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POSITRON EMISSION TOMOGRAPHY

John M. Ollinger and Jeffrey A. Fessler

Medical imaging is often thought of as a way of viewing anatomical structures of the body.  Indeed, x-ray
computed tomography and magnetic resonance imaging yield exquisitely detailed images of such structures.  It is
often useful, however, to acquire images of physiologic function rather than of anatomy.  Such images can be
acquired by imaging the decay of radio-isotopes bound to molecules with known biological properties.  Such
imaging modalities are referred to as nuclear medicine.

The most common form of nuclear medicine scan involves the use of a gamma-ray emitting radio-isotope
bound to a chemical with known physiological properties.  After it is administered, single photons emitted by the
decaying isotope are detected with a gamma camera [1].  These cameras consist of a lead collimator to ensure that
all detected photons propagated along parallel paths, a crystal scintillator to convert high-energy photons to
visible light, and photo-multiplier tubes and associated electronics to determine the position of each incident
photon from the light distribution in the crystal.  A two-dimensional histogram of the detected events forms a
projection image of the distribution of the radio-isotope and hence of the chemical compound.  An example of
such a procedure would be a cardiac study using thallium-201.  Image intensity is indicative of cardiac perfusion
and can be used to diagnose defects in the blood supply.  It is widely used to screen for bypass surgery.

Planar imaging with gamma cameras has three major shortcomings.  First, the images are projection images.
In these images structures above and behind the organ of interest interfere with image interpretation.  This is a
problem, for example, in scans of obese women, where attenuation in the breast can be misinterpreted as a
cardiac defect.  Second, the radio-pharmaceuticals must incorporate relatively heavy isotopes such as thallium-
201 and technetium-99m.  Since these elements do not occur naturally in biologically active molecules, the
synthesis of physiologically useful tracers incorporating them is a challenging technical problem.  This restricts
the number of available radio-pharmaceuticals.  Finally, the lead collimator absorbs many photons, thereby
reducing the sensitivity of the camera.  These issues are being addressed.  The problems with projection imaging
can be overcome by acquiring tomographic data with a rotating gamma camera and then correcting for
attenuation in a tomographic reconstruction.  This method is called single-photon emission computed
tomography (SPECT) [1]..  Continuing research in radio-chemistry has made more radio-pharmaceuticals
available.  Finally, newer  SPECT cameras with two or three rotating heads have improved the sensitivity.
Nevertheless, single photon imaging still suffers from problems of poor sensitivity and poor quantitative
accuracy.

Positron emission tomography (PET) [1], [2] has inherent advantages that overcome these shortcomings.
Attenuation correction is easily accomplished; positron-emitting isotopes of carbon, nitrogen, oxygen, and
fluorine occur naturally in many compounds of biological interest, and can therefore be readily incorporated into
a wide variety of useful radio-pharmaceuticals; and collimation is done electronically, so no collimator is
required, leading to relatively high sensitivity.  The major problem with PET is its cost.  The short half-life of
most positron emitting isotopes requires an on-site cyclotron, and the scanners themselves are significantly more
expensive than single-photon cameras.  It is, nevertheless, finding growing acceptance for the diagnosis and
staging of cancer.

A PET study begins with the injection or inhalation of a radio-pharmaceutical.  The scan is begun after a
delay ranging from seconds to minutes to allow for transport to and uptake by the organ of interest.  When the
radio-isotope decays, it emits a positron, which travels a short distance before annihilating with an electron.  This
annihilation produces two high-energy (511 keV) photons propagating in nearly opposite directions.  If two
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photons are detected within a short timing window (the coincidence timing window), an event (called a true
coincidence) is recorded along the line connecting the two detectors (sometimes referred to as a line-of-response
(LOR)).  Summing many such events results in quantities that approximate line integrals through the radio-
isotope distribution.  The validity of this approximation depends, of course, on the number of counts collected.
For two-dimensional imaging, these line integrals form a discrete approximation of the Radon transform [3] of a
cross-section of the radio-isotope concentration, and can be inverted to form an image of the radioisotope
distribution.

If they are suitably calibrated, PET images yield quantitative estimates of the concentration of the
radiopharmaceutical at specific locations within the body.  The kinetics of the pharmaceutical can often be
modeled as a linear dynamic system with the arterial concentration of radio-isotope in the blood as the input and
the PET measurement as the output.  The state variables are the concentrations in different compartments of the
tissue, where examples of compartments would be blood, the interstitial space between cells, and the interiors of

cells.  Compartments need not be related to physical
spaces, and can represent, for example, bound and
unbound states of the radio-pharmaceutical.  The exchange
rates between the compartments are parameters of the
models.  Acquiring a series of images sequentially after
injection yields a time-course of the tracer concentration,
i.e., of the output of the model, that can be used to
estimate the model’s parameters.  These parameters can
then be used to calculate physiological parameters of
interest, such as blood flow, glucose metabolism, receptor
binding characteristics, etc.  Thus, PET can be used for
precise quantitative measurements of specific
physiological quantities.

The Physics of PET
A diagram of a PET scanner is shown in Figure 1.

The subject is surrounded by a cylindrical ring of detectors
with a diameter of 80-100 cm and an axial extent of 10-20
cm.  The detectors are shielded from radiation from
outside the field of view by relatively thick, lead end-
shields.  Most scanners can be operated in either a slice-
collimated mode, where axial collimation is provided by
thin annular rings of tungsten called septa, or in a fully
three-dimensional1 mode where the septa are retracted and
coincidences can be collected between all possible detector
pairs.

