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Spatial Resolution Properties of Penalized-Likelihood 
Image Reconstruction: Space-Invariant Tomographs 

Jeffrey A. Fessler, Member, IEEE, and W. Leslie Rogers, Member, IEEE 

Abstract-This paper examines the spatial resolution properties 
of penalized-likelihood image reconstruction methods by analyz- 
ing the local impulse response. The analysis shows that standard 
regularization penalties induce space-variant local impulse re- 
sponse functions, even for space-invariant tomographic systems. 
Paradoxically, for emission image reconstruction, the local resolu- 
tion is generally poorest in high-count regions. We show that the 
linearized local impulse response induced by quadratic roughness 
penalties depends on the object only through its projections. This 
analysis leads naturally to a modified regularization penalty that 
yields reconstructed images with nearly uniform resolution. The 
modified penalty also provides a very practical method for choos- 
ing the regularization parameter to obtain a specified resolution 
in images reconstructed by penalized-likelihood methods. 

I. INTRODUCTION 
TATISTICAL methods for image reconstruction can pro- S vide improved spatial resolution and noise properties over 

conventional filtered backprojection (FBP) methods. However, 
iterative methods based solely on maximum-likelihood crite- 
ria produce images that become unacceptably noisy as the 
iterations proceed. Methods for reducing this noise include 
i )  stopping the iteration before the images become too noisy 
(long before convergence) [ 11, ii) iterating until convergence 
and then post-smoothing the image [2], iii) using smooth 
basis functions [3],  and iv) replacing the maximum-likelihood 
criterion with a penalized-likelihood (or maximum a posteri- 
ori) objective function that includes a roughness penalty to 
encourage image smoothness [4]. 

Penalized-likelihood approaches for reducing noise have 
two important advantages over alternatives such as stopping 
rules and sieves. First, the penalty function improves the condi- 
tioning of the problem, so certain iterative algorithms converge 
very quickly. Second, one can choose penalty functions that 
control desired properties of the reconstructed images, such as 
preserving edges [4] or incorporating anatomical side infor- 
mation [5], [6]. In contrast, the smoothness that one obtains 
through stopping rules is limited by the characteristics of 
the iterative algorithm. A possible disadvantage of penalized- 
likelihood methods has been the absence of an intuitive 
method for choosing the value of the regularization parameter, 
even for simple quadratic penalties. One contribution of this 
paper is a new object-independent method for specifying the 
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regularization parameter in terms of the desired resolution of 
the reconstructed image. 

This paper describes another possibly undesirable property 
of penalized-likelihood image reconstruction methods that 
has not been previously documented (except in [7], to our 
knowledge), and then proposes a solution to the problem. 
Through analysis and empirical results, we demonstrate that 
when one uses standard space-invariant roughness penalties, 
the reconstructed images have object-dependent nonuniform 
spatial resolution, even for  space-invariant tomographic sys- 
tems. For emission imaging, the resolution is generally poorest 
in high-count regions, which is the opposite of what one might 
expect or prefer. In Section V, we propose a new modified 
space-variant roughness penalty that yields images with nearly 
uniform resolution. Based on our analysis, one could extend 
the method to provide other resolution characteristics, such as 
higher resolution in high-count regions, in a manner similar to 
methods for space-varying regularization [8], [9]; however, 
in this paper we focus on the goal of providing uniform 
resolution. 

This paper is somewhat in the spirit of previous stud- 
ies that used the local impulse response [lo]-[14] or an 
effective local Gaussian resolution [ 151 to quantify the res- 
olution properties of the unregularized maximum-likelihood 
expectation-maximization (MLEM) algorithm for emission 
tomography. However, there is an important difference in our 
approach: Since the MLEM algorithm is rarely iterated until 
convergence, previous studies examined the spatial resolution 
properties of MLEM as a function of iteration. In contrast, 
since there are now fast and globally convergent algorithms for 
maximizing both penalized-likelihood [ 161-[ 191 and penalized 
weighted least squares [20]-[22] objective functions, rather 
than studying the properties of the algorithms as a function of 
iteration, we study directly the properties of the estimator as 
specified by the objective function (Sections I1 and 111). This 
simplifies the practical use and interpretation of our analysis, 
since the specifics of the iterative algorithm are unimportant 
(provided one uses a globally convergent method). Our main 
results (14) and (16) should therefore be applicable to a broad 
range of inverse problems. (Although we focus on image 
reconstruction, most of the issues also pertain to quantum- 
limited image restoration.) 

