Abstract—We introduce a plane, which we call the delta-sigma plane, that is indexed by the norm of the estimator bias gradient and the variance of the estimator. The norm of the bias gradient is related to the maximum variation in the estimator bias function over a neighborhood of parameter space. Using a uniform Cramér–Rao (CR) bound on estimator variance, a delta-sigma tradeoff curve is specified that defines an “unachievable region” of the delta-sigma plane for a specified statistical model. In order to place an estimator on this plane for comparison with the uniform CR bound, we place an estimator on the delta-sigma plane for a specified statistical model. We demonstrate the methods developed in this paper for linear and nonlinear Poisson inverse problems.

I. INTRODUCTION

The goal of this work is to quantify fundamental tradeoffs between the bias and variance functions for parametric estimation problems. Let \(\theta = [\theta_1, \ldots, \theta_n]^T \in \Theta \) be a vector of unknown and nonrandom parameters that parameterize the density \(f_Y(y; \theta) \) of an observed random variable \(Y \). The parameter space \(\Theta \) is assumed to be an open subset of \(n \)-dimensional Euclidean space \(\mathbb{R}^n \). For fixed \(\theta \), let \(t = t(Y) \) be an estimator of the scalar \(t_\theta \), where \(t: \Theta \to \mathbb{R} \) is a specified function. Let this estimator have bias \(b_\theta = E_\theta[t] - t_\theta \) and variance \(\sigma_\theta^2 = E_\theta[(t - t_\theta)^2] \). Bias is due to ‘mismatch’ between the average value of the estimator and the true parameter, whereas variance arises from fluctuations in the estimator due to statistical sampling.

In most applications, estimator designs are subject to a tradeoff between bias and variance. For example, in nonparametric spectrum estimation [1], smoothing methods have long been used to reduce the variance of the periodogram at the expense of increased bias [2], [3]. In image restoration, regularization is frequently implemented to reduce noise amplification (variance) at the expense of reduced spatial resolution (bias) [4]. In multiple regression with multicollinearity, biased shrinkage estimators [5] and biased ridge estimators [6] are used to reduce variance of the ordinary least squares estimator. The quantitative study of estimator bias and variance has been useful for characterizing statistical performance for many statistical signal processing applications including tomographic reconstruction [7]–[9], functional imaging [10], nonlinear and morphological filtering [11], [12], and spectral estimation of time series [13], [14].

However, the plane parameterized by the bias and variance \(b_\theta \) and \(\sigma_\theta^2 \) is not useful for studying fundamental tradeoffs since an estimator can always be found that makes both the bias and variance zero at a given point \(\theta \). Furthermore, use of bias can be misleading: Even a very large bias is removable if it is constant. In this work, we consider the plane parameterized by the norm or length of the bias gradient \(\delta_\theta = |\nabla b_\theta| \) and the square root variance \(\sqrt{\sigma_\theta^2} \), which we call the delta-sigma or \(\delta \sigma \) plane. The norm of the bias gradient is directly related to the maximal variation of the bias function over a neighborhood of \(\theta \) induced by the norm and is unaffected by constant estimator bias components. By appropriate choice of norm, the bias gradient length can be related to the overall bias variation over any prior ellipsoidal region of parameter values.

For the inverse problems studied here, we select the norm to correspond to an a priori smoothness constraint on the object.

This paper provides a means for specifying unachievable regions in the \(\delta \sigma \) plane via fundamental delta-sigma tradeoff curves. These curves are generated using an extension of the Cramér–Rao (CR) lower bound on the variance of biased estimators presented in [15]. This extension is called the uniform CR bound. In [15], the bound was derived only for an unweighted Euclidean norm on the bias gradient and for nonsingular Fisher information. Therein, the reader was cautioned that the resulting bound will generally depend on the units and dimensions used to express each of the parameters. It was also pointed out in [15] that the user should identify an ellipsoid of expected parameter variations, which will depend in the user’s units, and perform a normalizing transformation of the ellipsoid to a sphere prior to applying the bound. This parameter transformation is equivalent to using a diagonally weighted bias gradient norm constraint in the original untransformed parameter space. The uniform CR bound presented in this paper generalizes [15] to allow functional estimation, to cover the case of singular or ill-conditioned Fisher matrices, and to account for a general norm constraint on the bias gradient. Some elements of the latter generalization were first presented in [16].
The methods described herein can be used for system optimization, i.e., to choose the system that minimizes the size of the unachievable region when estimator unbiasedness is an overly stringent or unrealistic constraint [17], or they can be used to gauge the closeness to optimality of biased estimators in terms of their nearness to the unachievable region [18]. Alternatively, as discussed in more detail in [15], these results can be used to investigate the reliability of unbiased CR bound studies when small estimator biases may be present. Finally, these results can be used for validation of estimator simulations by empirically verifying that the simulations do not place estimator performance in the unachievable region of the $\delta \sigma$ plane.

In order to place an estimator on the $\delta \sigma$ plane, we must calculate estimator variance and bias gradient norm. For most nonlinear estimators, analytical computation of these quantities is intractable. We present a methodology for experimentally determining these quantities using the gradient of the log-likelihood function $\nabla \ln f(y; \theta)$ and a bootstrap-type estimator to estimate the bias gradient norm.

We illustrate these methods for linear Gaussian and nonlinear Poisson inverse problems. Such problems arise in image restoration, image reconstruction, and seismic deconvolution, to name but a few examples. Note that even for the linear Gaussian problem, there may not exist unbiased estimators when the system matrix is ill conditioned or rank deficient [19]. For each model, we compare the performance of quadratically penalized maximum likelihood estimators to the fundamental delta-sigma tradeoff curve. We show that the bias gradient ∇b_g of these estimators is closely related to the point spread function of the estimator when one wishes to estimate a single component $t_\theta = \theta_k$. For the full-rank linear Gaussian case, the quadratically penalized likelihood estimator achieves the fundamental delta-sigma tradeoff in the $\delta \sigma$ plane when the roughness penalty matrix is matched to the norm chosen by the user to measure bias gradient length. In this case, the bias gradient norm constraint is equivalent to a constraint on bias variation over a roughness constrained neighborhood of θ. We thus have a very strong optimality property: The penalized maximum likelihood estimator minimizes variance over all estimators whose maximal bias variation is bounded over the neighborhood. For the rank-deficient linear Gaussian problem, the uniform CR bound is shown to be achievable by a different estimator under certain conditions. Finally, for the nonlinear Poisson case, an asymptotic analysis shows that the penalized maximum likelihood estimator of [20] achieves the fundamental delta-sigma tradeoff curve for sufficiently large values of the regularization parameter and a suitably chosen penalty matrix. We present simulation results that empirically validate our asymptotic analysis.

A. Variance, Bias, and Bias Gradient

Let \hat{t} be an estimator of the scalar differentiable function t_θ. The mean-square error (MSE) is a widely used measure of performance for an estimator \hat{t} and is simply related to the estimator bias b_g and the estimator variance σ^2_g through the relation $\text{MSE}_g = \sigma^2_g + b_g^2$. While the MSE criterion is of value in many applications, the estimator bias and estimator variance provide a more complete picture of performance than the MSE alone. From b_g and σ^2_g, one can derive other important measures such as signal-to-noise-ratio SNR = $t_g + b_g^2/\sigma^2_g$, coefficient of variation 1/SNR, and generalized MSE $= \alpha g_1(b_g) + (1 - \alpha)g_2(\sigma_g)$, where $\alpha \in [0,1]$ and g_1, g_2 are nonnegative functions. The generalized MSE has been used in response surface design [21] and in minimum bias and variance estimation for nonlinear regression models [22, 23]. Furthermore, since they jointly specify the first two moments of the estimator probability distribution, the pair (b_g, σ^2_g) provides essential information for constructing and evaluating t-based hypothesis tests and confidence intervals. Indeed, the popular jackknife method was originally introduced in [24] and [25] to estimate bias and variance of a statistic and to test whether the statistic has prespecified mean [26].

An estimator \hat{t} whose bias function $b: \Theta \to \mathbb{R}$ is constant is as good as unbiased since the bias can be removed without knowledge of θ. Therefore, when one is interested in fundamental tradeoffs, it is the bias variation that will be of interest. When the density function $f(y; \theta)$ is sufficiently smooth to guarantee existence of the Fisher information matrix (which is defined below), b_g is always differentiable, regardless of the form of the estimator, as long as $E_\theta[f^2]$ is upper bounded [27, Lemma 7.2]. In this case, the bias gradient $\nabla b: \Theta \to \mathbb{R}^n$ uniquely specifies the bias b_g up to an additive constant

$$b_g = \sum_{k=1}^n \int_{\hat{t}_k} b_{\phi_k} \, d\mu_k + b^\phi$$

where ϕ is a point such that the line segment connecting θ is contained in Θ—such a point is guaranteed to exist when Θ is convex or star shaped about a point θ. Thus the gradient function $\nabla b_g = [\partial b_g/\partial \theta_1, \ldots, \partial b_g/\partial \theta_n]^T$ (which is a column vector) characterizes the unremovable bias component of the bias function.