Detectors
The most critical components of a PET camera are the

detectors [4].  In some cases these are similar to those used
in single-photon imaging: large crystals of sodium-iodide
coupled to many photo-multiplier tubes (PMTs) [5].  A
more commonly used configuration is shown in Figure 2.
In these detectors a rectangular bundle of crystals, a block,
is optically coupled to several PMTs.  As a photon

                                               
1 All commercially available PET scanners simultaneously image three-dimensional volumes, either by imaging the entire
volume as a unit or by stacking adjacent 2D slices.

Figure 1.  A transaxial view of a PET scanner (upper
panel)  top view (lower panel) showing the rod
sources used for attenuation correction (A), the septa
used for scatter reduction (B), the detector blocks
consisting of crystals (C) and photomultiplier tubes
(D), and the end-shields (E).
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interacts in the crystal, electrons are moved from the valence band
to the conduction band.  These electrons return to the valence band
at impurities in the crystal, emitting light in the process.  Since the
impurities usually have metastable excited states, the light output
decays exponentially at a rate characteristic of the crystal.  The
ideal crystal has high density so that a large fraction of incident
photons scintillate, high light output for positioning accuracy, fast
rise-time for accurate timing, and a short decay time so that high
counting rates can be handled.  Most current scanners use bismuth-
germanate (BGO), which generates approximately 2500 light
photons per 511 keV photon, and has a decay time of 300 ns.  One
such block, for example, couples a 7x8 array of BGO crystals to
four PMTs where each crystal is 3.3 mm wide in the transverse
plane, 6.25 mm wide in the axial dimension, and 30 mm deep.
The block is fabricated in such a way that the amount of light
collected by each PMT varies uniquely depending on the crystal in
which the scintillation occurred [4].  Hence integrals of the  PMT
outputs can be decoded to yield the position of each scintillation.
The sum of the integrated PMT outputs is proportional to the
energy deposited in the crystal.

Resolution
If the data are acquired in the collimated mode, the lines-of-response connecting crystals can be binned into

sets of parallel projections at evenly spaced angles as shown in Figure 3.  Two characteristics are evident.  First,
samples are unevenly spaced, with finer sampling at the edges of the field-of-view than at the center.  Second, the
samples along the heavy solid line at angles one and three are offset by one-half of the detector spacing from
samples at angle two.  Therefore, adjacent parallel projections can be combined to yield one-half the number of
projection angles with a sampling distance of one-half the detector width.  For a block with 3.3 mm thick crystals
this sampling distance would be 1.65 mm.

The Nyquist criterion is usually stated in medical imaging applications as requiring that the sampling
distance be one-half the spatial resolution expressed as the full-width-at-half-maximum (FWHM)2.  Hence, this
block would support a spatial resolution of 3.3 mm.  In fact, a scanner with this crystal size has a measured
resolution that is somewhat worse, varying from 3.6 mm at the center of the field-of-view to 5.0 mm at 20 cm
from the center.  This occurs because scintillations usually consist of one or more Compton interactions followed
by photoelectric absorption (assuming the photon is not scattered out of the crystal).  Since a 511-keV photon
travels on average 7.5 mm in BGO before interacting, the light output is spatially distributed.  At large radial
distances it is often distributed across two crystals, leading to the loss of resolution.

The best obtainable resolution is termed the intrinsic resolution.  This resolution is rarely achieved in practice
because unfiltered images are usually very noisy.  Although current scanners have intrinsic resolutions of less
than 5 mm, the final resolution of the image is usually greater than 8 mm because the reconstruction algorithms
trade-off resolution for reduced image variance as discussed later in this article..  This final resolution is called
the reconstructed resolution.  Resolution in PET is not determined by the detectors, but by the degree to which
resolution must be degraded to achieve an acceptable image variance.  Since the variance is determined by the
numbers of counts that can be collected during the scan the constraints that govern the resolution of PET images
are the dosage, the duration of the scan, and the sensitivity of the scanner..

Positron Range

                                               
2 The full-width-at-half-maximum is defined as the distance between the half-value points of the impulse response.  It is the
minimum separation required for two distinct points to be resolved.

Figure 2.  A block detector consisting of a
7x8 array of crystals coupled to four PMTs.
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When the radio-isotope decays, it emits a positron with some non-zero energy.  The positron interacts with
electrons as it travels through the body, losing energy with each interaction.  When its momentum is nearly zero,
it annihilates with an electron to produce two annihilation photons, each with an energy of 511 keV.  These
photons propagate along nearly collinear paths, with the degree of non-collinearity depending on the momentum
of the positron and electron when they annihilated.  The divergence from collinearity is on the order of one
degree or less, and is usually ignored.  The distance the positron travels before annihilating is termed positron
range.  The magnitude of this range depends on the positron energy, which varies widely among isotopes.  The
distribution of positron ranges is very sharply peaked with full-width-half-maximums (FWHMs) ranging from
0.22-0.31 mm and full-width-at-tenth-maximums (FWTMs) ranging from 0.38-1.6 mm [4, 6] in body tissues.
They are much larger in the lungs and other regions containing a significant fraction of air.  Since positron range
is much smaller than the resolution of most scanners, it is not a serious source of error and is usually ignored.

