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ABSTRACT

This paper presents a new class of algorithms for penalized-
likelihood reconstruction of attenuation maps from low-count
transmission scans. We derive the algorithms by applying to
the transmission log-likelihood a version of the convexity tech-
nique developed by De Pierro for emission tomography. The
new class includes the single-coordinate ascent (SCA) algo-
rithm and Lange’s convex algorithm for transmission tomog-
raphy as special cases. The new grouped-coordinate ascent
(GCA) algorithms in the class overcome several limitations as-
sociated with previous algorithms. (1) Fewer exponentiations
are required than in the transmission ML-EM algorithm or in the
SCA algorithm. (2) The algorithms intrinsically accommodate
nonnegativity constraints, unlike many gradient-based methods.
(3) The algorithms are easily parallelizable, unlike the SCA al-
gorithm and perhaps line-search algorithms. We show that the
GCA algorithms converge faster than the SCA algorithm, even
on conventional workstations. An example from a low-count
positron emission tomography (PET) transmission scan illus-
trates the method.

I. I NTRODUCTION

STATISTICAL methods for reconstructing attenuation im-
ages from transmission scans have increased in importance

recently for several reasons, including the necessity of recon-
structing 2D attenuation maps for reprojection to form 3D at-
tenuation correction factors in septaless PET [1, 2], the widen-
ing availability of SPECT systems equipped with transmission
sources [3], and the potential for reducing transmission noise
in whole body PET images and in other protocols requiring
short transmission scans [4]. The non-statistical filtered back-
projection (FBP) method and the data-weighted least-squares
method [5] for transmission image reconstruction lead to sys-
tematic biases for low-count scans [6–8]. These biases are due
to the nonlinearity of the logarithm applied to the transmission
data. To eliminate these biases, one can use statistical methods
based on the Poisson measurement statistics, which use the raw
measurements rather than its logarithms [6, 9–11]. Statistical
methods also offer reduced variance relative to FBP [6,8,12].
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Several reconstruction algorithms based on the Poisson sta-
tistical model for transmission scans [13] have appeared re-
cently [6, 10, 11, 14–20], all of which converge faster than
the original transmission maximum-likelihood expectation-
maximization (ML-EM) algorithm [9]. Nevertheless, each of
these methods is still less than ideal due to one or more of the
following reasons.

• The EM algorithms [9, 18] and single-coordinate ascent
(SCA) algorithms [6, 10, 11] require at least one exponen-
tiation per nonzero element of the system matrix per itera-
tion, which is a large computational expense.

• Enforcing nonnegativity in gradient-based algorithms [19–
22] is possible but somewhat awkward.

• Many algorithms are poorly suited to parallel processors
such as the i860 arrays that are common at septaless PET
sites. This is true of SCA methods and of algorithms that
use line searches, since a line-search step may not paral-
lelize easily.

This paper describes a new class of algorithms for recon-
structing attenuation maps from low-count transmission scans.
These algorithms are parallelizable, easily accommodate non-
negativity constraints and nonquadratic convex penalties, and
require a moderate number of exponentiations. The derivation
of these transmission algorithms exploits two ideas underlying
recent developments in algorithms for emission tomography:
updating the parameters in groups [23, 24], and the convexity
technique of De Pierro [25, 26]. Integrating these two ideas
leads to a new class of algorithms [27] that converge quickly
and with less computation than previous statistical methods for
transmission tomography.

This work can be considered a generalization of previous
methods for tomographic image reconstruction based onse-
quentialupdates [5,10,11,23,24,28,29]. The fast convergence
of sequential updates for tomographic problems was analyzed
by Fourier methods and shown empirically to converge faster
thansimultaneousupdates in [5]. Tomographic reconstruction
is an important case of the general problem of estimating su-
perimposed signals [30–33]. In [31] a sequential method called
the “alternating maximization” (AM) algorithm was proposed
for this estimation problem, whereas [32] proposed a simulta-
neous update based on an EM algorithm. The improved asymp-
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totic convergence rate of the sequential AM algorithm relative
to the simultaneous EM algorithm was shown in Chapter 5
of [34] (under somewhat restrictive conditions) and later gen-
eralized in [23]. Such sequential algorithms have been given
many names, including iterated conditional modes [35], Gauss-
Siedel [5,28], successive over-relaxation [29], cyclic coordinate
ascent [6], and iterative coordinate descent [11, 36]. In this pa-
per we use the namessingle-coordinate ascentand grouped-
coordinate ascentto distinguish the case where one pixel at a
time is updated from the parallelizable case where several pix-
els are updated simultaneously.

After submitting the abstract for [27], we learned of the in-
dependent work of Saueret al. [37], which includes an algo-
rithm that is similar to one of the algorithms in the class pro-
posed here. The emphasis in [37] is on the parallelizibility
of the algorithms. In this paper, we emphasize the point that,
when implemented efficiently, the new class of algorithms leads
to faster computationeven on a conventional single-processor
workstation. This paper also considers random coincidences,
unlike [27, 37]. Finally, unlike in [37], we do not make a one-
time quadratic approximation to the log-likelihood, since that
approximation can lead to systematic biases for low-count PET
and SPECT transmission scans [6,8].