1) Bias Gradient Norm and Maximal Bias: Define the norm or length of the bias gradient vector

\[\delta_g = \| \nabla b_g \|_C, \]

where the norm $\| \cdot \|_C$ is defined in terms of a symmetric positive definite matrix C

\[\| u \|_C^2 = u^T C u. \]

We will use the notation $\| u \|_2$ to denote the standard Euclidean norm obtained when $C = I$.

The norm of the bias gradient at a point $u = \theta$ is a measure of the sensitivity of the estimator mean $m_u = E_u[\hat{t}]$ to changes in u near a neighborhood of θ. Below, we derive a relation between bias gradient norm and maximal bias variation over an ellipsoidal neighborhood.

Define the ellipsoidal region of parameter variations $C = C(\theta, C) = \{ u: (u - \theta)^T C^{-1} (u - \theta) \leq 1 \}$, where θ is a point in Θ, and C is a symmetric positive definite matrix. The maximal width of the ellipsoid is $2 \sqrt{ \lambda_{M}^C }$, where λ_{M}^C is the maximal eigenvalue of C. Assume that the bias function b_u is continuously twice differentiable and that the magnitude of
the eigenvalues of the Hessian matrix $\nabla^2 b_u = \nabla \nabla^T b_u$ are upper bounded over $u \in C$ by a nonnegative constant $\alpha < \infty$. Then, using (1) and the Taylor expansion with remainder, the maximal squared variation of the bias b_u over C is

$$\max_{u \in C} |b_u - b_g|^2 = \max_{u \in C} |\nabla^T b_u \Delta u + 1/2 \Delta u^T \nabla^2 b_u \Delta u|^2$$

(3)

where $\Delta u = u - \theta$, and ξ is a point along the line segment joining θ and u. Now, expanding the square on the right-hand side of (3) and collecting terms, we obtain

$$\max_{u \in C} |b_u - b_g|^2 = \max_{u \in C} |\nabla^T b_u \Delta u|^2 (1 + \epsilon)$$

(4)

where $|\epsilon| \leq \rho(1 + 0.25\rho)$ and $\rho = \lambda_M^2 \alpha / \sqrt{\nabla^T b_u \nabla b_g}$.

Defining $\Delta u = C^{-1/2} \Delta u$ and using the Cauchy–Schwarz inequality, we obtain

$$\max_{u \in C} |\nabla^T b_u \Delta u|^2 = \max_{u \in C} |\nabla^T b_u C^{1/2} \Delta u|^2$$

$$= \max_{u \in C} \frac{|\nabla^T b_u C^{1/2} \Delta u|^2}{||\Delta u||^2_2}$$

$$= \nabla^T b_u C \nabla b_g.$$

(5)

Therefore, combining (5)–(3)

$$\max_{u \in C} |b_u - b_g|^2 = ||\nabla b_g||^2_C (1 + \epsilon).$$

(6)

Hence, we see that when $\rho \ll 1, 1 + \epsilon \approx 1$, and the norm $||\nabla b_g||_C$ is approximately equal to the maximal bias variation over the ellipsoidal neighborhood $C(\theta C)$ of θ. Note that this occurs when the product of the ellipsoid width λ_M^2 and the ratio of the curvature α of the bias function to the bias gradient norm $\sqrt{\nabla^T b_u \nabla b_g}$ is small. For the special case where the bias is a linear function ($b_u = \xi^T \theta - c$) then $\rho = 0$, in which case the relation (6) between bias gradient norm (1) and maximal bias variation (3) is exact.

The above discussion suggests that the choice of norm $|| \cdot ||_C$ should reflect the range C of joint parameter variations that are of interest to the user. This will be illustrated in Section IV.

II. UNACHIEVABLE REGIONS

For any estimator with bias gradient norm δ_b and variance σ_b^2, we plot the pair (δ_b, σ_b) as a coordinate in the plane \mathbb{R}^2. We will call this parameterization of the plane the delta-sigma or $\delta\sigma$ plane. A region of the $\delta\sigma$ plane is called unachievable if no estimator can exist having coordinates in this region. While no nonempty unachievable region can exist in the bias-variance plane parameterized by (δ_b, σ_b), we will show that interesting unachievable regions almost always exist in the delta-sigma plane.

A. The Biased CR Bound

The CR lower bound on estimator variance, which was first published by Frechet [28] and later by Darmois [29], Cramer [30], and Rao [31], is commonly used to bound the variance of unbiased estimators. For a biased estimator $\hat{\theta}$ with mean $m_B = E_2[\hat{\theta}]$, the CR bound has the following form, which is called the biased CR bound:

$$\sigma_b^2 \geq \max_{\theta \in C} [\nabla m_B]^T F_Y^{-1} [\nabla m_B]$$

$$= [\nabla t_\theta + \nabla^T b_g]^T F_Y^{-1} [\nabla t_\theta + \nabla b_g]$$

(7)

where $F_Y = F_{YB}(\theta)$ is the $n \times n$ Fisher information matrix

$$F_Y = E_2[\nabla \ln f_Y(Y; \theta) [\nabla \ln f_Y(Y; \theta)]^T]$$

and FY denotes the Moore–Penrose pseudo-inverse matrix of the possibly singular matrix F_Y.

The nonsingular F_Y form of the biased CR bound has been around for some time, e.g., [32]. The more general pseudo-inverse FY form given in (7) is less well known but can be easily derived by identifying $T = t_\theta - t_g$ and $V = \nabla \ln f_Y(Y; \theta)$ in the relation [33, Lemma 1]

$$E_2[UU^T] \geq E_2[UV^T] (E_2[VV^T])^T + E_2[UV^T],$$

and using the identities $E_2[\nabla \ln f_Y(Y; \theta)] = 0$ and $E_2[\nabla \ln f_Y(Y; \theta)] = \nabla m_B$ (which are easily derivable from (19) below).

The biased CR bound (7) only applies to the class of estimators $\hat{\theta}$ that have a particular bias gradient function ∇b_g. Therefore, (7) cannot be used to simultaneously bound the variance of several estimators, each of which have different but comparable bias gradients.

A. The Uniform CR Bound

In [15], a “uniform” CR bound was presented as a way to study the reliability of the unbiased CR bound under conditions of very small estimator bias. In [34], this uniform bound was used to trace out curves over the sigma–delta plane, which includes both large and small biases. The following theorem extends the results of [15] and [34] to allow singular Fisher information matrices, arbitrary weighted Euclidean norm $|| \cdot ||_C$, and arbitrary differentiable function t_θ. For a proof of this theorem, see Appendix A.

Theorem 1: Let $\hat{\theta}$ be an estimator of the scalar differentiable function t_θ of the parameter $\theta = [\theta_1, \ldots, \theta_n]^T$. For a fixed $\delta > 0$, let the bias gradient of $\hat{\theta}$ satisfy the norm constraint $||\nabla b_g||_C \leq \delta$, where C is an arbitrary $n \times n$ symmetric positive definite matrix. Define P_B as the $n \times n$ matrix that projects onto the column space of $B = C^{-(1/2)} F_Y C^{-(1/2)}$. Then, the variance $\sigma^2_{\hat{\theta}}$ of $\hat{\theta}$ satisfies

$$\sigma^2_{\hat{\theta}} \geq B(\theta, \delta)$$

(8)

where if $\delta^2 \geq \nabla^T t_\theta C^{1/2} P_B C^{1/2} \nabla t_\theta$, then $B(\theta, \delta) = 0$, whereas if $\delta^2 < \nabla^T t_\theta C^{1/2} P_B C^{1/2} \nabla t_\theta$ then

$$B(\theta, \delta) = [\nabla t_\theta + d_{\min}]^T F_Y^{-1} [\nabla t_\theta + d_{\min}]$$

$$= \lambda^2 \nabla^T t_\theta C [\lambda C + F_Y^{-1}]^{-1} F_Y^{-1} [\lambda C + F_Y^{-1}]^{-1} C \nabla t_\theta,$$

(9)

where in (9)

$$d_{\min} = - [\lambda C + F_Y^{-1}]^{-1} F_Y^{-1} \nabla t_\theta.$$

(10)
In (9) and (10), $\lambda > 0$ is determined by the unique positive solution of $g(\lambda) = \delta^2$, where

$$g(\lambda) = \nabla^T t_\theta F_Y^+ [\lambda C + F_Y^+ \lambda C + F_Y^+ - 1] F_Y^+ \nabla t_\theta. \quad (11)$$

By tracing out the family of points $\{ (\delta, \sqrt{B(\theta, \delta)}): \delta \geq 0\}$, one obtains a curve in the $\delta \sigma$ plane for a particular $\theta \in \Theta$. The curve is always monotone nonincreasing in δ. Since $B(\theta, \delta)$ is a lower bound on σ^2, the region below the curve defines an unachievable region. Fig. 1 shows a typical delta-sigma tradeoff curve plotted in terms of normalized standard deviation $\sigma = \sqrt{B(\theta, \delta)} / B(\theta, 0)$. If an estimator lies on the curve, then lower variance can only be bought at the price of increased bias gradient and vice versa. For this reason, we call this curve the delta-sigma tradeoff curve.

It is important to point out that the delta-sigma tradeoff curve can be generated without solving the nonlinear equation $g(\lambda) = \delta^2$ (11), which typically must be solved via numerical methods. It is much easier to continuously vary λ over the range $(0, \infty)$ and sweep out the curve by using the λ parameterizations of δ^2 and $B(\theta, \delta)$ specified by relations (11) and (9), respectively.