Attenuation
The two possible interactions at 511 keV are photoelectric absorption and Compton scatter.  The incidence of

photoelectric absorption is negligible for 511-keV photons in body tissues.  In a Compton interaction, the photon
interacts with an outer shell electron such that its path is deflected and it loses some of its energy.  Most scattered
photons are scattered out of the field-of-view and are never detected.  The effect of these interactions is termed
attenuation.  The survival probability, i.e., the probability of a photon not interacting as it propagates along the
line l at transverse distance d and angle θ, is given by

P x dxd
l

θ µ= −zexp( ( ) ) (1)

where µ( )x  is the linear attenuation coefficient at position x.  Typical minimum survival probabilities are 0.15

for head scans and 0.003 for body scans.  The survival probability given by equation (1) is also referred to as the
narrow-beam attenuation.

Scattered Events
Those annihilations for which one or both photons are scattered, but both are still detected, is termed a

scattered event, as shown in Figure 4.  These events are incorrectly positioned because the photons’ paths are not
collinear.  A relatively small 30-degree scatter at the center of a typical scanner mispositions the event by 10 cm.
The overall effect is to add an error signal to the data at low spatial frequencies.

Since photons lose a fraction of their energy
when they undergo a Compton interaction, they can
be discriminated from unscattered photons by
measuring the energy they deposit in the crystal.
This can be estimated by the sum of the integrated
PMT outputs.  Although this measurement is only
accurate to within +/- 10% on most scanners, it can
be used with a simple threshold to reject a significant
fraction of the scattered events.  For scanners using
sodium-iodide detectors [5], this accuracy falls to +/-
5%.  This not only improves the effectiveness of
energy discrimination, but also improves the accuracy
of scatter correction [7].

Accidental Coincidences

Figure 3. Sampling pattern in the transaxial plane for a
PET scanner.  Each segment in the detector ring
represents one crystal.  The solid lines show the parallel
projections for the first angle, the dotted lines for the
second angle, and the dashed lines for the third angle.
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Given the large number of scattered photons and the
relatively small solid angle subtended by the detector
ring, it is apparent that for many annihilations only one
of the photons will be detected.  These events are termed
singles.  If two singles arising from separate
annihilations are detected within the same coincidence
timing window, they will be recorded as shown in
Figure 4.  These events are termed accidental
coincidences or randoms.  The rate of accidental
coincidences can be related to the singles rate by noting
that for each single detected at detector i, on average
τRj  singles occur at detector j during the coincidence

timing window τ , where Rj  is the singles rate at

detector j.  Since each of these τRj  singles results in a

coincidence, there are τR Ri j  coincidences per unit time in which the first detected photon is incident on detector

i.  The total number of accidental coincidences is the sum of those for which the first photon is detected at
detector i and those for which the first photon is detected at detector j.  Hence, the rate of accidental coincidences
along the line-of-response connecting detectors i and j is given by

R R RA i j= 2τ . (2)

Examination of Equation (2) shows that reducing the coincidence timing window reduces the counting rate of
accidental coincidences.  However, timing inaccuracies due the variations in the rise-time of the crystal light
output require a timing window of 10-15 ns for BGO.  Since the incident singles rates are proportional to the
amount of injected isotope, the accidental coincidence rate increases as the square of the amount of isotope in the
field-of-view (for counting rates that do not saturate the detectors).  This count rate limitation determines the
upper limit on the injected dose for many studies.

Detector Efficiency
The efficiency of photon detection varies widely across the elements of a block detector [6].  Referring to

Figure 2, it is apparent that a photon scattering in a central element will probably deposit the remainder of its
energy in adjacent crystals.  It might not be positioned as accurately as an event that deposits all of its energy in a
single crystal, but it will be detected.  A photon scattering in an edge crystal, on the other hand, has a significant
probability of scattering out of the entire block, and not being detected at all.   This results in a decrease of
detection efficiency in the edge crystals relative to the center crystals.  This efficiency is different for scattered
and true events because scattered events have different photon energies and, for a given line-of-response, the
scattered photons arrive from a wide range of angles while unscattered photons along a given line-of-response
arrive at nearly the same angle.

Deadtime
The time required to process a single event limits the counting rate of a PET scanner [8].  Event processing

begins with the rising edge of the pulse for the first detector involved.  The pulse is integrated for some time
interval, then position calculations and energy discrimination are performed.  The detector is ‘‘dead’’ to new
events during this time.  At very low counting rates, randoms are negligible and the number of true events is
linearly related to the amount of activity in the field of events.  The number of randoms increase as the square of
the activity in the field-of-view until deadtime becomes significant.  Then the number of true events begins to
saturate.  As the counting rate increases, the numbers of trues and randoms peak and then decline because of the
detector saturation.

Fully Three Dimensional PET

Figure 4.  Diagram of a scattered event (left) and an
accidental coincidence (right).  Photons shown
leaving the ring are scattered through an oblique
angle such that their paths do not intersect a detector.