There has also been work on grouped-coordinate ascent algo-
rithms in the statistics literature [38], which in turn cites related
algorithms dating to 1964! So clearly what is new in this pa-
per is not the general idea of updating parameters sequentially
or in groups, but rather is the specifics of how the iterations
and updates can be formulated to achieve a reasonable balance
betweenconvergence rateandcomputation per iterationin the
PET transmission problem.

The remainder of this paper describes the problem, develops
the new algorithms, and presents a representative example of
performance on real PET transmission data.

II. PROBLEM

The Poisson statistical model is widely used for transmis-
sion measurements that have been formed by counting indi-
vidual photons (SPECT) or photon pairs (PET). In practice,
both SPECT and PET transmission measurements also contain
extra counts due to “background” events such as random co-
incidences [39], scatter [40], emission crosstalk [3], and room
background. We assume

yi ∼ Poisson{bie
−〈ai,θtrue〉 + ri}, i = 1, . . . , N, (1)

whereN is the number of measurements,

〈ai, θ〉 =
p∑
j=1

aijθj

represents theith “line integral” through the attenuation map,ai
denotes theith row of theN × p system matrixA = {aij}, yi
denotes the transmission measurement of theith detector,bi de-
notes theith blank scan measurement,ri denotes the mean num-
ber of background counts in theith measurement,θj denotes the
unknown attenuation coefficient in thejth voxel (units: inverse

length), and theaij ’s are the transmission system model (units:
length) [41]. We assume{bi}, {ri}, and{aij} are known non-
negative constants.

For independent transmission measurements, the log-
likelihood is [9]:

L(θ) =

N∑
i=1

hi(〈ai, θ〉) (2)

where (neglecting constants independent ofθ hereafter):

hi(l) = yi log(bie
−l + ri)− (bie

−l + ri). (3)

The algorithms developed below apply to any problem of the
form (2) with concavehi, including “data-weighted” least
squares estimation [6], the “estimate-weighted” least squares
objective function described in [42], and penalized-likelihood
emission tomography [37].

Since maximizingL(·) leads to unacceptably noisy images,
our goal is to compute a penalized-likelihood estimateθ̂ of the
attenuation mapθtrue, with θ̂ defined by

θ̂ = argmax
θ≥0
Φ(θ), Φ(θ) = L(θ)− βR(θ), (4)

where the objective includes a roughness penalty

R(θ) =
∑
j

1

2

∑
k

wjkψ(θj − θk). (5)

The functionψ should be symmetric and twice differentiable.
Ordinarilywjk = 1 for horizontal and vertical neighboring pix-
els,wjk = 1/

√
2 for diagonal neighboring pixels, andwjk = 0

otherwise. For the results in Section V we adopt the modifi-
cation described in [12, 43, 44], which provides more uniform
spatial resolution.

A. Penalty Function

Although the method applies more generally, for concrete-
ness in this paper we focus on one of the penalties proposed
in [16]:

ψ(x) = δ2 [ |x/δ| − log (1 + |x/δ|) ] . (6)

This function approachesψ(x) = x2/2 asδ →∞, but provides
a degree of edge preservation for finiteδ. Since

ψ̇(x) =
d

dx
ψ(x) =

x

1 + |x/δ|
(7)

implies |ψ̇(x)| < δ, this potential function has bounded influ-
ence. The derivative (7) ofψ requires no transcendental func-
tions, which is desirable computationally.

B. Concavity

Whenri = 0, each functionhi is concave over all ofR, so
it is easily verified thatL(·) is concave over all ofRp . Sinceψ
is strictly convex andL(·) is concave, the objectiveΦ is strictly
concave under mild conditions onA [20]. This concavity is
central to the development of the algorithms below.
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C. Why another algorithm?

Direct maximization of (4) is intractable, so one must use it-
erative algorithms. Generic numerical methods such as steepest
ascent do not exploit the specific structure ofΦ, nor do they
easily accommodate nonnegativity constraints. Thus for fastest
convergence, one must seek algorithms tailored to this problem.
Relevant properties ofL include:

• L(θ) is a sum of concave functionshi(·) (whenri = 0).

• The arguments of the functionshi are inner products.

• The inner product coefficients are all nonnegative.

These properties suggest the use of Jensen’s inequality.

III. G ROUPED-COORDINATE ASCENT ALGORITHMS

As shown by frequency domain analysis in [5], sequential
updates such as SCA converge very rapidly for tomographic re-
construction. Unfortunately, for transmission tomography the
SCA update requires a large number of exponentiations. Con-
sider the partial derivative of the log-likelihood (2) with respect
to thejth pixel value:

L̇j(θ) =
∂

∂θj
L(θ) =

∑
i∈Ij

aij

[
1−

yi

ȳi(θ)

]
bie
−〈ai,θ〉, (8)

where
ȳi(θ) = bie

−〈ai,θ〉 + ri

(see Eqn. (8) of [6]), and where

Ij = {i : aij 6= 0}.