Comments:

- The uniform bound $B(\theta, \delta)$ is always less than or equal to the unbiased CR bound $B(\theta, 0) = \nabla^T t_\theta F_Y^+ \nabla t_\theta$. The slope of $B(\theta, \delta)$ at $\delta = 0$ gives a bias sensitivity index η for the unbiased CR bound. For nonsingular F_Y and single component estimation ($t_\theta = \theta_1$), it is shown in [15] that $\eta = 2\sqrt{1 + c^T F_Y^{-2} c}$, where c is the first column of F_Y, and F_Y is the principal minor of the (1,1) element of F_Y. Large values of this index indicate that the unbiased form of the CR bound is not reliable for estimators that may have very small, and perhaps even unmeasurable, biases.

- The orthogonal projection P_B can be expressed either as $P_B = B(B^T B)^+ B^T = B^+ B = BB^+$ or via the eigendecomposition of B as $P_B = \sum_{r=1}^{\text{rank}(F_Y)} \xi_1^{(T)} \xi_1^{(T)}$, via the eigendecomposition of B as $P_B = \sum_{r=1}^{\text{rank}(F_Y)} \xi_1^{(T)} \xi_1^{(T)}$, where r is the rank of F_Y, and $\{\xi_1^{(T)}\}_{r=1}^{\infty}$ are orthonormal eigenvectors associated with the nonzero eigenvalues of B. By using properties of the Moore–Penrose pseudo-inverse, it can be shown that

$$\nabla^T t_\theta \delta^2 P_B G_C^{1/2} \delta^2 G_C^{1/2} \nabla t_\theta = \nabla^T t_\theta F_Y^+ G_{C^{-1}}^{1/2} F_Y^+ \delta^2 G_{C^{-1}}^{1/2} \nabla t_\theta. \quad (12)$$

- When F_Y is nonsingular

$$F_Y^+ = F_Y^{-1}, \quad P_B = I, \quad \nabla^T t_\theta G_C^{1/2} \delta^2 G_C^{1/2} \nabla t_\theta = \|\nabla t_\theta\|^2 / C,$$

and (9)–(11) of Theorem 1 reduce to

$$B(\theta, \delta) = [\nabla t_\theta + d_{\text{min}}] F_Y^{-1} [\nabla t_\theta + d_{\text{min}}] = \lambda^2 \nabla^T t_\theta [C^{-1} + \lambda F_Y]^{-1} F_Y [C^{-1} + \lambda F_Y]^{-1} \nabla t_\theta \quad (13)$$

and $\lambda > 0$ is given by the unique positive solution of $g(\lambda) = \delta^2$, where

$$g(\lambda) = \nabla^T t_\theta [C^{-1} + \lambda F_Y]^{-1} C^{-1} [C^{-1} + \lambda F_Y]^{-1} \nabla t_\theta. \quad (14)$$

When $C = I$ and $t_\theta = \theta_1$, these are identical to the results obtained in [15].

- In Theorem 1, d_{min} defined in (10) is an optimal bias gradient in the sense that it minimizes the biased CR bound (7) over all vectors ∇t_θ, satisfying the constraint $|\nabla t_\theta| \leq \delta$. The result bound is independent of the particular estimator bias as long as the bias gradient norm constraint holds. From the proof of Theorem 1, if $\delta^2 \geq \nabla^T t_\theta G_C^{1/2} P_B G_C^{1/2} \nabla t_\theta$, then the minimizing bias gradient is of the form $d_{\text{min}} = -P_B G_C^{1/2} \nabla t_\theta + \phi$, where ϕ is any vector satisfying $B \phi = 0$, and $|\phi| \leq \delta^2 - \nabla^T t_\theta [C^{-1/2} P_B C^{-1/2} \nabla t_\theta].$ Thus, for the case of singular F_Y, there exist many optimal bias gradients.

- An estimator is said to locally achieve a bound in a neighborhood of a point $\hat{\theta}$ if the estimator achieves the bound whenever the true parameter lies in the neighborhood. It has been shown [15] that if F_Y is nonsingular, if δ is small, if $t_\theta = \theta_1$, and if the unbiased matrix CR bound is locally achievable by an unbiased estimator $\hat{\theta}^*$ in a neighborhood of a point θ_0, then one can construct an estimator that locally achieves the uniform bound in this neighborhood by introducing a small amount of bias into $\hat{\theta}^*$. However, since unbiased estimators may not exist for singular F_Y, the uniform CR bound for singular F_Y may not be locally achievable. An example where the bound is globally achievable over all Θ is presented in Section IV.

- While we will not use it in this paper, a more general form of Theorem 1 holds for the case that C may be nonnegative definite. This situation is relevant for cases where the user does not wish to penalize the estimator for high bias variation over certain hyperplanes in the parameter space. For example, when estimation of image contrast is of interest, spatially homogeneous biases may be tolerable, and C may be chosen to be of rank $\alpha - 1$ having the vector $1 = [1, \cdots, 1]^T$ in its nullspace.
B(\(\theta, \delta\)), \(d_{\text{min}}\) and \(g(\lambda)\) be as defined in Theorem 1. Assume that \(C\) is nonnegative definite, but \(P_Y^T + \lambda C\) is positive definite for \(0 < \lambda < \infty\). For fixed \(\delta > 0\), let the bias gradient of \(\hat{\theta}\) satisfy the semi-norm constraint \(|\nabla b_{\theta}|/C \leq \delta\). Then, \(\text{var}_{\theta}(\hat{\theta}) \geq B^*(\hat{\theta}, \delta)\),

where

\[
B^*(\hat{\theta}, \delta) = \begin{cases}
B(\hat{\theta}, g(\infty)), & 0 < \delta^2 < g(\infty) \\
B(\hat{\theta}, \delta), & g(\infty) \leq \delta^2 \leq g(0) \\
0, & g(0) < \delta^2 < \infty,
\end{cases}
\]

\[g(\infty) = \lim_{\lambda \to -\infty} g(\lambda), \text{ and } g(0) = \lim_{\lambda \to 0} g(\lambda)\].

C. Recipes for Uniform Bound Computation

As written in Theorem 1, (9)–(11) are not in the most convenient form for computation as they involve several matrix multiplications and inversions. An equivalent form for the matrix \(B\) is convenient for computation as they involve several

\[
B = C^{-1/2}_Y P_Y^T C^{-1/2}_Y \text{ (1)}
\]

where \(B = C^{-1/2}_Y P_Y^T C^{-1/2}_Y\). If an eigendecomposition of the matrix \(B\) is available, the delta-sigma tradeoff curve can be efficiently computed by sweeping out \(\lambda\) in the following pair of weighted sums of inner products

\[B(\hat{\theta}, \delta) = \sum_{i=1}^{n} \frac{\lambda \beta_i}{(\lambda + \beta_i)^2} |\nabla^T t_{\theta} C^{-1/2} \xi_i|^2 \quad (15)\]

\[\delta^2 = \sum_{i=1}^{n} \rho_i \frac{\beta_i}{(\lambda + \beta_i)^2} |\nabla^T t_{\theta} C^{-1/2} \xi_i|^2 \quad (16)\]

where \(\beta_i\) and \(\xi_i\) denote an eigenvalue and eigenvector of \(B\).

When \(P_Y\) is positive definite but ill conditioned, the computation of \(B\) may be numerically unstable. In this case, it is better to use the equivalent form

\[B(\hat{\theta}, \delta) = \lambda^2 \nabla^T t_{\theta} C^{-1/2} [I + \lambda G]^{-1} C^{-1/2} \nabla^T t_{\theta} \quad (17)\]

\[\delta^2 = \nabla^T t_{\theta} C^{-1/2} [I + \lambda G]^{-2} C^{-1/2} \nabla^T t_{\theta} \quad (18)\]

where \(G = B^{-1} = C^{-1/2}_Y P_Y C^{-1/2}_Y\). Note that computation of the form (17) and (18) requires only a single matrix inversion \([I + \lambda G]^{-1}\). Since \(\lambda > 0\) and \(P_Y\) is positive definite, this inversion is well conditioned except possibly if \(\lambda\) is very large.

The eigendecomposition of \(G\) can be used in (17) and (18) to produce a pair of expressions similar to (15) and (16) for computing the delta-sigma tradeoff curve for positive definite \(P_Y\). Alternatively, the right-hand sides of (17) and (18) can be approximated by using iterative solving methods such as Gauss–Seidel (GS) or preconditioned conjugate gradient (CG) algorithms [35]. See [45] and [36] for a more detailed discussion of the application of iterative equation solvers to CR bound approximation. This approach can be implemented in the following sequence of steps.

1) Select \(\lambda \in (0, \infty)\).
2) Compute \(z = [I + \lambda P_Y]^{-1} \nabla t_{\theta}\) by applying CG or GS iterations to solve the following linear equation for \(z\):

\[z = [I + \lambda P_Y]^{-1} \nabla t_{\theta} \]
where \(\{ Y_i \}_{i=1}^{L} \) is a set of i.i.d. realizations from \(f_Y(y; \theta) \). In (21), \(\{ \zeta_i \}_{i=1}^{L} \) is any sequence of i.i.d. random variables such that \(Y_i, \zeta_i \) are statistically independent for each \(i \).