In conventional FBP image reconstruction, one controls the 
tradeoff between resolution and noise by adjusting the cutoff 
frequency f c  of a filter. Since f c  has units of inverse length, 
there is an intuitive (and object-independent) relationship 
between f c  and the spatial resolution of the reconstructed 
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image. For idealized tomographs, one can use the Hankel 
transform to compute the point spread function (PSF) as 
a function of f c  [23]. But for real systems, one usually 
determines the (monotonic) relationship between f c  and the 
full-width half-maximum (FWHM) of the PSF through the 
following empirical approach. First, acquire a sinogram using 
a point or line source, possibly at several locations within the 
scanner. Then pick a filter type (e.g., Hanning) and reconstruct 
images for several different values of f c .  Finally, compute 
the FWHM of the PSF for each case, and record a table of 
( f c ,  FWHM) value pairs. In subsequent studies, one typically 
chooses the desired resolution (FWHM) by experience or 
by visually observing the resolution-noise tradeoff, and then 
obtains the appropriate f c  from the table. One needs to 
perform this tabulation only once for a given scanner, since 
FBP is linear (and hence its resolution properties are object 
independent). 

In contrast, in penalized-likelihood image reconstruction, a 
regularization parameter ,O controls the tradeoff between reso- 
lution and noise, but the units of /3 are at best opaquely related 
to spatial resolution. Therefore, it is not obvious how to specify 
the regularization parameter. As a further complication, one 
finds that for a fixed 0, the reconstructed spatial resolution 
varies between subjects, and even within the same subject 
(Section IV). One could choose /? using statistical criteria such 
as minimum mean-squared error [24], [25]. However, mean- 
squared error is composed equally of both bias (resolution) 
and variance (noise), whereas those two contributions usually 
have unequal importance in medical imaging, particularly 
when images are to be interpreted visually. Furthermore, data- 
driven methods for choosing ,O can be unstable in imaging 
problems [26]. Many other alternatives have been proposed, 
e.g., [27] and [28], most of which have again been assessed 
with respect to mean-squared error. One practical contribution 
of this paper is that we develop a method for normalizing the 
penalty function such that the object-dependent component of 
,l3 is nearly eliminated. This allows one to build an object- 
independent table relating ,B to spatial resolution (FWHM) for 
a given tomographic system, so that one can select ,B to achieve 
a consistent specified resolution within planes, between planes, 
and even between subjects. The task of choosing the “optimal” 
resolution is left to the user, just as the “optimal” cutoff 
frequency (and filter) for FBP are determined by different 
criteria in different contexts. 

Nonuniform resolution properties are not unique to 
penalized-likelihood methods. The MLEM algorithm for 
emission tomography also exhibits resolution variation and 
asymmetry [ l l ] ,  [29]. An advantage of the penalized- 
likelihood approach is that one can modify the penalty to 
overcome the resolution nonuniformity (Sections V, VI, and 
VII), whereas it is not obvious how to modify MLEM to 
achieve uniform resolution. 

Positron emission tomography (PET) and single photon 
emission computed tomography (SPECT) systems usually 
have intrinsically nonuniform spatial resolution [30] (although 
PET systems are usually nearly space invariant near the center 
of the scanner [30]). In this paper, our simulations focus on an 
idealized PET system that is essentially space invariant, except 

perhaps for the effects of discretizing the Radon transform. 
Thus, the resolution nonuniformities we report are due solely 
to the interaction between the log-likelihood and the penalty 
terms of the objective function, and not due to the system 
response. In future work, we hope to study the effects of 
penalty functions in systems with intrinsically space-variant 
resolution. 