A SCA algorithm must repeatedly evaluateL̇j(θn) at the cur-
rent image estimateθn. Since〈ai, θn〉 changes immediately
after each pixel is updated, one can see from (8) that each
complete iteration requiresM exponentiations, whereM is the
number of nonzeroaij ’s. At the other extreme, Lange’s con-
vex algorithm [15, 20] and scaled-gradient algorithm [16, 20]
for transmission tomography update all pixels simultaneously.
Thus one can compute simultaneously thei-subscripted terms
in (8) prior to the backprojection in (8), so onlyN exponentia-
tions are required. Typically the number of measurementsN is
two orders of magnitude smaller thanM . In other words, there
is an “economy of scale” in terms of computation by updating
all pixels simultaneously2. However, simultaneous updates lead
to slow convergence rates [5,6,23,24].

Rather than updatingall pixels simultaneously, we propose to
update only certaingroups of pixelssimultaneously. If one uses
G groups of pixels, then onlyNG exponentiations are needed
(see Table 1). On the other hand, if the pixels in each group
are well-separated spatially, then we anticipate that they will be
fairly well decoupled, so the algorithm will not suffer from slow
convergence. The results in Section V confirm this intuition.

2Even if the exponentiations are computed approximately, using table
lookups for example, the ratio betweenN andM remains unchanged.

LetS be a subset of the pixels{1, . . . , p}, let S̃ be its comple-
ment, and let|S| be the cardinality ofS. In a GCA algorithm3,
we updateθS while holdingθn

S̃
fixed at thenth update [23]. Un-

fortunately it is even too difficult to maximizeΦ(θS , θnS̃) over
θS directly, so we will settle for finding a method for choos-
ing θn+1S that will at leastmonotonically increasethe objective
function4:

Φ(θn+1S , θn
S̃
) ≥ Φ(θnS , θ

n
S̃
) = Φ(θn).

To ensure monotonicity, we use a generalization of
De Pierro’soptimization transferidea [25, 26], which is illus-
trated in Fig. 1. Instead of trying to findθn+1S to maximize
Φ(θS , θ

n
S̃
), we maximize asurrogate functionφ(θS ; θn) over a

correspondingregion of monotonicityRS(θn) ⊆ R
|S| that we

must choose to satisfy:

Φ(θS , θ
n
S̃
)−Φ(θn) ≥ φ(θS ; θ

n)−φ(θnS ; θ
n), ∀θS ∈ RS(θ

n).
(9)

The GCA update (cf SAGE algorithm [23,24]) is then:

θn+1S = arg max
θS∈RS(θn)

φ(θS ; θ
n), (10)

θn+1j = θnj , j ∈ S̃.

The condition (9) is sufficient to ensure that the iterates pro-
duced by the above generic update will monotonically increase
the objective:Φ(θn+1) ≥ Φ(θn).

A. Choosing Surrogate Functions

We restrict attention here to additively separable5 surrogate
functionsφ(·; θn) satisfying

φ(θS ; θ
n) =

∑
j∈S

φj(θj ; θ
n). (11)

To choose theseφj ’s, we use modifications of De Pierro’s con-
vexity method [25,26] rather than the EM approach of [23,24].
The key step is to note that

〈ai, [θS , θ
n
S̃
]〉 =

∑
j∈S

αij

[
aij

αij
(θj − θ

n
j ) + 〈ai, θ

n〉

]
(12)

for any choice6 of αij ≥ 0 that satisfies the constraint

∑
j∈S

αij = 1, ∀i. (13)

We discuss specific choices forαij in the next section.

3In a GCA method,S varies withn. To simplify notation, we leave this
dependence implicit.

4To simplify notation, in the presentation we incrementn every time a group
of pixels is updated. We reserve the term “iteration” to mean a complete update
of all pixels.

5Separable surrogate functions are very convenient for enforcing the non-
negativity constraint. There may be alternatives that lead to faster convergence
though.

6We assumeαij = 0 if and only if aij = 0 so that (12) is well defined.
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S̃
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Figure 1: One-dimensional illustration of the optimization transfer principle: instead of maximizingΦ(θS , θ
n
S̃
) over θS , we

maximize the surrogate functionφ(θS , θn) iteratively. The higher the curvature ofφ(·, θn), i.e. the greater the norm of its Hessian,
the slower the convergence rate [23,45].

Whenhi is concave over all ofR (such as whenri = 0), then
it follows directly from (12) and the convexity equality that:

hi(〈ai, [θS , θ
n
S̃
]〉) ≥

∑
j∈S

αij hi

(
aij

αij
(θj − θ

n
j ) + 〈ai, θ

n〉

)
.

(14)
Unfortunately, whenri is nonzero,hi is concave only over the
interval(−∞, lmaxi ) where (see [6] or (22) below):

lmaxi =



∞, ri = 0 or ri ≥ yi

log

(
bi

√
yiri − ri

)
, otherwise

.