It can be shown that when \(\zeta_i = 0 \) for all \(i \) the covariance matrix of \(\bar{V}_{bg} \) is the matrix sum

\[
S(\bar{V}_{bg}) = \frac{1}{L} \text{cov}_g ((\tilde{t}(Y_i) - m_g) \nabla \ln f_Y(Y_i; \theta)) \\
+ \frac{1}{L} \text{cov}_g \left[\nabla \ln f_Y(Y_i; \theta) \right] \left[\nabla \ln f_Y(Y_i; \theta) \right]^T
\]

where

\[
R = E_g[[t(Y_i) - m_g] \nabla \ln f_Y(Y_i; \theta)] \left[\nabla \ln f_Y(Y_i; \theta) \right]^T
\]

and

\[
F_Y = E_g[\nabla \ln f_Y(Y_i; \theta)] \left[\nabla \ln f_Y(Y_i; \theta) \right]^T
\]

is the single trial Fisher information. The first term on the right-hand side (RHS) of (22) decays as \(1/L \) and is independent of the mean \(m_g \). The second term also decays as \(1/L \) but is unbounded in the mean \(m_g \). It is easily shown that this term can be eliminated by setting \(\zeta_i = m_g = \text{constant} \) in (21) but this is not a practical since the mean \(m_g = E_g[t(Y_i)] \) is unknown to the user. However, we can use the punctured sample mean estimate:

\[
\zeta_i = \frac{1}{L-1} \sum_{j=1, j\neq i}^{L} \tilde{t}(Y_j)
\]

which is unbiased and, as required for the validity of (20), is statistically independent of \(Y_i \). Substitution of this \(\zeta_i \) into (21) gives, after simplification, the following unbiased and consistent sample mean estimate of \(\nabla b_g \):

\[
\bar{V}_{bg} = \frac{1}{L-1} \sum_{i=1}^{L} (t(Y_i) - \frac{1}{L} \sum_{j=1}^{L} t(Y_j)) \nabla \ln f_Y(Y_i; \theta) \\
- \nabla b_g.
\]

A simple calculation shows that the covariance of (23) is

\[
S(\bar{V}_{bg}) = \frac{1}{L} \text{cov}_g ((\tilde{t}(Y_i) - m_g) \nabla \ln f_Y(Y_i; \theta)) \\
+ \frac{1}{L(L-1)} [\text{var}_g (\tilde{t}(Y_i)) F_Y + \nabla b_g \nabla^T b_g].
\]

Note that the second term in (24) depends on \(m_g \) only through its gradient and decreases to zero at the much faster asymptotic rate of \(1/L^2 \) as compared with the rate \(1/L \) in (22).

A. A Bootstrap Estimator for Bias Gradient Norm

A natural “method-of-moments” estimate for \(\delta^2 = ||\nabla b_g||^2 \) is the norm squared of the unbiased estimator \(\delta^2 = ||\nabla b_g||^2 \) (21). It can easily be shown that this estimator is biased with bias equal to \(E_g[||\nabla b_g - \nabla b_g||^2] = \text{trace} \{ S(\nabla b_g) \} \), which, in view of (22) or (24), decays to zero only as \(1/L \). Below, we present a norm estimator based on the bootstrap resampling methodology whose bias decays at a faster rate.

Let \(Y_1, \ldots, Y_L \) denote a bootstrap sample obtained by randomly resampling the realizations \(Y_1 = y_1, \ldots, Y_L = y_L \) with replacement. Given the estimate \(\delta^2 = \delta^2(y_1, \ldots, y_L) = ||\nabla b_g||^2 \), the bootstrap estimate of \(\delta^2 \) is defined as the expectation of \(\delta^2 = \delta^2(Y_1, \ldots, Y_L) \) with respect to the resampling distribution [37]

\[
\hat{E}_* [\delta^2] = \frac{1}{L} \sum_{i=1}^{L} \delta^2(Y_1^i, \ldots, Y_L^i) \left(\frac{L}{c_1 \ldots c_L} \right)^{L^{-L}}.
\]

In (25), \(c_i \) is the number of times the value \(y_i \) appears in the set \(\{ Y_j^i \}_{j=1}^{L} \), and \(\Sigma_* \) denotes a summation over all nonnegative integers \(c_1, \ldots, c_L \) satisfying \(\Sigma_{c_1 \ldots c_L} c_i = L \). The bootstrap estimate of the bias of the estimator \(\delta^2 \) is defined as \(E_* [\delta^2] = \delta^2 - \hat{E}_* [\delta^2] \), which leads to the bias-corrected estimator \(\delta^2 \)

\[
\hat{E}_* [\delta^2] = \frac{1}{L} \sum_{i=1}^{L} \delta^2(Y_1^i, \ldots, Y_L^i) \left(\frac{L}{c_1 \ldots c_L} \right)^{L^{-L}}.
\]

Due to the simple quadratic dependence of \(\delta^2 \) on the single sample quantities \(\tilde{t}(y_i) \nabla \ln f_Y(y_i; \theta), i = 1, \ldots, L \), the expectation (25) can be expressed in analytical form (see Appendix B), leading to the bias-corrected estimate

\[
\hat{E}_* [\delta^2] = \frac{1}{L} \text{cov}_g [\tilde{t}(y_i) \nabla \ln f_Y(y_i; \theta)] - \frac{1}{L^2} \sum_{i=1}^{L} \text{cov}_g (\tilde{t}(y_i) \nabla \ln f_Y(y_i; \theta) - \nabla b_g)^2
\]

where \(\nabla b_g(y_i) \) is the estimate (21) based on a single sample \(\{ \zeta_i = 0 \}: \tilde{t}(y_i) \nabla \ln f_Y(y_i, \theta) - t_b \). The bias of \(\hat{E}_* [\delta^2] \) is equal to

\[
E_g [\delta^2] - \frac{1}{L} \text{cov}_g (\tilde{t}(y_i) \nabla \ln f_Y(y_i; \theta) - \nabla b_g)^2
\]

which, relative to the estimator \(||\nabla b_g||^2 \), decays to zero at the much faster rate of \(1/L^2 \). However, if \(L \) is insufficiently large, the bootstrap estimator \(\hat{E}_* [\delta^2] \) may take on negative values.

IV. APPLICATION TO INVERSE PROBLEMS

We use the theory developed above to perform a study of fundamental bias-variance tradeoffs for three general classes of inverse problems. First, we consider well-posed linear Gaussian inverse problems that have positive definite Fisher information. Next, we consider ill-posed Gaussian inverse problems where the Fisher matrix is singular. For these two linear applications, an exact analysis is possible since all curves in the delta-sigma tradeoff plane have analytic expressions. Finally, we study a nonlinear Poisson inverse problem to illustrate the empirical bias-gradient norm approximations discussed in the previous section.

A. Linear Gaussian Model

Assume that the observation consists of a vector \(Y = Y^i \in \mathbb{R}^m \) that obeys the linear Gaussian model:

\[
Y = A\theta + \epsilon,
\]

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 24, 2008 at 06:46 from IEEE Xplore. Restrictions apply.
where,

\[A \] is an \(m \times n \) matrix called the system matrix;
\[\theta \] is an unknown source;
\[\xi \] is a zero mean Gaussian random variable with complete response matrix \(\Sigma \).

For concreteness, we will refer to \(\xi \) as the intensity of the source at pixel \(i \).

The Fisher information matrix has the well-known form [19]

\[F_Y = A^T \Sigma^{-1} A. \] (29)

This matrix is nonsingular when \(A \) is of full column rank \(n \). We will consider estimation of the linear combination \(t_\theta = h^T \theta \) when \(h \) is a fixed nonzero vector in \(\mathbb{R}^n \). Since \(F_Y \) and \(\nabla t_\theta = h \) are not functionally dependent on \(\theta \), the uniform bound \(B(\theta, \delta) \) and the bound \(\| \nabla t_\theta \|_2 \) will not depend on the specific form of the unknown source \(\theta \).

To demonstrate the achievability of the fundamental delta-sigma tradeoff curve, we consider the quadratically penalized maximum likelihood (QPM) estimator. The QPM strategy is frequently used in order to obtain stable solutions in the presence of small variations in experimental conditions [38] or as a way to incorporate parameter constraints or a priori information [39]. For the linear Gaussian problem (28), the QPM estimator of the linear combination \(t_\theta = h^T \theta \) is \(\hat{t} = h^T \hat{\theta} \), where \(\hat{\theta} \) minimizes the following objective function over \(\theta \):

\[\| Y - A \theta \|^T \Sigma^{-1} \| Y - A \theta \| + \beta \theta^T P \theta. \] (30)

In the above, \(\beta > 0 \) is a regularizing parameter, and \(P \) is a symmetric nonnegative-definite penalty matrix.

For ill-conditioned or singular \(A \), the penalty improves the numerical stability of the matrix inversion \([F_Y + \beta P]^{-1} \) in (31) below by lowering its condition number. The smallest choice for the penalty matrix \(P \) is the identity \(I \), which yields a class of energy penalized least squares estimators variously known as Tikhonov regularized least squares in the inverse problem literature [38] and shrinkage estimation or ridge regression in the multivariate statistics literature [5]. A popular choice in imaging applications is to use a nondiagonal differencing type operator to enforce smoothness constraints [40], [41].