-6-

In the foregoing discussion we have assumed that data are collected in two dimensional planes.  Current
scanners have retractable septa so that coincidences can be acquired among all possible pairs of detectors, a mode
called fully 3D PET.  This increases the effective sensitivity of the scanner by a factor of three to four [9] with a
concomitant reduction in image variance.  This comes at the cost of a large increase in the scatter fraction and
singles rates (due to annihilations outside the field-of-view of the camera).  Until recently fully 3D data were not
used for two reasons: the unavailability of fully 3D image reconstruction algorithms and the necessity of rejecting
scattered events with axial collimation.  The advent of fully 3D reconstruction algorithms [10] and scatter
correction algorithms [11-13] has changed this.  Two dimensional imaging is still used in cases where counting
rates are very high or shielding from regions just outside the field-of-view is required.

A Physical Model
If statistical effects are ignored, these factors can be incorporated into a model for the total number of

recorded events to yield
~
Y P Y A Sd d d

T
d d d

R
d d

S
dθ θ θ θ θ θ θ θ θγ η η η= + + (3)

where Ydθ is the number of annihilations with photons emitted along the line-of-response specified by (d,θ), Pdθ

is the survival probability as defined in Equation (1), Adθ  is the number of accidental coincidences, Sdθ is the

number of scattered events, η θd
T  is the probability of detection for true events, η θd

R  is the probability of detection

for true events, η θd
S  is the probability of detection for scattered events, and γ θd  is the probability of an event not

being lost due to deadtime.
Of the effects included in Equation (3), attenuation is not only the most pronounced but also the most

straightforward to characterize.  Prior to the emission scan, a transmission scan is performed.  Here a rotating line
source containing a long-lived isotope rotates around the subject to provide a nonzero flux of photons along each
line of response.  The measured data yield the number of transmitted events, Tdθ , along each line-of-response.

Every morning a blank scan, i.e., a transmission scan with nothing in the scanner is performed, yielding a data set
Bdθ .  The survival probability given by Equation (1) is approximated by their ratio,

$P
T

Bd
d

d
θ

θ

θ

= . (4)

This estimate of survival probabilities would be exact if the data were noiseless but contributes a significantly to
the overall image variance in practice.

A simple way to estimate the accidental coincidences is to note that the arrival times of the photons due to
randoms are uniformly distributed in time while those of true coincidences fall within the coincidence timing
window.  Collecting data in a second coincidence timing window offset in time such that it collects no true
coincidences yields data with nearly the same mean as that of the randoms falling in the trues timing window.
This method is simple to implement, and is usually performed in hardware before the data are stored.  Moreover,
the mean of the measured data is the product γ ηθ θ θd d

R
dA , so the detector efficiencies for accidental coincidences

η θd
R  do not have to be estimated.  The major drawback to this approach is that the variance of the estimate is of

the same order of magnitude as the variance of the data, so the subtraction can lead to a significant increase in the
variance of the data unless noise reduction methods are used [14].
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For septa-extended scans, the fraction of scattered
events is low, approximately 15% of the total number
of collected events.  They are usually estimated as an
integral transformation of the measured data using an
empirically determined kernel [15].  For fully 3D
scans, the scatter fraction rises to 30-50% of the total
number of events.  It can be estimated using a
mathematical model of the scanner and scattering
process [12, 16] or by utilizing data collected in a
second, lower, energy window that acquires a higher
fraction of scattered events [11, 13].

The detector efficiencies for true and scattered
events are estimated from a scan of a calibration
source with known characteristics [8].  Deadtime is
dependent on many factors related to the architecture
and design of a specific machine, so its estimation is
tailored to the scanner [17].  It is usually assumed to
be constant over the duration of the scan.

These parameters can be used to estimate the
number of emitted photons by using the expression

$ (
~ $ ) $Y

P
Y A Sd

d d
T

d
d d d

S
dθ

θ θ θ
θ θ θ θγ η

η= − −1 e j (5)

where we assume that $A Ad d d
R

dθ θ θ θγ η= E , $S Sd d dθ θ θγ= E , and E •  denotes expectation.

The data modeled by Equation (3) are often stored in two dimensional arrays with the columns indexed by d
and the rows by θ.  Since d varies sinusoidally with θ, these data arrays are frequently called sinograms.

Image Reconstruction Assuming Deterministic Data
The goal of image reconstruction is to recover the radiotracer concentration from the measurements.  This

inverse problem is not unlike the classical signal processing problem of deconvolution [18]. However,
straightforward application of “off-the-shelf” signal processing and image restoration methods yields suboptimal
results for PET image reconstruction.

In this section we summarize some of the methods that have been proposed for PET image reconstruction,
with a particular emphasis on those with origins in signal and image processing. This review is by no means
complete, and is primarily intended to describe the potential “pitfalls” of each approach. Most of the discussion
also applies to SPECT image reconstruction.  We begin by deriving a widely used linear algorithm, then we
discuss pre- and post-processing techniques proposed for use with it, and end with a survey of statistical image
reconstruction methods.

Filtered Backprojection
One way to greatly (over)simplify the problem is to ignore the measurement noise altogether, and to assume

that the measured data approximate line integrals through the radio-isotope distribution.  This leads to the
classical filtered-backprojection (FBP) method for tomographic image reconstruction [19]. This method is used
routinely for X-ray CT, as well as for PET and SPECT.  Its widespread popularity stems from historical reasons
of computational simplicity, not because of any widely accepted advantage in image quality. Since it is derived
without any statistical information, it is unsurprising that use of the unmodified FBP method leads to
unacceptable noise amplification in PET.