Thus the inequality in (14) is guaranteed (by the convexity in-
equality) to be satisfied only forθS such that

aij

αij
(θj − θ

n
j ) + 〈ai, θ

n〉 ≤ lmaxi , ∀j ∈ S, ∀i ∈ Ij .

Consequently, we defineRS(θn) as follows:

RS(θ
n) = {θS ≥ 0 : θj ≤ θ

n
j,max, ∀j ∈ S}, (15)

where

θnj,max = argmin
i∈Ij
{θnj +

αij

aij
(lmaxi − 〈ai, θ

n〉)}. (16)

For typical small values ofri, it is reasonable to expect that
lmaxi � 〈ai, θn〉, soRS(θn) will contain most of the relevant
part ofR|S| .

Using the definition (15) as our region of monotonicity
RS(θn), it follows from (14) that we have:

L([θS , θ
n
S̃
]) =

N∑
i=1

hi(〈ai, [θS , θ
n
S̃
]〉) ≥

∑
j∈S

Qj(θj ; θ
n)

for θS ∈ RS(θn), where using (12) and (14):

Qj(θj ; θ
n) =

∑
i∈Ij

αij hi

(
aij

αij
(θj − θ

n
j ) + 〈ai, θ

n〉

)
. (17)

Assuming the groups are chosen so that no two neighboring pix-
els are in the same group7, then the surrogate function defined
by (11) with8

φj(θj ; θ
n) = Qj(θj ; θ

n)− β
∑
k

wjkψ(θj − θ
n
k ) (18)

will satisfy the monotonicity condition (9). Eachφj only de-
pends on oneθj, so sinceRS(θn) defined in (15) above is sep-
arable, the maximization step in (10) reduces to|S| separate
1D maximizations. Thus (10) becomes the parallelizable oper-
ations:

θn+1j = arg max
0≤θj≤θnj,max

φj(θj ; θ
n), j ∈ S. (19)

B. Convergence

Whenri = 0 ∀i so thatΦ is globally strictly concave, it is
fairly straightforward to apply the general convergence proof
in [23] to prove that the sequence of estimates{θn} produced
by the above algorithm ((10) and (19)) monotonically increases
Φ and converges from any starting image to the unique global
maximizer ofΦ subject toθ ≥ 0, under mild assumptions about
S and theαij ’s. There are a few practical caveats that should

7If a group contains neighboring pixels, then one can also apply De Pierro’s
penalty function approach [25, 26] to ensure (9). For a first or second order
neighborhood, the only change is a factor of 2 following the parameterβ in
(26) and in the denominator of (29) [6].

8Note that the1
2

in (5) disappears in (18) since each pair of pixels is counted
twice in (5).
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be considered however. When using finite precision arithmetic,
monotonicity may not hold exactly when the sequence gets very
close to the maximum. Also, usually one will not perform ex-
act 1D maximizations as implied by (19), but rather partial or
approximate maximizations (see below). Finally, whenri 6= 0,
it is cumbersome to compute theθnj,max terms, so in our soft-
ware we take the more pragmatic approach of simply verifying
thatΦ has increased after each complete iteration. (We have
yet to observe nonmonotonicity exceeding numerical precision
limits in thousands of reconstructions.) Verifying monotonic-
ity does not ensure global convergence in the non-concave case.
Nevertheless, it is comforting to know that, at least under ideal
circumstances (i.e.ri = 0, perfect numerical precision, exact
maximizations), global convergence is ensured.

C. The Maximization Step

One simple approach to implementing the maximization (19)
would be to apply a few sub-iterations of the 1D Newton-
Raphson method:

θworkj = θnj

θworkj :=


θworkj +

d
dθj
φj(θj ; θ

n)
∣∣∣
θj=θworkj

− d2

dθ2j
φj(θj ; θn)

∣∣∣
θj=θworkj



+

(20)

θn+1j = θworkj ,

where[x]+ = x for x > 0 and is 0 otherwise. This[·]+ operator
enforces the nonnegativity constraint. The “:=” symbol in the
middle step above indicates “in place” computation, and typi-
cally this step would be repeated a few times. Unfortunately,
the partial derivatives ofφj(·; θn) are fairly expensive to com-
pute exactly, so (20) is impractical.

To reduce computation, we apply methods from [11] and [6].
For the numerator, we approximate theQj function in (17) (but
not the penalty!) by its second-order Taylor series about the cur-
rent estimateθnj , in a spirit similar to [11]. For the denominator,
we use a trick similar to [6] for precomputing an approximation
to the second derivative of theQj function, and a new trick for
the penalty term that exploits its bounded curvature.