The minimizer of (30) is the penalized weighted least squares (PLS) estimator

\[\hat{\theta} = [F_Y + \beta P]^{-1} A^T \Sigma^{-1} Y, \] (31)

yielding the QPM estimator \(\hat{t} = h^T \hat{\theta} \).

The estimator bias is

\[b_0 = h^T \left[(F_Y + \beta P)^{-1} F_Y - I \right] \theta \]

and its bias gradient is

\[\nabla b_0 = h^T [F_Y (F_Y + \beta P)^{-1} - I] \]

\[- \beta P (\beta P + F_Y)^{-1} h. \] (32)

Finally, the variance of the QPM estimator \(\hat{t} \) is

\[\sigma^2 \Delta = \frac{1}{\beta^2} h^T \left(P + \frac{1}{\beta} F_Y \right)^{-1} F_Y \left(P + \frac{1}{\beta} F_Y \right)^{-1} h. \] (33)

Consider the special case of estimation of a single component \(\theta_k \) of \(\theta \) for which \(h = e_k = [0, \ldots, 0, 1, 0, \ldots, 0]^T \). When the matrices \(F_Y \) and \(P \) commute, as occurs, for example, when \(P = I \), the bias gradient (32) is seen to be equal to the difference between the mean response \([\beta P + F_Y]^{-1} F_Y e_k \) of the PLS estimator to a point source \(\theta = e_k \), i.e., the point spread function of the estimator and the ideal point response \(e_k \). Thus, under the commutative assumption, the bias gradient norm can be viewed as a measure of the geometric resolution of \(\hat{t} \) [16].

1) Positive Definite Fisher Matrix: Assume that \(F_Y \) is positive definite, and compare (33) and (34) to (13) and (12) for \(d_{min} \) and the bound \(B(\hat{\theta}, \delta) \), respectively. Identifying \(\nabla t_\theta = h \), \(\lambda = 1/\beta \), it is clear that when \(P \) is chosen as \(C \), the PLS estimator achieves the bound \(B(\hat{\theta}, \delta) \) and has optimal bias gradient \(d_{min} \). Thus, for linear functions \(t_\theta \), the uniform bound is achievable, and the region above and including the fundamental delta-sigma tradeoff curve is an achievable region. Furthermore, since the bias gradient is a linear function, from (6), we have a very strong optimality property: The QPM estimator \(\hat{t} \) is a minimum variance biased estimator in the sense that it is an estimator of minimum variance among estimators that satisfy the maximal bias constraint \(\sup_{\theta \in C} |b_0 - b_\theta| \leq \delta \), where \(\delta^2 = g(1/\beta) \) and \(C \) is the ellipsoid defined above (3).

We used the computational recipe presented in Section II to trace out the delta-sigma tradeoff curve (uniform bound) parametrically as a function of \(\lambda \geq 0 \). Fig. 2 shows the delta-sigma tradeoff curve for the case of pixel intensity estimation \((h = e_0, \beta = 1) \) and a well-conditioned full rank discrete Gaussian system matrix. Specifically, we generated a 128×128 matrix \(A \) with elements \(a_{ij} = (1/\sqrt{2\pi w})e^{-(i-j)^2/2w^2} \) and \(w = 0.5 \). The condition number of \(A \) is 1.7. The matrix \(C \) in the norm \(||v_{\Delta_k}||_2 \) was selected as the inverse of the second-order (Laplacian) differencing matrix

\[C^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \] (35)

With this norm, the restriction \(||v_{\Delta_k}||_2 \leq \delta \) corresponds to a constraint on maximal bias variation \(\max_{\theta \in C} |\Delta_k| \) over a roughness-constrained neighborhood \(C(\hat{\theta}, \delta) \) of \(\hat{\theta} \) (recall relation (6)). The performance curves \(||v_{\Delta_k}||_2 \) of \(\hat{\theta} \) for two PLS pixel intensity estimators (31) (one using the smoothing matrix \(P = C^{-1} \), called the smoothed QPM estimator and another using the diagonal "energy penalty" \(P = I \) called the unsmoothed QPM estimator) are also plotted in Fig. 2. These curves were traced out in the bias variance tradeoff plane by varying \(\beta \) in the parametric descriptions of estimator variance (34) and estimator bias gradient (33).

2) Singular Fisher Matrix: When \(A \) has rank less than \(n \), \(F_Y \) is singular, and unbiased estimators may not exist for all linear functions \(t_\theta \) of \(\theta \) [19], [42]. A lower bound on the norm of the bias gradient can be derived (see Appendix C) using the relation (6) between the norm and the maximal bias variation over a region of parameter space. Since the uniform
Fig. 2. Bias variance tradeoff study for pixel-intensity estimation and non-singular Fisher information. The smoothed PLS estimator (labeled smoothed QPML) exactly achieves the uniform bound.

Fig. 3. Bias variance tradeoff study for pixel intensity estimation and singular Fisher information. Neither of the QPML estimators achieve the uniform bound.

CR bound is finite and equal to the unbiased CR bound at $\delta = 0$, we cannot expect the delta-sigma tradeoff curve to be achievable for all δ as in the nonsingular case.

To illustrate we repeat the study of Fig. 2 with a rank deficient Gaussian kernel matrix A_w obtained by decimating the rows of a full-rank Gaussian kernel matrix A ($w = 2$) by a factor of 4. This yields the ill-posed problem of estimating a vector of 128 pixel intensities θ based on only 32 observations Y. We used the singular value decomposition of A to compute the delta-sigma tradeoff curve and the minimal bias gradient norm. The results for pixel intensity estimation ($t_\delta = 67$) are plotted in Fig. 3 along with the performance curves associated with smoothed QPML ($P = C^{-1}$ of (35)) and unsmoothed QPML ($P = I$) estimators. Note that neither of the estimators achieve the uniform bound for any value of the parameter β.

The bound on bias gradient norm (dashed line) is an asymptote on estimator performance that forces a sharp knee in the estimator performance curves. At points close to this knee, maximal reduction in bias is only achieved at the price of significant increase in the variance.

For comparison, in Fig. 5, we plot the analogous curves for smoothed and unsmoothed QPML estimation of the contrast function defined as $t_\delta = h^T \theta$, where the elements of h are plotted in Fig. 4. Observe that the smoothed QPML estimator of contrast comes much closer to the uniform bound than does the smoothed QPML estimator of pixel intensity shown in Fig. 3.

Under certain conditions, the uniform CR bound is exactly achievable even for singular F_Y, although generally not by a QPML estimator of the form (31) and generally not for all δ.

Consider the estimator

$$
\hat{\theta} = h^T [I + \beta F_Y P]^{-1} F_Y A^T \Sigma^{-1} y. \tag{36}
$$

This estimator reduces to the previous estimator (31) for the case of nonsingular F_Y. The estimator bias gradient is

$$
\nabla \hat{b}_2 = (F_Y F_Y^T [I + \beta P F_Y^T]^{-1} - I) \nabla t_\theta
$$

$$
= - \left[\frac{1}{\beta} P^{-1} + F_Y^T \right]^{-1} F_Y^T h
$$

$$
- [I - F_Y F_Y^T][I + \beta P F_Y^T]^{-1} h. \tag{37}
$$
and the estimator variance is

\[\sigma^2 = h^T P^{-1}[P^{-1} + \beta F_Y^+][P^{-1} + \beta F_Y^+]^{-1} P^{-1} h \tag{38} \]

where in (38), we have used the property

\[(I + \beta F_Y^+) = (I + \beta F_Y^+)^{-1} \]

in (9) when \(P = C^{-1} \) and \(\beta = 1/\lambda \). Furthermore, under these conditions, the bias gradient (37) differs from the optimal bias gradient \(\delta_0 \), which is given in (10), only by the presence of the second additive term on the right-hand side of (37). Thus, the estimator (36) with \(P = C^{-1} \) is an optimal biased estimator when this second additive term is equal to zero.

We summarize these results in a theorem that applies to both singular and nonsingular \(F_Y \).

Theorem 2: Let \(B = P^{1/2} F_Y^{1/2} P^{1/2} \), where \(F_Y \) is the possibly singular Fisher information matrix. If

1) \(\delta^2 < h^T P^{1/2} B B^{1/2} P^{1/2} h \)
2) the vector \(h \) lies in the nullspace of \([I - F_Y F_Y^+ [I + \beta B B^{1/2} P^{1/2}]^{-1}\]

then the estimator \(\hat{\theta} = h^T \hat{\theta} \) given by (36) achieves the fundamental delta-sigma tradeoff in the sense of having minimum variance over all estimators satisfying \(\| V_{\theta, \delta} \|^2 \leq \delta^2 = g(1/\beta) \), where \(g(\cdot) \) is the function given in (11).

Recognizing the matrix \(I - F_Y F_Y^+ \) as the operator that projects onto the null space of \(F_Y \), an equivalent condition to (2) is that \([I + \beta B B^{1/2} P^{1/2}]^{-1} h \) lie in the range space of \(F_Y \). For the special case of \(\beta = 0 \), condition (2) of Theorem 2 reduces to the well-known necessary condition for achievable of the unbiased CR bound: The vector \(h \) must lie in the range space of the Fisher information \(F_Y \). In order for the uniform CR bound to be achievable for all \(\beta \), condition (2) must hold for all \(\beta > 0 \). This is a much stronger condition except when the nullspace is independent of \(\beta \), as occurs when \(P = I \). This suggests that when estimation of any fixed \(\theta_0 \) of interest and the Fisher information is singular, the uniform bound will rarely be achievable everywhere in the delta-sigma plane.