This paper is condensed from [31]. In [311, we also analyze 
a continuous idealization of penalized least-squares image 
reconstruction. 

11. LOCAL IMPULSE RESPONSE 
Let Y = [Yl, . . . , YN]’ denote a random measurement 

vector (e.g. a noisy sinogram) with density function f (y ;  B ) ,  
where 6’ = [e,, . . . , e,]’ is an unknown parameter in a p -  
dimensional parameter space 0, and ’ denotes vector trans- 
pose. In imaging problems, 6’ typically denotes image pixel 
values in lexicographic ordering and 0 = { e :  6’j 2 0, j = 
1, . . . , p } .  Given a particular realization Y = y, an estimator 
of the form 8 = 8(y) has mean 

4 0 )  = Ed031 = & d f ( y ;  0) 4 Y .  (1) 

For linear and space-invariant problems, one can characterize 
the properties of p either in the spatial domain by specifying 
the (global) impulse response, or in the spectral domain by 
specifying the frequency response (Fourier transform of the 
impulse response), as in [31]. 

Spectral methods are generally inapplicable to nonlinear 
estimators for which the impulse response is space variant. 
For nonlinear estimators, one can analyze the local impulse 
response (cf [ 111). For an estimator with mean p( e ) ,  we define 
the local impulse response of the j th  parameter (pixel) to be’ 

p ( ~  + S e j )  - ~ ( 6 ’ )  
s Zj(6’) = lili 

where ej  is the j th  unit vector of length p .  This impulse 
response is local in two different senses. First, it is a function 
of the index j, reflecting the space-variant nature of nonlinear 
estimation. Second, it depends on the location in the parameter 
space 0 through the argument 8, reflecting the nonlinear 
object dependence. The local impulse response also depends 
on the measurement distribution through (1). Thus, the lo- 
cal impulse response characterizes the object, system, and 
estimator-dependent properties. The local impulse response 
measures the change in the mean reconstructed image due to 
perturbation of a particular pixel in the noiseless object.2 

To confirm that (2) is a natural generalization of the usual 
definition of impulse response, consider an estimator whose 

‘We restrict our discussion to estimators where the above limit is well 
defined. The reader is cautioned that nonconvex penalties can lead to estimates 
that are discontinuous functions of the data [32]. We focus here on well- 
behaved convex penalties. 

2Because of this interpretation, we use the term poinr spread function (PSF) 
synonymously with local impulse response, even though this stretches the 
usual meaning of PSF. 
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Fig. 1. Horizontal profiles through the local impulse response functions of 
FBP with a Hanning window (top) and of the MLEM algorithm at 30 iterations 
(bottom), for three pixels located along the horizontal midline of an elliptical 
object. Solid line: computed using the linearized approximation (10). Circles: 
computed using the unbiased estimator (6) from M = 2000 realizations. 

mean is linear in 8: p(Q) = LB. Then the conventional defini- 
tion of impulse response is p(e? ) ,  which is the j th  column of 
L. Evaluating (2), one finds that Zj is also the j th  column of 
L. (If, in addition, L is a circulant matrix, then the impulse 
response is space invariant, and L corresponds to a convolution 
[33].) Also note that ~ ( 6 ’ )  = 6’ for unbiased estimators, in 
which case Zj = e j .  Penalized-likelihood estimators are always 
biased, so local impulse responses will typically be bump-like 
functions rather than the ideal impulse e3 (e.g., Fig. 1). 

As a specific example, consider the following penalized 
weighted least-squares estimator [21]: 

A , .  

0 = Q(y) = argmjn (y - AQ)’W(y - AB) + PQ’RQ, 

where W and R are symmetric nonnegative definite matrices 
for which the null spaces of R and W A  are disjoint. For a 
fixed W ,  this estimator is linear in y: 

e(y) = [A’WA + PRJ-lA’Wy, 

and, assuming Ee[Y] = AB, one can evaluate (2) to show 

l j  = [A’WA + PR]-lA’WAeJ. (3)  

For such linear estimators, the local impulse response is 
independent of 8. As we show in Section 111, the local impulse 
responses of the nonlinear penalized-likelihood estimators for 
image reconstruction have approximately the same form as 
(3), except that W and R may depend on 6. 