The second-order Taylor expansion aboutθnj for the
Qj(·; θn) component of the numerator is:

Qj(θj ; θ
n) ≈ Qj(θ

n
j ; θ

n)+L̇j(θ
n)(θj−θ

n
j )−

dj(θ
n)

2
(θj−θ

n
j )
2,

because from (17) it follows that

d

dθj
Qj(θj ; θ

n)

∣∣∣∣
θj=θnj

=
∂

∂θj
L(θ)

∣∣∣∣
θ=θn

= L̇j(θ
n),

and that

dj(θ
n) = −

d2

dθ2j
Qj(θj ; θ

n)

∣∣∣∣∣
θj=θnj

= −
∑
i∈Ij

a2ij
αij

ḧi(〈ai, θ
n〉),

(21)

where (see [6]):

−ḧi(l) =

[
1−

yiri

(bie−l + ri)2

]
bie
−l. (22)

Note thatθn only entersdj(θn) through its projections〈ai, θn〉.
Thusdj(θn) is fairly insensitive toθn, so we replace〈ai, θn〉
with a precomputed approximation to theith line integral, such
as log(bi/(yi − ri)). Specifically we replacedj(θn) with the
approximation:

d̂j = −
∑
i∈Ij
yi 6=0

a2ij
αij

ḧi

(
log

bi

yi − ri

)
=
∑
i∈Ij
yi 6=0

a2ij
αij

(yi − ri)2

yi
.

(23)
The advantage of using this approximation is that one can pre-
compute (23)prior to iterating. The accuracy of this approx-
imation is illustrated in Fig. 2. To summarize, we replace the
numerator of (20) with this approximation:

d

dθj
φj(θj ; θ

n)

∣∣∣∣
θj=θworkj

≈
d

dθj
φ̂j(θj ; θ

n)

∣∣∣∣
θj=θworkj

=

L̇j(θ
n)− d̂j · (θ

work
j − θnj )− β

∑
k

wjkψ̇(θ
work
j − θnk ). (24)

For the denominator of (20), note that

−
d2

dθ2j
φj(θj ; θ

n)

∣∣∣∣∣
θj=θnj

= dj(θ
n) + β

∑
k

wjkψ̈(θ
n
j − θ

n
k ).

Sinceψ has bounded curvature:

ψ̈(x) =
1

(1 + |x/δ|)2
≤ 1, (25)

we replace the denominator of (20) with

−
d2

dθ2j
φj(θj ; θ

n)

∣∣∣∣∣
θj=θworkj

≈ d̂j + β
∑
k

wjk, (26)

which is independent ofθn so can be precomputed as described
in [6]. Note that this replacement has no effect on the fixed point
of (20). Using the approximation (26) provides a form of built-
in under-relaxation because of the bounded curvature (25) ofψ.

To summarize, for our algorithm for performing the maxi-
mization (19), we replace (20) with (24) and (26), and apply 2
or 3 sub-iterations of the form (20). No forward or backprojec-
tions are computed during these sub-iterations, so they compute
quickly. As in [5, 6, 10, 11], we store the current “forward pro-
jection”{〈ai, θn〉} to further save computation when evaluating
the “backprojection” step (8). Since proper ordering of the steps
is essential for efficient computation, we give the details of the
algorithm in Table 1. (Software is also available; see [46].) The
Appendix describes a modification to (29) that further improves
the rate of convergence.
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Precompute: Initializêθ via FBP

l̂i =

p∑
j=1

aij θ̂j , i = 1, . . . , N. d̂j =
∑
i∈Ij
yi 6=0

a2ij
αij

(yi − ri)2

yi
, ∀j.

for each iteration:
for eachS:

ḣi =

[
1−

yi

bie−l̂i + ri

]
bie
−l̂i , i = 1, . . . , N (27)

for eachj ∈ S:
L̇j =

∑
i∈Ij

aij ḣi (28)

θworkj = θ̂j

for a couple subiterations:

θworkj :=

[
θworkj +

L̇j − d̂j · (θworkj − θ̂j)− β
∑
k wjkψ̇(θ

work
j − θ̂k)

d̂j + β
∑
k wjk

]
+

(29)

end
l̂i := l̂i + aij (θ

work
j − θ̂j), ∀i s.t.aij 6= 0 (30)

θ̂j := θ
work
j

end
end

end

Table 1: The general grouped-coordinate ascent algorithm. Note that the updates ofθ̂j are done “in place.”
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IV. CONVERGENCERATE AND ALGORITHM DESIGN

The method described in the preceding section is a class of
algorithms since there are several factors that the algorithm de-
signer may specify. Most importantly, one can choose the size
and constituent elements of the groupsS for eachn, as well as
the factorsαij (subject to (13)). The parameterβ, thewjk ’s, and
the functionψ are design choices too, but these determine the
objective function, not the algorithm (at least within the class of
convexψ functions with bounded curvature). This section de-
scribes how the algorithm design factors influence convergence
rate and computation time, starting with theαij ’s.