To illustrate Theorem 2, we selected a small value of \(\beta \) and found a vector \(h \) lying in the nullspace of the matrix \([I - F_Y F_Y^+ [I + \beta B B^{1/2} P^{1/2}]^{-1}\]

via singular value decomposition.

This vector is shown in Fig. 6. In view of Theorem 2, we know that the estimator (36) of \(h^T \theta \) should achieve the uniform bound for the chosen value of \(\beta \). In Fig. 7, we plot the uniform bound for estimators of \(h^T \theta \) and the performance curve of smoothed \(P = C^{-1} \) and unsmoothed \(P = I \) estimators of the form (36). Observe that the smooth estimator essentially achieves the uniform bound for \(\delta < 0.2 \).

B. Poisson Model

In some applications, the observations \(Y \) are given by the linear model (28) but with non-Gaussian additive noise. Here, we consider the case of Poisson noise that arises in emission-computed tomography and other quantum-limited inverse problems [44]. The observation \(Y = [Y_1, \cdots, Y_m]^T \) is a vector of integers or counts with a vector of means \(\mu = [\mu_1, \cdots, \mu_m]^T \). This vector of counts obeys independent Poisson statistics with log-likelihood

\[\ln f_Y(\gamma; \mu) = \sum_{j=1}^m \left[y_j \ln \left(\frac{\mu_j(\theta)}{\gamma} \right) - \mu_j(\theta) \right] + c. \tag{39} \]

In (39), \(c \) is a constant independent of the unknown source \(\theta \), and the mean number of counts is assumed to obey the linear model

\[\mu(\theta) = A \theta + \tau. \tag{40} \]

For example, in emission-computed tomography

\(\mu \) vector of mean object projections measured over \(m \) detectors;
\(A \) \(m \times n \) system matrix that depends on the tomographic geometry
\(\theta \) unknown image intensity vector;
\(\tau \) \(m \times 1 \) vector representing background noise due to randoms and scattered photons.

The Fisher information has the form [45]

\[F_Y(\theta) = \sum_{j=1}^m \frac{1}{\mu_j(\theta)} A_{j*} A_{j*}^T, \tag{41} \]

where \(A_{j*} \) is the \(j \)th row of \(A \).
To investigate the achievability of the region above the delta-sigma tradeoff curve and to illustrate the empirical computation of bias gradient, we consider again the QPML strategy. The QPML estimator studied is \(\tilde{\theta} = \tilde{\theta}_a \), where \(\tilde{\theta} \) is the vector \(\tilde{\theta} \) that maximizes the penalized likelihood function
\[
J(\tilde{\theta}) = \ln f_{\tilde{\theta}}(Y; \tilde{\theta}) - \frac{1}{2} \tilde{\theta}^T P \tilde{\theta}
\]
where \(P \) is a nonnegative definite matrix.

Exact analytic expressions for the variance, bias, and bias gradient of the QPML estimator are intractable. However, it will be instructive to consider asymptotic approximations to these quantities. In Appendix D, expressions for asymptotic bias, bias gradient, and variance are derived under the assumption that the difference between the projection \(A \bar{E}_g[\tilde{\theta}] \) of the mean QPML image and the projection \(A \tilde{\theta} \) of the true image is small—frequently a very good approximation in image restoration and tomography. Specializing the results (58)–(60) in Appendix D to the case of linear functions \(t_\theta = \theta^T \theta \), we obtain the following expressions for the asymptotic variance of \(\tilde{\theta} \):
\[
\sigma^2_{\tilde{\theta}} = h^T [F_Y(\tilde{\theta}) + \beta P]^{-1} F_Y(\tilde{\theta}) [F_Y(\tilde{\theta}) + \beta P]^{-1} h + O\left(\frac{1}{\beta}\right)
\]
and the asymptotic bias gradient
\[
\nabla b_{\tilde{\theta}} = -P \left[P + \frac{1}{\beta} F_Y(\tilde{\theta}) \right]^{-1} h + O\left(\frac{1}{\beta}\right)
\]
where \(O(1/\beta) \) is a remainder term of order \(1/\beta \).

When we identify \(P = G^{-1} \) and \(\beta = 1/\lambda \), we see that the estimator variance is identical to the optimal variance (12) and that for linear \(t_\theta \), the bias gradient is identical to the optimal bias gradient (13) to order \(O(1/\beta) \). Therefore, assuming the bias gradient and variance approximations (44) and (43) are accurate, for linear \(t_\theta \), we can expect that the fundamental delta-sigma tradeoff curve will be approximately achievable by the QPML estimator for large values of the regularization parameter \(\beta \) if \(P = G^{-1} \).

To examine the performance of the methods for estimating bias gradient norm described in Section III and to verify the asymptotic bias and variance performance predictions, we generated simulated Poisson measurements with means given by (40). In these simulations, \(A \) was a 128 \(\times \) 128 tridiagonal blurring matrix with kernel \((0.23, 0.54, 0.23)\) for which the condition number is 12.5. The source intensity \(h \) is shown in Fig. 8. The function of interest was chosen as \(t_\theta = \theta_{050} \), which is the intensity of pixel 65 in Fig. 8. We generated \(L = 1000 \) realizations of the measurements, each having a mean total of \(\sum_{j=1}^{1000} \mu_j(\tilde{\theta}) = 2100 \) counts, including a 5% background representing random coincidences [20].

We computed three types of estimates of \(\tilde{\theta} \):

- i) the quadratically penalized maximum likelihood estimator using the "energy penalty" \((P = I) \);
- ii) a truncated SVD estimator;
- iii) a "deconvolve/shrink" estimator.

Fig. 8. Emission source \(\theta \) used for Poisson simulations. The spike in the center was the pixel of interest.

We maximized the nonquadratic penalized likelihood objective using the PML-SAGE algorithm, which is a variant of the iterative space alternating generalized expectation-maximization (SAGE) algorithm of [20] adapted for penalized maximum-likelihood image reconstruction [46]. We initialized PML-SAGE with an unweighted penalized least-squares estimate: \((A^T A + \beta^* I)^{-1} A^T (Y - \hat{Y}) \), which is linear so that it can be computed noniteratively. Here, \(\beta^* = \beta \Sigma_j A_{jk}/(\Sigma_j A_{jk}/Y_j) \) for \(k = 65 \) (cf. [47] and [48]). By so initializing, only 30 iterations were needed to ensure convergence to a precision well below the estimate standard deviation. For the truncated singular value decomposition estimator, we computed the singular value decomposition of \(A \) and computed the approximate psudo-inverse of \(A \) by excluding the 10 smallest eigenvalues.

The form of the "deconvolve/shrink" estimator is
\[
\hat{\theta}(Y) = \beta (A^T A)^{-1} A^T (Y - \hat{Y})
\]
where \(\beta \) ranges from 0 to 1.

We applied each estimator to the \(L = 1000 \) measurement realizations and computed the standard sample variance
\[
\hat{\sigma}^2 = \frac{1}{L-1} \sum_{i=1}^{L} (\hat{\theta}(Y_i) - \tilde{\theta})^2
\]
where
\[
\tilde{\theta} = \frac{1}{L} \sum_{i=1}^{L} \hat{\theta}(Y_i)
\]
is the estimator sample mean. We estimated the estimator bias gradient length (BGL) (the norm \(\| \cdot \|_C \) with \(C = I \)) via the methods described in Section III. We traced out the estimator performance curves in the delta-sigma plane by varying the regularization parameter \(\beta \).

Fig. 9 illustrates the benefits of using the bootstrap estimate of BGL as compared with the ordinary method-of-moments BGL estimator for the identity penalized likelihood estimator. Included are standard error bars (twice the length gives 95% confidence intervals) for bias (horizontal lines) and variance (vertical lines smaller than plotting symbol) of the bootstrap BGL estimator for \(L = 500 \) and \(L = 1000 \) realizations. The
BGL error bars were computed under a large L Gaussian approximation to the bias gradient estimates and a square root transformation. In general, as the smoothing parameter β is decreased, QPML estimator bias decreases while QPML estimator variance increases. This increase in variance produces an increasingly large positive bias in the ordinary BGL estimator, causing the curve to abruptly diverge to the right. The bootstrap BGL estimator diverges for a much smaller value of β and therefore extends the range of δ, which can be reliably studied.

In Fig. 10, we compare the three different estimators to the uniform CR bound. As predicted by the asymptotic analysis the uniform bound is virtually achieved by the identity penalized likelihood estimator in the high bias and low variance region (large β). The identity penalized maximum likelihood estimator visibly outperforms the other two estimators. Unfortunately, for fixed $L = 1000$, as the estimator performance curves approach the left side of the delta-sigma plane, the bootstrap BGL estimates become increasingly variable (recall error bars in Fig. 9); therefore, an increasingly large number of realizations is required to make reliable comparisons between the estimator performance and the bound. On the other hand, ECT images corresponding to such highly variable estimates of θ are unlikely to be of much practical interest.