There are at least three reasons to study the local im- 
pulse response. The first reason is simply to understand the 
resolution properties of penalized-likelihood estimators. The 
second reason is that the local impulse response allows one to 
quantify local resolution, which in turn allows one to choose 

the smoothing parameter p sensibly. The third reason is that 
comprehension of the resolution properties enables the design 
of better penalty functions. In particular, we show how to 
modify the standard regularization penalty to achieve nearly 
uniform resolution. 

A. Brute Force Evaluation of Local Impulse Response 

Unlike the simple penalized weightedAleast-squares estima- 
tor described above, most estimators 8(y) do not have an 
explicit analytical form. When there is no explicit form for 
e(y),  there is usually no explicit form for the estimator mean 
p(Q) either. Thus, it would at first appear that to investigate 
the local impulse response of a nonlinear estimator of interest, 
one must resort to a numerical approach based on (1) and 
(2), replacing the expectation in (2) by the sample mean in 
a computer simulation. The following recipe illustrates this 
brute-force approach. 

Select an object 0 of interest and generate multiple 
realizations { y(m)}g==l of noisy measurements according 
to the density j ( y ;  e ) .  
Apply the estimator of interest to each of the measurement 
realizations to obtain estimates {e(~(”))}:=~. 
Estimate the estimator mean using the sample mean 

- M  
1 g e )  = - 8(y(”). 

m=l M (4) 

Choose a pixel j of interest and small value 6, and 
generate a second set of noisy measurements according 
to the density f (y ;  6’ + SeJ). 
Apply the estimator to the second set of noisy measure- 
ments and compute the sample mean to obtain an estimate 
b(Q + Se j ) .  
Estimate the local impulse response 

f i (8  + S e j )  - fi(6’) 
S Zj(0) M (5) 

By taking S sufficiently small and M sufficiently large, 
one can obtain arbitrarily accurate estimates of the local 
impulse response. 

B. Unbiased Estimator for  Local Impulse Response 

If one wants to evaluate the local impulse response for 
pixels j ,  , . . . , j ,  of interest, the above procedure requires (L+ 
l ) M  image reconstructions. The following method [34]-[36] 
reduces the computation to only M image reconstructions. 
Note that from (2), 

a a a @ ( e )  = --(e) = -Ee[B(Y)] = - / 6(y)f(y; e )  dy 
88, aej aoj 

Thus one can show [35], [36] that 
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is an unbiased estimator for l j ( B ) ,  where b(0) was defined in 
(4). Once one performs the M reconstructions {e(y("))},",l, 
then one can estimate the local impulse response f j ( 0 )  for 
many pixels with little additional effort. 

By taking A4 sufficiently large, one can obtain arbitrarily 
accurate estimates of the local impulse response. Unfortu- 
nately, M may need to be very large for sufficient accuracy. 
Often, we would gladly accept an approximation to the local 
impulse response if we could avoid performing extensive 
numerical simulations. The remainder of this paper is devoted 
to approximations suitable for likelihood-based estimators in 
tomography. 

C. Linearized Local Impulse Response 

In the context of emission tomography, several investigators 
[13], [14], [37], [38] have observed that the ensemble mean 
of a likelihood-based estimator is approximately equal to the 
value that one obtains by applying the estimator to noiseless 
data 

p ( O )  = E@[B(Y)] M e(Y(0)) fi e". (7) 

Here 

denotes the mean of the measurement vector, and e" denotes the 
value of the estimator when given noiseless data Y(6'). This 
approximation is equivalent to assuming that the estimator is 
locally linear. Let V, = [(d/dyl) .;. ( d / d y ~ ) ]  and consider 
the first-order Taylor expansion of B(Y) about y(0): 

B(y )  M B(Y(0)) + VJyB(Y(6')) . (Y - Y(6')). 

Taking the expectation of both sides yields (7). The remainder 
of this paper uses this local linearity approximation. 