If one were to use a single sub-iteration of the Newton-
Raphson update9, then the “maximization step” ((19), (20), and
(29)) would have the following form:

θn+1S = θnS +D
−1∇TθSΦ(θ

n), (31)

whereD is a |S| × |S| diagonal matrix with entries{d̂j +
β
∑
k wjk}j∈S . We could use (31) to develop expressions for

the asymptotic convergence rate of the algorithm (for any par-
ticular choice ofαij ’s andS ’s) following the analysis in [23].
Here we take a more informal approach and simply note that
(31) suggests that smaller values for the diagonal entries ofD
will lead to larger step sizes, and hence faster convergence10.

A. Choosingαij ’s

If the diagonal entrieŝdj of D are to be made small, then
from (22) we want theαij ’s to be as large as possible, but sub-
ject to the constraint (13). Clearly this constraint depends on
one’s choices forS, but for the moment assume we have fixed
S and we want to choose theαij ’s.

De Pierro [25] proposed an algorithm for emission tomogra-
phy that updates all pixels simultaneously (i.e.S = {1, . . . , p})
and essentially uses (12) with

αij =
aijθ

n
j∑

k∈S aikθ
n
k

. (32)

This was also applied to transmission tomography in [20]. The
choice (32) has three disadvantages. First, ifθnj = 0, then
αij=0, so (22) would not be well defined. This complicates both
implementation and convergence analysis. Second, asθnj → 0,

αij → 0, so d̂j → ∞. Thus, pixels that approach 0 in the
limit will converge increasingly slowly, perhaps even at sub-
linear rates (as observed in the emission case [45]). Third, the
choice (32) makeŝdj dependent onθn, sod̂j cannot be precom-
puted.

One way to overcome the first two drawbacks is to express the
emission algorithm (PML-SAGE-3) developed in [24] in terms
of De Pierro’s convexity method. This leads to the following
choice:

αij =
aij(θ

n
j + zj)∑

k∈S aik(θ
n
k + zk)

, (33)

9One sub-iteration is adequate whenψ is quadratic, for example, or when the
algorithm has nearly converged. So (31) is useful for studying the asymptotic
convergence rate.

10Excepting possible acceleration for small|S| due to under-relaxation as
noted in [6, 24] for quadratic penalties.

for almost11 any positive valueszj . Sincezj is positive,αij will
be positive (whenaij 6= 0). In results not shown, we have con-
firmed that this does lead to faster convergence than (32), pre-
sumably because the largerαij values lead to generally smaller
d̂j values and hence larger step sizes.

However, the choice (33) still depends onθn, precluding pre-
computingd̂j . To eliminate this dependency, we letzj →∞ in
(33). This leads to the following choice:

αij =
aij∑
k∈S aik

, (34)

which is independent ofθn. This choice is similar to that made
by De Pierro for the emission penalty function in [26], and was
used in [27, 37]. Note that the denominator in (34) can be eas-
ily precomputed and stored once-and-for-all for a given tomo-
graphic system and choices forS.

We use the choice (34) for the remainder of this paper.
Whether better choices exist is an open question [47].

B. Special Cases

In the special case where the subsetS contains only one pixel
(S = {j}), then the “algorithm” (19) is equivalent to SCA [6,
10,11], i.e., it turns out that

φj(θj ; θ
n) = Φ(θn1 , . . . , θ

n
j−1, θj, θ

n
j+1, . . . , θ

n
p ).

And in that case, the choice (34) leads to a coordinate-wise
Newton-Raphson update [6,10,11].

At the other extreme, whenS = {1, . . . , p}, then using the
choice (32) with one sub-iteration of (20) is equivalent to the
convex algorithm of [20]. The choice (34) thus corresponds to
an alternative convex algorithm (and one that converges faster).

However, the algorithms that are “in between” those two ex-
treme choices ofS are the most useful, as discussed next.

C. Choosing GroupsS

Optimization algorithms of the class described above seem
to involve the following tradeoff. The more parameters one
updates simultaneously, the smaller the step sizes must be to
ensure monotonicity, since the parameters are coupled. Specif-
ically, from (32), (33), and (34), as the size ofS increases, the
αij values typically decrease, leading to largerd̂j ’s and hence
smaller step sizes in (31). So updating the parameters in smaller
groups typically yields faster per-iteration convergence rates,
with SCA (one parameter at a time) being the extreme case.
However, as mentioned above there are often “economies of
scale” that one can exploit when updating several parameters
simultaneously. So the actual computation per iteration is often
reduced by updating larger groups. Thus for fast convergence
but moderate computation, we would like to update the param-
eters using a few large groups, but chosen such that the parame-
ters within each group are relatively uncoupled. By uncoupled,
we mean that theαij terms are not too much smaller than 1,
which is the value thatαij takes whenS = {j}. Specifically,
note from (34) that the onlyi indices that matter are those in

11The constraint (16) may need to be considered.
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Ij . If one can chooseS so that fork ∈ S the values ofaik are
small fori ∈ Ij , thenαij ≈ 1. For most tomographic geome-
tries with finite-width rays and pixels, there is at least one ray
that intersects any given pair of pixels, so one cannot simulta-
neously achieveαij = 1 with multiple-pixel choices forS. But
pixels that are closer together typically share more intersecting
rays than those that are well-separated spatially, so ifS contains
only spatially well-separated pixels, the values forαij should
be reasonably close to 1. (One might ask “why not just increase
the step size in (31) using an over-relaxation parameter?” The
danger is that such over-relaxation can destroy monotonicity.)