V. CONCLUSIONS

We have presented a method for specifying a lower bound in the delta-sigma plane defined as the set of pairs $(\delta_\theta, c_\theta)$, where δ_θ is the estimator bias gradient norm, and c_θ is the estimator variance. For two inverse problems, one linear and one nonlinear, we have established that the bound is achievable under certain circumstances.

There remain several open problems. In ill-posed problems, the Fisher matrix is singular, and an eigendecomposition appears to be required to compute the bound. For small ill-posed problems, this is not a major impediment. However, for large problems with many parameters, which includes many image reconstruction and image restoration problems, the eigendecomposition is not practical, and faster numerical methods are needed. Another problem is that the variance of the bootstrap estimator for bias gradient norm increases rapidly with the number of unknown parameters. Since the bootstrap estimator is not guaranteed to be nonnegative, this high variance can make the estimator useless for estimating small-valued bias gradient norms. In such cases, asymptotic bias and variance formulas may be useful and can be derived along similar lines as described in Appendix D. Finally, we established a general relation between bias gradient norm and maximal bias variation. Although for general estimation problems the interpretation of the bias gradient norm may be difficult, for the two applications considered in this paper, the bias gradient norm has a natural interpretation as a measure of spatial resolution of the estimator.

APPENDIX A

PROOF OF THEOREM 1

For a fixed $\delta > 0$, we perform constrained minimization of the biased form of the CR bound (7) over the feasible set $\nabla b_\theta: \|\nabla b_\theta\|_C \leq \delta$ of bias gradient vectors

$$\operatorname{var}_\theta(\hat{\delta}) \geq \min_{d: \|d\|_C \leq \delta} Q(d),$$

where

$$Q(d) = \|\nabla t_\theta + d\|^T F^*_Y [\nabla t_\theta + \nabla b_\theta]$$

and d is a vector in \mathbb{R}^n. Defining $\tilde{d} = C^{1/2} d$, where $C^{1/2}$ is a square root factor of C, the minimization of $Q(d)$ is equivalent to

$$\min_{d: \|d\|_C \leq \delta} \left[C^{1/2} \nabla t_\theta + \tilde{d}\right]^T B [C^{1/2} \nabla t_\theta + \tilde{d}]$$

where $B = C^{-1/2} F^*_Y C^{-1/2}$.

First, we consider the case where the unconstrained minimum $Q(d) = 0$ occurs in the interior of the constraint set
which, after simple matrix manipulations, gives eigendecomposition constraint expressing simple matrix algebra.

It follows immediately from the above that \(\delta^2 = \|\nabla \phi \|^2 \) is

\[
\delta^2(Y_1, \ldots, Y_L) = \|\nabla \bar{b}_\theta \|^2_C = \frac{1}{L^2} \sum_{i=1}^L \left(\sum_{j=1}^L c_i z(Y_i) \right)^2 C
\]

where \(\langle u, v \rangle_C = u^T C v \) is defined as the (weighted) inner product of column vectors \(u \) and \(v \). Define \(\bar{c} = [c_1, \ldots, c_L] \) and let \(H = \left[\left(z(Y_1), \cdots, z(Y_L) \right) \right] \) denote a \(L \times L \) matrix of inner products. Then, the resampled estimate (50) has the equivalent form

\[
\delta^2 = \frac{1}{L^2} \sum_{i=1}^L \left(\sum_{j=1}^L c_i z(Y_i) \right)^2 C
\]

where \(\langle u, v \rangle_C = u^T C v \) is defined as the (weighted) inner product of column vectors \(u \) and \(v \). Define \(\bar{c} = [c_1, \ldots, c_L] \) and let \(H = \left[\left(z(Y_1), \cdots, z(Y_L) \right) \right] \) denote a \(L \times L \) matrix of inner products. Then, the resampled estimate (50) has the equivalent form

\[
\delta^2 = \frac{1}{L^2} \sum_{i=1}^L \left(\sum_{j=1}^L c_i z(Y_i) \right)^2 C
\]

which, after simple matrix manipulations, gives (9).

The Lagrange multiplier \(\lambda \) is determined by the equality constraint

\[
\delta^2 = \delta_{\text{min}} = \nabla^T \theta C^2 \left[\lambda I + B \right]^{-1} B C^{1/2} \nabla \theta = g(\lambda)
\]

(48)
From the mean and covariance of the multinomial distribution [49, Sec. 3.2]:

\[
E_*[g^T] = I + \frac{L - 1}{L} \text{11}^T
\]

where \(\text{11} \) is a vector of ones. Applying this identity to (53) and noting that trace \(\{ H \} = \sum_{i=1}^{L} ||z_i(Y_i)||_C \) and \(I^T H I = ||z_i(Y_i)||_C^2 \), we obtain

\[
E_*[\delta^2] = \frac{1}{L^2} \text{trace} \{ HE_*[g^T] \}
\]

\[
= \frac{1}{L^2} \left[\text{trace} \{ H \} + \frac{L - 1}{L} I^T H I \right]
\]

\[
= \frac{1}{L^2} \left[\sum_{i=1}^{L} ||z_i(Y_i)||_C^2 - L ||\bar{z}_i||_C^2 + L^2 ||\bar{z}||_C^2 \right]
\]

\[
= \frac{1}{L^2} \sum_{i=1}^{L} ||z_i(Y_i) - \bar{z}||_C^2 + \delta^2
\]

where

\[
\bar{z} = \bar{v}_b = \frac{1}{L} \sum_{i=1}^{L} z_i(Y_i)
\]

is the sample mean, and we have identified \(\delta^2 = ||\bar{z}||_C^2 \). Plugging this last expression into (26), we obtain

\[
\delta^2 = 2\delta^2 - E_*[\delta^2]
\]

\[
= \delta^2 - \frac{1}{L^2} \sum_{i=1}^{L} ||z_i(Y_i) - \bar{z}||_C^2
\]

which is identical to (27).

VIII. APPENDIX C
LOWER BOUND ON BIAS GRADIENT

Here, we derive a simple lower bound on the maximal bias variation over the region \(C = \{ u: (u - \theta)^T C^{-1} (u - \theta) \leq 1 \} \) under the assumptions i) \(F_Y(u) \) is constant over \(u \in C \), and ii) the functional \(t_{\theta} \) to be estimated is linear over \(u \in C \). Define

1) \(\mathcal{P}_F = F_Y F_Y^+ \), \(\mathcal{N}_F = \{ u: \mathcal{P}_F u = 0 \} \), and \(t_{\theta} \) as the symmetric matrix that orthogonally projects onto the range space of \(F_Y \).
2) \(\mathcal{N}_{\mathcal{P}} = \{ u: \mathcal{P} u = 0 \} \) as the nullspace of \(F_Y \).
3) \(m = E_{\mathcal{P}} [t_{\theta}] \).

Under assumption i), the parameter \(\theta \) is not identifiable for \(u \in \mathcal{N}_F \cap C \), and it follows that \(m_u - m_{\theta} = 0 \). Therefore, we obtain the lower bound

\[
\max_{u \in \mathcal{C}} |b_u - b_{\theta}|^2 = \max_{u \in \mathcal{C}} |m_u - t_{\theta} - m_{\theta} + t_{\theta}|^2
\]

\[
\geq \max_{u \in \mathcal{N}_{\mathcal{P}}} |m_u - m_{\theta} + t_{\theta} - t_{\theta}|^2
\]

\[
= \max_{u \in \mathcal{N}_{\mathcal{P}}} |t_{\theta} - t_{\theta}|^2
\]

\[
= \max_{u \in \mathcal{N}_{\mathcal{P}}} |h^T \Delta_{\theta}|^2
\]

\[
= \max_{u \in \mathcal{C}} |h^T [I - \mathcal{P}_F] \Delta_{\theta}|^2
\]

where \(\Delta_{\theta} = y - \theta \). Now, using an extremal property of the Rayleigh quotient, the right-hand side of (54) is

\[
\max_{u \in \mathcal{C}} |h^T [I - \mathcal{P}_F] \Delta_{\theta}|^2
\]

\[
= \max_{u \in \mathcal{C}} \frac{\Delta_{\theta}}{\Delta_{\theta} C^{-1} \Delta_{\theta}}
\]

\[
= \max_{u \in \mathcal{C}} \frac{\bar{h}^T C^{1/2} [I - \mathcal{P}_F] \bar{h} [I - \mathcal{P}_F] C^{1/2} \bar{h}}{\bar{h}^T [I - \mathcal{P}_F] C [I - \mathcal{P}_F] \bar{h}}
\]

\[
= \bar{h}^T [I - \mathcal{P}_F] C [I - \mathcal{P}_F] \bar{h} + \epsilon
\]

For the case that the bias \(b_{\theta} \) is linear over \(u \in C \), \(\epsilon \) is equal to zero, and we have an exact bound \(||\nabla b_{\theta}||_C \geq \sqrt{h}^{T} [I - \mathcal{P}_F] C [I - \mathcal{P}_F] h + \epsilon \). In view of (6), the combination of (54) and (55) yields the following lower bound on the norm: \(||\nabla b_{\theta}||_C \geq \sqrt{h}^{T} [I - \mathcal{P}_F] C [I - \mathcal{P}_F] h + \epsilon \).