Filtered backprojection was first applied to PET by Shepp et al. [20].  Introductory treatments of the
algorithm can be found in [19]  and [21] and more comprehensive treatments in [3] and [22].  The distribution of

Figure 5.  Projection geometry.
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the radio-isotope is modeled by the function λ( , , )x y z L∈ 2 .  We assume that the mean of an individual

measurement is given by g d x y z dxdydz
d

θ
θ

λ( ) ( , , )
( , )

= z
l

 where l( , )d θ  is the line connecting the two detectors

involved in the coincidence.  In the rotated coordinate system of Figure 5, d x= θ , so the line integral can be

expressed as

g x x y dy x yθ θ θ θ θ θ θλ θ π( ) ( , ) , [0, ), ,= ∈ ∈ℜ
−∞

∞z (6)

where xθ  represents transverse distance in the rotated coordinate system shown in Figure 5.  We will refer to the

function g xθ θ( )  (and the data it approximates) as a projection.

The Fourier transform of each projection is given by
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This result, known as the projection-slice theorem, has two implications.  First, the Fourier transform of a
projection yields samples of the 2D Fourier transform of the image, and second, these sample lies along a line at
the same angle θ  in the frequency domain as that of the projection in the spatial domain.  This result can be
written in more standard notation as

Gθ γ θ ρ
ρ ρ γb g b g=

= ∈ℜ
Λ ,

,
(8)

where the Fourier transform of the image is now expressed in polar coordinates ρ γ,b g .  Equation (7) can be used

to reconstruct the image by constructing the Fourier transform in polar coordinates, interpolating to rectangular
coordinates, and then taking the inverse transform.  A more efficient method can be derived as follows.  The
image λ( , )x y  is given by

λ πx y u v e dudvj ux vy, ( , ) ( )b g = +

−∞

∞

−∞

∞ zz Λ 2 . (9)

Transforming to polar coordinates as shown in Figure 5 using the expressions u = ρ θcos , v = ρ θsin ,

x r= cosφ , and y r= sinφ  yields

λ φ ρ ρ θ ρ θ ρ θπρ φ θπ
r e d dj r, ( cos , sin ) cos( )b g = −∞zz Λ 2

00

2
. (10)

Rewriting Λ Λρ θ ρ θ ρ θcos , sin ,b g b gas  and using the facts that cos( ) cos( )φ θ φ θ π− = − − +  and

G Gθ θ πρ ρ( ) ( )= −+ , this can be rewritten as

λ φ ρ ρ θ ρ θπρ φ θπ
( , ) , cos( )r e d dj r= −

−∞

∞zz Λb g 2

0
. (11)

Applying the projection-slice theorem leads to

λ φ ρ ρ ρ θ

φ θ θ

θ
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where ~ ( ) ( )g x Gθ θρ ρ= ℑ−1m r  and ℑ ⋅−1lq denotes the inverse Fourier transform.  Discretizing leads to the

expression

λ φ φ θ
θ

( , ) ~ ( cos( ))r g ri i
i

N

= −
=

−

∑
0

1

. (13)

Note that the discretization and the finite support of the image and projections necessitate modifications to the
filter [19].

Equation (13) shows that the value of the image at a point r rcos , sinφ φb g  in Figure 5 can be found by first

filtering the projections with a ramp filter, then summing the filtered values at the coordinate x r
i iθ θ φ= −cos( )

over all projection angles θ i .  Note that the value at x
iθ  will contribute to all pixels along the lines-of-response

that contributed to the measurement at this point.  The algorithm can be efficiently implemented by filtering each
projection and then adding each filtered value into all voxels along the corresponding line-of-response as shown
by the dashed line in Figure 5.  The latter operation is called backprojection, so the algorithm is unsurprisingly
called filtered-backprojection.  This algorithm and its extension to three dimensions [10], [23] is used almost
exclusively for image reconstruction in PET.  It is identical to the algorithm used in x-ray CT except for
modifications to the filter necessitated by the noise properties of PET data.