We have investigated the following GCA method. We di-
vide the image into blocks of sizem × m, for smallm, and
then update only 1 pixel out of eachm × m block on a given
sub-iteration12. The number of groups is thusm2, with p/m2

pixels per group. Thus the required number of exponentiations
is onlym2N , which is considerably smaller than the number
of nonzeroaij ’s for small m. Note thatm = 1 is closely
related to the convex algorithm [20], andm =

√
p gives the

SCA algorithm [6]. As one increasesm, the pixels within each
group become more separated and therefore less coupled, which
increases the convergence rate, but the computation also in-
creases. Thus there is a basic tradeoff that can be adapted to
the characteristics of the particular computer architecture.

Method Water Spine Lung
FBP, 14 hour
ROI Mean 0.0939 0.1662 0.0345
FBP, 12 min.
ROI Mean 0.0942 0.1685 0.0373
ROI Std. Dev. 0.0098 0.0115 0.0068
PL-GCA, 12 min.
ROI Mean 0.0945 0.1656 0.0353
ROI Std. Dev. 0.0030 0.0055 0.0015

Table 3: Mean and standard deviations within rectangular re-
gions of interest for the images shown in Fig. 3.

V. RESULTS

In [27] we presented convergence rate results using simulated
PET transmission scans. Here we present analogous results us-
ing real data. Using an Siemens/CTI ECAT EXACT 921 PET
scanner equipped with rotating rod transmission sources [1], we
acquired a 15-hour blank scan (bi’s) and two transmission scans
(yi’s) of an anthropomorphic thorax phantom (Data Spectrum,
North Carolina). The duration of one transmission scan was 14
hours (64M prompt coincidences in the slice of interest) and
the other scan was 12 minutes (0.921M prompt coincidences
in the slice of interest). (Most of these counts correspond to
rays that do not intersect the object.) Delayed coincidence sino-
grams were collected separately. The blank and transmission
scan delayed-coincidence sinograms were in close agreement,
so we used a time-scaled version of the blank scan delayed co-
incidences as theri factors with no additional processing. The

12Similar “generalized checkerboard” decompositions of the image have
been considered for emission tomography [48] [49].

sinogram dimension was 160 radial bins and 192 angles, and
the reconstructed images were 1282 with 4.5mm pixels. For
theaij ’s, we used 6mm wide strip integrals having 3mm spac-
ing [6], which roughly approximates the system geometry.

Reconstructions of the phantom are shown in Fig. 3, by both
FBP and by 20 iterations of4× 4 GCA. For the penalized like-
lihood reconstructions we usedδ = 0.004cm−1 in (6), chosen
by visual inspection. The qualitative properties were rather sen-
sitive to the choice of this parameter. (A 3D penalty function
might reduce this sensitivity by improving the reconstruction of
thin axial structures such as the patient table in Fig. 3.) The sta-
tistical method appears to produce somewhat better image qual-
ity. (See [6] for quantitative resolution-vs-noise comparisons.)

Fig. 4 shows that withm = 4 (16 groups), the proposed GCA
algorithm increased the penalized-likelihood objective almost
as fast as the SCA algorithm per iteration. More important is the
actual CPU time, which is shown in Fig. 5 (for a DEC AlphaS-
tation 600-5/266 workstation). By using fewer exponentiations
and floating point operations, the GCA algorithms require far
less CPU time per iteration than the SCA algorithm. Table 2
compares the number of iterations and CPU seconds required to
(nearly) maximize the penalized-likelihood objective function
Φ. With m = 3 or m = 4, the GCA algorithms converge in
less than half the CPU time of SCA. Furthermore, the GCA al-
gorithms are parallelizable, so with appropriate hardware could
be significantly accelerated. Note that “1 × 1 GCA” is closely
related to the convex algorithm of [20].

Table 3 compares the estimated attenuation coefficients for
three rectangular regions of interest (ROIs) corresponding to
soft tissue, bone, and lung. The ROI values for the 12-minute
data both agree well with the 14-hour reference image. How-
ever, the within-ROI standard deviations for the penalized-
likelihood image are factors of 2-4.5 smaller than those of the
FBP image.

VI. D ISCUSSION

We have described a new class of algorithms for maximizing
(almost) concave penalized-likelihood objective functions for
reconstructing attenuation images from low-count transmission
scans. There is considerable latitude for the algorithm designer
to choose algorithm parameters to achieve the fastest possible
convergence rate on a given computer architecture. When the
objective function is concave, the algorithm converges globally
to the unique maximum. Thus the algorithm design parameters
only affect the convergence rate, not the image quality, unlike
the many popular unregularized methods.