APPENDIX D
ASYMPTOTIC APPROXIMATION OF BIAS, BIAS GRADIENT, AND VARIANCE FOR POISSON QPML

Define the vector

\[
\bar{z} = F_Y(\theta) + \beta F_Y(\theta) \theta \bar{z}
\]

\[
= I \left[P + \frac{1}{\beta} F_Y(\theta) \right]^{-1} \bar{z}
\]

Here, we derive the following asymptotic formulas for variance, bias, and bias gradient of the Poisson QPML estimator of a general differentiable function \(t_{\theta} \).

Asymptotic Variance:

\[
\sigma_{\bar{z}}^2 = \nabla \bar{z}^T \{ F_Y(\theta) + \beta P \}^{-1} F_Y(\theta) \theta \nabla \bar{z} - \nabla \bar{z} - \nabla \bar{z} - O \left(\frac{1}{\beta} \right)
\]

Asymptotic Bias:

\[
b_{\bar{z}} = t_{\bar{z}} - t_{\bar{z}}
\]

Asymptotic Bias Gradient:

\[
\nabla b_{\bar{z}} = F_Y(\theta) [\beta P + F_Y(\theta) \theta]^{-1} \nabla t_{\bar{z}} - \nabla t_{\bar{z}} - O \left(\frac{1}{\beta} \right)
\]

where

\[
O \left(\frac{1}{\beta} \right) = \frac{1}{\beta} \sum_{j=1}^{m} \frac{T_j(\theta) A_j B_j^{-1} A_{j-1}}{\mu_{j}^2(\theta)}
\]

\[
T_j(\theta) = A_j B_j^{-1} A_{j-1}
\]

(62)
and ∇t_θ denotes the evaluation of the gradient of t_θ at the point $\theta = \hat{\theta}$.

Define the ambiguity function $a(u, \theta) = E_g[J(u)]$, and let $u = z = \zeta(\theta)$ be the root of the equation $\lambda(u) = 0$, where $\lambda(u) = \nabla \alpha(u, \theta)$. Assuming the technical conditions underlying [50, Corollary 3.2, Sec. 6.3] are satisfied, we have the following approximation: In the limit of large observation time, the estimator $\hat{\theta}$ is asymptotically normal with mean $\hat{\theta}$ and covariance function $\Sigma = [\nabla \alpha(z, \theta)]^{-1} E_g[\nabla \alpha(z, \theta)]^{-2}$, where $G_z = \text{cov}_g(\nabla J(z))$. Furthermore, assuming that the function t_θ has nonzero derivative at $\theta = \hat{\theta}$, the estimator $\hat{\theta}$ is asymptotically normal with mean $\hat{\theta}$ and variance $\nabla^2 t_\theta \Sigma \nabla t_\theta$ [51, p. 122, Theorem A1]. This gives the asymptotic expression for bias $b_\theta = E_{\theta} [\hat{\theta} - t_\theta] = t_\theta - t_\theta$ and an asymptotic expression for variance

$$\text{var}_{\theta} (\hat{\theta}) = \nabla^2 t_\theta [\nabla \alpha(z, \theta)]^{-1} G_z [\nabla \alpha(z, \theta)]^{-1} \nabla t_\theta.$$

(63)

Since the penalized Poisson likelihood function $J(u)$ in (42) is linear in the observations Y and Y_θ are independent Poisson random variables, it is simple to derive the following expression for the covariance matrix of $J(u) = \sum_{j=1}^n A_j Y_j / \mu_j(z) - 1 - \beta P$:

$$\text{cov}_g (\nabla J(z)) = F(z, \theta)$$

$$= \sum_{j=1}^n A_j \mu_j(z) (\mu_j(z) - \theta)^2$$

$$= F_Y (\theta) + o(\mu(z - \theta))$$

(64)

where A_j is the jth row of A, $F_Y (\theta)$ is the Fisher matrix (29), and $o(\mu(z - \theta))$ is a remainder term that is close to zero when the difference between the projections $\mu(z)$ and $\mu(\theta)$ is small. To obtain (64) with remainder term, we used the series development

$$\frac{\mu_j(\theta)}{\mu_j(z)} = 1 - \frac{1}{\mu_j(z)} (z - \theta)^T A_j + o((z - \theta)^T A_j).$$

The ambiguity function is

$$a(u, \theta) = \sum_{j=1}^n (\mu_j(u) \ln \mu_j(u) - \mu_j(u)) - \beta u^T P u.$$

Differentiation of the ambiguity function with respect to u yields

$$\nabla \alpha(u, \theta) = \sum_{j=1}^m A_j (\mu_j(u) - \beta P u)$$

$$= -\left(\sum_{j=1}^m \frac{1}{\mu_j(u)} A_j A_j^T \right) (u - \theta) - \beta P u$$

$$+ o(\mu(u - \theta))$$

$$= F_Y (\theta) (u - \theta) - \beta P u + o(\mu(u - \theta)).$$

(65)

and similarly,

$$\nabla \alpha(u, \theta) = -F_Y (\theta) - \beta P u + O(\mu(u - \theta)).$$

(66)

1 Among other things, these conditions involve showing that the gradient function $\nabla J(\theta)$ converges a.s. to zero as the observation time increases.

Neglecting the $O(\mu(u - \theta))$ remainder terms, multiplication of the inverse of (66) the covariance (64) and the inverse transpose of (66) yields the asymptotic covariance expression (63). Likewise, neglecting the remainder term in (65) and solving for the root $u = z$ of the equation $\nabla \alpha(u, \theta) = 0$ yields the asymptotic expression for the root (57).

We next derive (60) for the bias gradient. Applying the chain rule to differentiate (59), we obtain

$$\nabla b_\theta = \nabla^2 t_\theta \nabla \alpha(z, \theta)$$

(67)

where $\nabla^2 t_\theta$ is an $n \times n$ matrix of derivatives of $z = \hat{z}_\theta$. From (57), the kth row of this matrix is

$$d \frac{d}{d \theta_k} z_\theta = \sum_{k=1}^n I - P \left[P + \frac{1}{\beta} F_Y (\theta) \right]^{-1}$$

$$- \theta^T P \frac{d}{d \theta_k} \left[P + \frac{1}{\beta} F_Y (\theta) \right]^{-1} + O(\mu(u - \theta)).$$

(68)

Define the matrix $B = P + (1/\beta) F_Y (\theta)$. From the differentiation formula $(d/d \theta_k) B(\theta)^{-1} = -B^{-1}(d/d \theta_k)B(\theta)B^{-1}$ and (41) for the Fisher information matrix $F_Y (\theta)$, we have

$$-\theta^T P \frac{d}{d \theta_k} \left[P + \frac{1}{\beta} F_Y (\theta) \right]^{-1}$$

$$= -\beta \theta^T P B^{-1} \cdot \frac{d}{d \theta_k} F_Y (\theta) B^{-1}$$

$$= -\frac{1}{\beta} \sum_{j=1}^m A_j \gamma_j(\theta) B^{-1}$$

$$= -\frac{1}{\beta} \sum_{j=1}^m \frac{1}{\gamma_j(\theta)} A_j^T B^{-1}$$

(69)

where $\gamma_j(\theta)$ is the kth element of the vector γ_j defined in (62). Combining (68) and (69), we obtain

$$\nabla z_\theta = \left[I - P \left[P + \frac{1}{\beta} F_Y (\theta) \right]^{-1} \right] + O \left(\frac{1}{\beta} \right)$$

which, when substituted into (67) and neglecting the remainder term $O(\mu(u - \theta))$, yields the bias gradient expression (60).

ACKNOWLEDGMENT

The authors gratefully acknowledge the anonymous reviewers for their comments and suggestions and W. L. Rogers and N. Clinithorne of the Division of Nuclear Medicine, University of Michigan Hospital, for many helpful discussions of this work.

REFERENCES

Jeffrey A. Fessler (M'90) received the B.S.E.E. degree from Purdue University, West Lafayette, IN, in 1985, the M.S.E.E. degree from Stanford University, Stanford, CA, in 1986, and the M.S. degree in statistics from Stanford University in 1989. From 1985 to 1988, he was a National Science Foundation Graduate Fellow at Stanford, where he received the Ph.D. degree in electrical engineering in 1990. He has worked at the University of Michigan, Ann Arbor, since then. From 1991 to 1992, he was a Department of Energy Alexander Hollaender Post-Doctoral Fellow in the Division of Nuclear Medicine. From 1993 to 1995, he was an Assistant Professor in Nuclear Medicine and the Bioengineering Program. Since 1995, he has been with the Department of Electrical Engineering and Computer Science. His research interests are in statistical aspects of imaging problems.

Mohammad Usman (M'95) received the B.S. degree in electrical engineering from the University of Engineering and Technology, Lahore, Pakistan, in 1987, the M.S. degree in electronics engineering from Philips International Institute, Eindhoven, the Netherlands, in 1989, and the Ph.D. degree in electrical engineering and computer science from the University of Michigan, Ann Arbor, in 1994. From 1988 to 1990, he was at the Philips Research Laboratories, Eindhoven, the Netherlands. From 1989 to 1990, he was at the Advanced Development Center, Philips Industrial Activities, Leuven, Belgium. Since 1995, he has been on the faculty of the FAST Institute of Computer Science, Lahore, Pakistan, where he is an Assistant Professor. He is also a consultant to Cressoft, Denver, CO. His current research interests include image reconstruction, speech compression, and code optimization.