0.001

0.010

0.100

1.000

10.000

0 0.5 1 1.5 2 2.5 3

Frequency in 1/cm

M
ag

n
it

u
d

e

0.0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

Frequency in 1/cm

M
ag

n
it

u
d

e

Figure 6.  The magnitude spectrum of a typical projection (upper curve) and a nearly noiseless projection (bottom
curve) are shown at the top.  Two practical filters are shown at the bottom: a ramp filter cut off at 50% of the
Nyquist rate and the same filter windowed with a Butterworth filter.
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There are several major problems with this algorithm.  First, although the intensity is known to be non-
negative, the algorithm yields negative values, particularly if the data are noisy.  Second, models for the detector
response must be space-invariant and can only be incorporated into the algorithm as a deconvolution with the
attendant noise amplification.  Finally, and most importantly, the ramp filter accentuates high frequency noise.
This effect can be seen by examining the magnitude spectrum of the typical and low-noise projections3 of the
same image shown in Figure 6.  It is apparent that reconstructing with an unwindowed ramp filter is unwise.  For
frequencies above 0.8 cm-1 the data are dominated by noise so the resulting images would be too noisy, as shown
at the top left in Figure 7.  Moreover, in many systems frequencies near the foldover frequency are significantly
aliased, and should be rejected.  Therefore, the ramp is often truncated at one-half the foldover frequency as
shown at the bottom in Figure 6.  The effect on the image is shown at the top right in Figure 7.  Although this
image is still too noisy for visualization, it would be useful for quantitative measurements that involve averaging
over a region.  This window degrades the resolution from an intrinsic resolution of 5.2 mm to a reconstructed
resolution of 5.6 mm FWHM.  For visualization purposes, the ramp filter is often apodized with a Hanning,
Parzen, or Butterworth window.  An image reconstructed with a fifth-order Butterworth window with a cutoff
frequency of 1 cm-1 is shown at the bottom left in Figure 7.  Examination of the image shows what appears to be a
small defect in the thalamus, as shown by the arrow.  This particular subject was scanned again in the fully 3D
mode three minutes after the first scan, yielding the image shown at the bottom right in Figure 7.  There is no
evidence of the defect in this image.  The apparent defect is probably due to noise at spatial frequencies near 1
cm-1, which are not attenuated by the Butterworth filter.  In this case filtering gives the impression of a noise-free
image by reducing high-frequency noise but does not eliminate low-frequency artifacts4.  Concern over such
issues leads naturally to the development of more sophisticated algorithms..

Statistical Image Reconstruction

A More Complete Model of the Data
This summary of statistical reconstruction methods is condensed from [35].  The measurement statistics are

quite complex, so any treatment (including ours) must make simplifying assumptions. However, many papers in
the signal processing and statistics literature over-simplify the problem, e.g. [36], so we attempt to be somewhat
more complete here.  We modify the notation used earlier to emphasize functional dependencies.

Since PET measurements are based on a counting process, a reasonable5 statistical model is that the
measurements have independent Poisson distributions:

                                               
3 The low-noise projection was found by reconstructing the image and reprojecting it to form an estimated projection.  The
variance of the noise in this estimated projection will be reduced by a factor approximately equal to the number of
projections.  In this case 192 projections were used.
4 The fully 3D image differs from the 2D image in that more counts were collected and the image was sampled by many
more lines-of-response.
5If a deterministic finite number of nuclei are injected into the patient, then strictly speaking a multinomial distribution
would be more precise than the Poisson assumption. However, in practice the exact number of nuclei is unknown and may
well be considered a random variable with a Poisson distribution. In this case the radioactive decay will be a Poisson
process; furthermore, a Poisson process “thinned” by Bernoulli trials remains Poisson [37]A. Macovski, Medical imaging
systems. New Jersey: Prentice-Hall, 1983., all of which leads to the Poisson model.

Figure 7. A glucose metabolism image reconstructed with a ramp filter (top left), a ramp filter cut off at one-
half the Nyquist frequency (top right), a ramp filter cut off at one-half the Nyquist frequency windowed with
a fifth order Butterworth filter with a cutoff frequency of 1 cm-1 (bottom left), and data of the same subject
acquired in the fully 3D mode (bottom right).  The fully 3D image was reconstructed from more finely
sampled data containing a higher number of counts.
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Y Y i ni i~ , , , ,Poisson ( )λm r = 1 K (14)

where n is the number of coincident detector pairs, λ is the spatial distribution of radio-tracer (typical units are

counts/s/cm3), and Yi λb g  is the mean of the ith measurement. (Note that each i corresponds to a unique dθ  pair

in the notation used above.)  The measurement means depend on the radio-tracer distribution λ(x) through the
physical model described above; for low to moderate counting rates, the dependence is nearly linear in λ:

Y T p x x d x s ri i i i( ) =λ λ λ λ( ) ( ) ( ) ( )+ +ze j (15)

where T is the scan time, p xib g is the (unitless, scatter-free) point-response function of the ith detector pair6,

si( )λ  is mean rate of detected scattered events for the ith detector, ri( )λ  is the mean rate of detected random

coincidences for the ith detector pair7, and the integral is over the scanner field of view.  Although the scatter
contribution si( )λ  is linear in λ, the random coincidences ri( )λ  depend nonlinearly on λ  (if the detectors are

not saturated, the singles rates increase monotonically with λ  and the randoms increase as the square of the
singles rates as described by Equation (2)).  For most scanners, the singles rates required to model this
dependence directly are not available, so the estimates obtained with the delayed coincidence window [38] are
used to obtain information about ri( )λ .

For moderate counting rates, the linearity in λ  implied by the first term in (15) is reasonable. However, for
high count rates, the measurement means are highly nonlinear functions (in fact nonmonotonic functions) of the
activity in the patient due to scanner deadtime [17].  In practice, the effect of this nonlinearity is reduced to a
single deadtime correction factor for each plane, or, more accurately, by different correction factors for different
detector pairs or detector blocks.  This type of correction implicitly separates the nonlinear deadtime loss from

the ideal linear relationship between λ  and Yim r .  Thus a representation of the spirit of this post-correction

method in model form would be as follows:

Y T p x x d x s ri i i i( ) =λ γ λ λ λ λb g e j( ) ( ) ( ) ( ) ,+ +z (16)

where γ λib g  is a positive, unitless deadtime loss function that monotonically decreases from unity as its

argument increases.  A more realistic model would be to replace p xib g  by something like p xi ;λb g , since as λ
increases, the detection probability will decrease since there will be increasing probability of multiple events within
the coincidence timing window (as well as other factors).  We are unaware of any attempts to estimate λ  directly
from such a model; most model-based methods have ignored this nonlinearity term completely without comment,
or have included a single data-based correction term γ λ γ λi ib g b gc h= $  in the p

i
’s. We take the latter approach

here.