Our results demonstrate that even on a conventional work-
station the new algorithms converge faster than both SCA and
(an improved version of) the convex algorithm of [20]. The
results in [20] and [6] provide additional comparisons to other
alternative algorithms. Based on all of these comparisons, we
consider the transmission EM algorithm [9, 18] to be obso-
lete. For penalized-likelihood transmission image reconstruc-
tion, our proposed GCA algorithms have fast convergence, re-
duced exponentiations per iteration, easily accommodate non-
negativity, and are flexibly parallelizable.

From Table 2, to process the 47 slices of an EXACT PET
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GCA
SCA1× 1 2× 2 3× 3 4× 4

Number of iterations for convergence >40 19 14 13 11

CPU seconds for convergence >54 30 24 24 56

CPU seconds per iteration 1.2 1.3 1.4 1.5 4.8

Table 2: Comparison of CPU times and iterations for the proposed GCA algorithms versus the SCA algorithm. For purposes of
this table, convergence meansΦ(θn)− Φ(θ0) > 0.999[Φ(θ̂)− Φ(θ0)].

scanner using 14 iterations of3 × 3 GCA requires about 19
minutes on a DEC AlphaStation (whereas SCA would require
about 44 minutes). Such processing times bring this statistical
method within the realm of clinical utility, although further time
reductions would still be helpful.

One could combine the grouped-ascent idea in this paper with
the hybrid Poisson/polynomial approximations described in [6]
to further reduce computation. The reductions would be less
dramatic than in [6] since for our GCA method the exponentia-
tions in Table 1 have been moved outside of the backprojection
step, whereas for SCA the calculations in (27) must be done
during the backprojection (8) sinceθn is continually changing.

There are additional advantages of GCA that we have not ex-
ploited here. Relative to SCA, which is best suited toaij ’s that
are precomputed and stored, the GCA approach can more eas-
ily exploit the many tricks available for accelerating forward-
and back-projection operations ((28), (30)), such as symme-
tries in theaij ’s, projection operators based on image rotation,
andaij ’s that separate into sparse line-integrals following by a
space-invariant blur implemented using fast Fourier transforms.
In some applications these tricks should lead to further reduc-
tions in computation time. Additional improvements may fol-
low from further algorithm development. A natural starting
point would be to relax the separability assumption (11).

VII. A PPENDIX

This appendix presents a method for finding the zero-crossing
of d/dθj φ̂j(·; θn) as defined by (24). This method converges
faster than the modified Newton-Raphson method given in Ta-
ble 1. Definex = θj − θnj , andxk = θnk − θ

n
j , and

g(x) = L̇j(θ
n)− d̂j · x− β

∑
k

wjkψ̇(x− xk),

so thatg(x) = d/dθj φ̂j(θnj + x; θ
n). We would like to find the

valuex̂ whereg(x̂) = 0 (i.e. its zero crossing), and then assign
θn+1j = θnj + x̂. LetNj be the number of neighbors of pixelj,
i.e., the number of nonzerowjk terms (typicallyNj = 8). Ob-
serve thatg(x) is the sum of1 +Nj monotonically decreasing
functions; the first of these functions isL̇j(θn) − d̂j · x, which
crosses zero atx = L̇j(θ

n)/d̂j , and the otherNj functions are
the penalty terms, thekth of which crosses zero atx = xk.

The zero-crossing ofg(x) must occur somewhere between
the maximum and minimum of those1 + Nj individual zero

crossings13. We first search over that set of1 + Nj candidate
zero crossings (we also check the values 0 and±θnj ε where
ε is about 0.02) to bound the zero crossing ofg(x) within an
interval (x−, x+). Although the curvature ofψ is certainly
bounded above by 1 as described in (25) and (26), its curva-
ture is bounded above by an even smaller value over the interval
(x−, x+). Specifically:

ψ̈(x− xk) ≤ max{ψ̈(x− − xk), ψ̈(x+ − xk)}
4
= γk. (35)

Note thatγk ≤ 1. Thus we replace the denominator in (29) with

d̂j + β
∑
k

wjkγk.

This leads to faster convergence since the denominator in (29)
is smaller, therefore the step size is larger. Note that by using
the bound in (35) rather than some ad hoc value, we still ensure
monotonic increases in̂φj(·; θn).
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Figure 2: Comparison of the precomputed curvaturesd̂j from
(23), with the asymptotic curvaturesdj(θ̂), whereθ̂ was taken
to be the image shown at the bottom of Fig. 3. The precomputed
values are very good approximations to the final curvatures of
theQj surrogate functions.
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Figure 3: Top: FBP reconstruction of phantom data from 14
hour transmission scan. Middle: FBP reconstruction from 12
minute transmission scan. Bottom: Penalized-likelihood recon-
struction from 12 minute transmission scan using 20 iterations
of the4× 4 grouped coordinate ascent algorithm.
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Figure 4: Objective function increaseΦ(θn) − Φ(θ0) versus
iterationn.
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Figure 5: Objective function increaseΦ(θn) − Φ(θ0) versus
CPU time on a DEC AlphaStation.