Substituting (7) into (2) yields the following definition of 
the linearized local impulse response: 

d 
= -B(Y(O)). 

dOj 
(9) 

Since we focus on this form in the remainder of this paper, 
for brevity we usually omit the adjective "linearized." 

The form of (9) leads to a much simpler recipe for numer- 
ically evaluating the local impulse response. 

Select an object 6' of interest, a pixel j of interest, and 
a small value S. Generate two noiseless measurements 
vectors: Y(6') and Y(O + Sej). 
Apply the estimator of interest to each of the two noiseless 
measurements, obtaining estimates O(Y(0)) and B(y(O + 
S e j ) ) .  
Estimate the local impulse response 

By taking 6 sufficiently small, one can obtain very accurate 
estimates of the linearized local impulse response. If 4 is linear 
in y, then (10) is exact, of course. 

To illustrate this method, Fig. 1 shows a profile through 
several local impulse response functions of FBP and of the 
emission MLEM algorithm [39] (stopped at 30 iterations, well 
before convergence). The object 6' was a uniform ellipse of 
activity within a uniform elliptical attenuator (see [31] for 
details). Despite the fact that the elliptical object has uniform 
activity, the resolution of the nonlinear MLEM estimator is 
clearly nonuniform, whereas the FBP resolution is uniform, 
since the smoothing provided by the Hanning window is space 
invariant. Using a similar perturbation approach applied to 
both the noiseless mean of the data Y(B) and to a single 
noisy realization Y,  Stamos et al. [lo] reported strongly 
object-dependent point response functions for the algebraic 
reconstruction technique (ART) and MLEM algorithms. 

Several investigators have used this easily implemented 
empirical approach to study the properties of maximum- 
likelihood estimators in emission tomography. However, being 
empirical, it fails to reveal general estimator properties. An 
analytical expression for the linearized local impulse response 
would facilitate understanding general properties of image 
reconstruction methods. The next section derives an analytical 
expression for the local impulse response of implicitly defined 
estimators. 

111. ANALYSIS OF LOCAL IMPULSE RESPONSE 
FOR IMPLICITLY DEFINED ESTIMATORS 

Many estimators in tomography are defined implicitly as the 
maximizer of some objective function: 

, . A  

B = O(y) = argmax@(O,y). 
B E @  

We assume Q, has a unique global maximum, so that e(y) 
is well defined. There is often no analytical form for such 
estimators; hence, the ubiquitous use of iterative algorithms 
for performing the required maximization. Fortunately, the 
linearized local impulse response (9) depends only on, the 
partial derivatives of the implicitly defined estimator O(y). 
As discussed in [38], even though e(y) itself is unknown, one 
can determine its partial derivatives using the implicit function 
theorem and the chain rule. Disregarding the nonnegativity 
~onstraint,~ the maximizer of @ satisfies 

for any y. In vector notation 

where Vlo = [(d/dO,) . . . (d/dQ,)] is the row gradient opera- 
tor (with respect to the first argument of @). Now differentiate 
again with respect to y using the chain rule 

3Although it appears we are assuming that (12) holds for any &from (9) 
one sees we really only need (12) to hold near the case y = Y(O), i.e., 
the noiseless case. The nonnegativity constraint is often largely inactive for 
noiseless data. so (12) is a reasonable assumption. 
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where the (j ,k)th element of Vzo is a 2 / d 0 j d 0 ~  and the 
(j,i)th element of Vl1 is d2/d0jdyi. For simplicity, we drop 
the dependence of y on, 0 except where explicitly needed. 
Assuming that -VZo@(0, Y) is positive definite, substitute 
y = y into (13) and solve for the partial derivatives of B(Y(0)) 
as follows: 

VY8(Y(B)) = [-V"~(ev,T;;)]-'v"~(s",Y). 