Classical Estimation Methods
Since a PET scanner collects only a finite number of measurements, one must in general also represent the

radiotracer distribution λ xb g  by a finite parameterization, e.g., in terms of a set of basis functions:

λ θx b xj
j

p

jb g b g=
=

∑
1

(17)

                                               
6 p xib g  is probability that a positron emitted from a nuclei at position x will produce a pair of annihilation photons that are

detected by the ith detector pair without scattering (including geometric effects, attenuation, and detector efficiencies).
7 For detector i indexed by dθ in our previous notation, r Ai d d dλ γ ηθ θ θb g =  and s Si d d dλ γ ηθ θ θb g = , and [x,y] is replaced

by the vector x.
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where θ θ θ=
′

1L p is the vector of unknown coefficients that must be computed from the Yi’s .  (Typically

b xj( )  is just the indicator function for the jth voxel, so we will refer to θ j  as the jth pixel value hereafter.)  With

such a discretization, the reconstruction problem is equivalent to a parameter estimation problem.  If one assumes
the scatter and random contributions are assumed to be predetermined values s

i
 and r

i
 respectively (i.e. if they are

determined separately), and if the deadtime nonlinearity is approximated by a single “known” loss factor d
i
, then

the measurement mean is linear in θ:

Y a s ri ij j i i
j

p

θ θb g = + +
=

∑
1

(18)

where

a d T p x b x d xij i i j= z b g b g . (19)

Dozens of papers have been published based on this model, most of which not only ignored the d
i
, r

i
, and s

i

terms, but also used very simple approximations for p xib g .  The linear form above invites application of the two

most common tools from statistical signal processing: maximum likelihood estimation and linear least-squares
estimation. The linear-least squares estimate is easily written as

$ .θ LS Y s r= ′ ′ − −−
A A Ab g b g1

(20)

but this expression is impractical for computation due to the large size of the matrix A = aijn s .  Furthermore, the

conventional linear least-squares estimate produces negative pixel values, which are physically impossible.  Both
the size of A and incorporation of the nonnegativity constraint necessitate iterative algorithms.

Although necessary because of existing instrumentation, the real-time correction for random coincidences
using the delayed-window method renders the data non-Poisson.  For such measurements, estimates based on
(weighted) least-squares  may be suitable [39]. (Also see [40] for more accurate approaches.)  For scans that are
not precorrected for randoms, the least-squares methods are suboptimal since they do not fully accommodate the
Poisson distribution.  (Often the number of counts per ray is sufficiently low that the Gaussian approximation to
the Poisson distribution is inapplicable.)  Furthermore, data-based weighted least-squares methods lead to
systematic biases for low-count Poisson measurements [33, 41].  This problem can be avoided by using the
measurement log-likelihood L θb g  rather than the weighted least-squares criterion, where

L Y Y Y Yi i i i
i

n

θ θ θb g b g b gc h= − −
=

∑ log log !
1

. (21)

Unfortunately, there is no closed-form expression for the estimate $θ ML  that maximizes the likelihood, which

again necessitates iterative algorithms.  Unfortunately, each iteration of these  algorithms requires computation
time roughly comparable to that required by the  FBP method.  This has hampered their clinical acceptance.  The
oldest of these algorithms (for PET) is an expectation-maximization (EM) algorithm [42], which converges very

slowly to $θ ML .  This slow convergence has not greatly diminished the popularity of the EM algorithm, however,

because the intermediate images generated during the iterations toward $θ ML  are usually more appealing then

$θ ML  itself.  (Determining which of the many iterates is the best one is nontrivial however.)  The problem of

determining λ xb g  from Yil q  is inherently ill-posed, so, after parameterization, the problem of estimating θ is

generally very ill-conditioned. Thus $θ ML  is usually extremely noisy [43].

Naturally, one simple way to reduce this noise is to post-smooth $θ ML .  Such post-smoothing is a special case

of the more general method of sieves [43] and is in fact by far the most popular version of the sieve method.
Post-smoothing has two disadvantages.  First, in its usual form of space-invariant filtering, the nonstationarity of
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the measurement statistics cannot be modeled.  And second, Although post-smoothing reduces noise, the problem
of slow convergence of the EM algorithm remains, and hundreds to thousands of EM iterations may be required
for the post-smoothed images to converge [44].  This problem has spawned a variety of methods for accelerating
the EM algorithm, which vary in the extent to which convergence is guaranteed, see [45, 46].

Classical Regularization Methods
Another way to overcome the problems of slow convergence and to reduce the image noise is to replace the

log-likelihood criterion by a penalized-likelihood objective function:
$ arg max ,θ θ θ θ β θ

θ
PL L R= = −Φ Φb g b g b g b gwhere

where R(θ) is a measure of image roughness.  Larger values of β encourage smoother images with less noise.
When first investigated for PET, the penalty function posed a computational challenge since the M-step of the
EM algorithm has no closed form [47-49]. However, now there are a variety of fast algorithms (compared to EM)
available for maximizing such objective functions, e.g. [39, 45, 46, 50, 51].  These algorithms converge rapidly
in part because the penalty function greatly improves the conditioning of the reconstruction problem.

