y _m = kFY _mk2 we have established the
lower inequality in (9). The upper inequality in (9) follows
from the sequence of identities

_mT [F+Y ]
2 _m

_mTF+Y _m
� max

f _m : _mTFY _m>0g

�
_mT [F+Y ]

2 _m

_mTF+Y _m

�

= max
_m6=0

�
_mTF+Y _m

_mT _m

�

=
1

�min
:

2
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