In the context of least-squares problems, such regularization methods date at least to the early 70’s [52], so
now may well be considered “classical.” The most classical penalty function simply measures the norm of the
image:

R j
j

p

θ θ θb g = =
=

∑2 2

1

,

which has its origins in ridge-regression. This simple penalty leads to images that are “squashed down” since
even the DC component is penalized.  For reducing noise, a more suitable penalty is to discourage neighboring
pixels from having disparate values:

R j k
k Nj

p

j

θ ψ θ θb g d i= −
∈=
∑∑

1

where N
j
 is the set of pixel indices in the neighborhood of pixel j, and ψ(t) is a symmetric function typically

chosen to be nondecreasing for t ≥ 0 .  Such penalty functions (or “priors” in the Bayesian terminology) have
yielded good results in image restoration and image segmentation problems.  However, in PET the nonstationary
noise statistics again complicate the problem.  Although R(θ) above is a shift-invariant function, recent analysis
shows that images reconstructed by maximizing Φ(θ) have nonuniform spatial resolution, due to interactions
between the log-likelihood and penalty terms [53, 54].  (Such effects are absent in image restoration problems
with white Gaussian noise.)  Although modified penalty functions have been proposed that reduce the resolution
nonuniformity, these modifications cause more nonuniform noise variance [54, 55].

Another challenge in penalized-likelihood methods is choosing β.  This problem is comparable to that of
choosing the width of the apodizing window in FBP or the resolution of the filter used when post-smoothing ML
images.  However, in the latter two problems the parameter that one varies to tradeoff resolution and noise is one
that is naturally related to spatial resolution, whereas β has essentially arbitrary units. Automatic or data-based
methods for choosing β, e.g. [56, 57] have shown some potential, but may also be unstable in imaging problems
[58].

There is also no consensus on the best choice for β.  Quadratic penalties lead to oversmoothing, and
nonquadratic penalties require additional parameter(s) that must be chosen.  Nonconvex penalties cause
additional problems with algorithm convergence, but have led to impressive results in image restoration problems
in images with sharply defined regions [59].  However, in medical images one must take care to avoid turning
smooth transitions into stair steps [60].

Model Errors
Nearly all papers on model-based methods for PET image reconstruction assume that the measurement model

is known, particularly the “system matrix” A.  In practice this matrix is occasionally measured, or more
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commonly simply computed based on an approximate geometry.  In either case A contains errors, and the effect

of this model mismatch on $θ  is poorly understood. The errors in A might invite the application of the total least-
squares (TLS) estimation method, e.g. [61]. However, TLS assumes that the errors in A are normally distributed,
which is questionable in PET. Furthermore, A usually includes attenuation factors that are determined from
separate noisy transmission scans.  Understanding the effects of both deterministic and random errors in the
model remains an important problem.

2.7. Attenuation correction
As described above, the conventional attenuation correction method in PET uses the ratio of the

measurements in the blank and transmission scans.  The transmission measurements can be very noisy, and with
randoms subtraction can even take negative or zero values. This noise is usually reduced by smoothing with a
space-invariant filter.  However, such smoothing introduces bias and again ignores the nonstationary statistics.
More accurate attenuation correction factors can be computed by first using statistical methods to reconstruct an
attenuation image, while incorporating nonlinear constraints such as nonnegativity and piecewise smoothness,
and then reprojecting this image along all of the lines-of-response [41, 62-64].

SPECT
Most of the above discussion also applies to SPECT imaging.  Statistical methods are perhaps even more

useful in SPECT than in PET for two major reasons.  First, attenuation is depth dependent and cannot be pre-
corrected [65], and second, the resolution of collimators degrades with distance. [66].  Both of these effects can
be incorporated directly into statistical models [67].  In fact, for SPECT cardiac studies, statistical methods are
now in routine use at some centers, e.g. [68], and the EM algorithm is available commercially.

 Computing Speed and the Future
Since computers are continually increasing in speed and memory, it might seem at first that it is only a matter

of time before iterative reconstruction methods become used routinely. However, the same advances in
technology that lead to faster computers also lead to bigger and harder problems! For example, although
computing speed certainly has reached the point where iterative methods are clinically feasible for 2D problems,
the focus is now on 3D PET where the size of A is 11-15 times larger than in 2D (after exploiting symmetries).
Similar considerations apply to cone-beam SPECT, or even to parallel collimator SPECT with 3D compensation
for detector response.  Thus there is continuing need for new ideas in image reconstruction algorithm
development. Although some of those ideas will undoubtedly be borrowed from signal and image processing
work, the algorithm must be based on accurate models of the physics and statistics of PET if they are to be fully
effective. Convincingly demonstrating that new methods are truly more effective than previous methods requires
careful matching of the resolution or noise properties of the methods compared. The medical imaging community
is generally unconvinced by the type of anecdotal single-image comparisons often found in image processing
papers.  There is increasing emphasis on formal statistical evaluations of different image reconstruction methods
[69-71], which are also being applied to image processing [72].

Conclusion
The image formation process in PET lends itself well to relatively simple algorithms that yield accurate

results when there are good counting statistics.  Statistical methods can yield improved image quality but have
not been widely adopted, largely because of their computational complexity.  They play a more significant role in
SPECT because they accurately incorporate models attenuation and collimator resolution.
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