Combining with the chain rule applied to (9), we have 

d A -  d -  
P ( 0 )  = d8,0(Y(0)) = vyS(y(e))-Y(0) aBj 

For emission tomography [39], 0j  denotes the radioisotope 
concentration in the j th  voxel, and the measurement mean is 
linear in 0: 

P - 
Yi(Q) = a. 23 . e .  3 + T i .  (17) 

j=1 

The { a i j }  are nonnegative constants that characterize the 
tomographic system, and the { r i }  are nonnegative constants 
that represent the mean contribution of background events 
(random coincidences, scatter, etc.). Simple calculations [3 11 
using (17) show that 

r 1 

This equality expresses the local impulse response solely in 
terms of the partial derivatives of the objective function and the 
measurement mean, i.e., we have eliminated the dependence 
on the implicitly defined estimator 0(y). 

A. Penalized-Likelihood Estimators 

likelihood objective functions @ of the form: 
In the remainder of this paper, we focus on penalized- 

(15) 

where L(0,  y) = log f (y ;  0) denotes the log-likelihood, R(0) 
is a roughness penalty function, and ,L? is a nonnegative 
regularization parameter that controls the influence of the 
penalty, and hence the tradeoff between resolution and noise. 

@(O,Y) = L(Q,Y)  - m e ) ,  

where A = { a i j }  is an N x p sparse matrix and D[ui] denotes 
an N x N diagonal matrix with diagonal entries u1, . . . , UN.  

Noting that ( a / d Q j ) T ( Q )  = Aej and substituting into (16) 
yields the local impulse response 

For moderate or small values of p, e" is a slightly blurred 
version of 0 (see (7)). Since the projection operation 46' 
is a smoothing operator, the projections Y(0) and Y(0) 
are approximately equal. Theref~re,~ we simplify the above 
expression to 

Define R(Q) = V2R(Q) to be the Hessian of the penalty, 
and note that VllR = 0. For penalized-likelihood estimators 
of the form (15) we have from (14) the following expression 
for the local impulse r e~ponse :~  

l j ( 0 )  ~ [A~D[u;mis(0)lA + pR(e")i-lA'D[upmis(0)lAej 
(18) 

where 

This expression should be useful for investigating estimators 
in a variety of imaging problems. Next we evaluate expression 
(16) for Poisson distributed measurements, which will be the 
focus of the remainder of this paper. 

B. Poisson Statistics 
Both emission and transmission tomographic systems yield 

independent measurements with Poisson statistics; the primary 
difference is in the form of their assumed measurement means 
Y (0) .  In both cases, the assumed log-likelihood has the form 
- 

L(Q,y)  = c y i l o g Y i ( 0 )  - y ; ( 0 )  
i 

neglecting constants independent of 0. In this paper, we focus 
on emission tomography; we derive parallel results for the 
transmission case in [31]. 

4We consider the class of objectives for which the Hessian 
-VZ0L(d,B) + pR(0) is positive definite; i.e., @(Q,y) is at least 
locally strictly concave near the noiseless case (a,Y(O)). 

is the reciprocal of the variance of Y,  under the assumed 
Poisson model. For penalized-likelihood estimators in emis- 
sion tomography, (1 8) is our final approximation to the local 
impulse response. 

To summarize, we have derived a general local impulse 
response expression (14) for penalized-likelihood estimators, 
and specific expressions (1 8) for emission (and transmission 
[3 11) tomography. 

IV. RESOLUTION PROPERTIES 

The local impulse response approximations for penalized- 
likelihood image reconstruction in emission tomography ( I  8) 
and transmission tomography [31] differ only by the defini- 
tions of the U ;  terms in the diagonal matrix. Thus, the local 
impulse response has the following generic form: 

(20) l j ( 0 )  M [A'DeA + pB(e")]-'A'DeAej, 
5The diagonal terms in (18) and the preceding equation are sandwiched 

between the backprojection and projection operators A' and A,  which smooth 
out most differences between y(O) and B(0). In a sense, the heavy-tailed 
1 / ~  kemel that makes tomography ill-posed works to our advantage when 
making the above approximations. 
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where Do = D[ui(6)] is an object-dependent diagonal matrix 
with ui(6) defined by (19) for emission tomography and, 
similarly [3 11, for transmission tomography. 

Many penalty functions used in tomography can be written 
in the following form? 

n 

where Nj is a neighborhood of pixels near pixel j ,  $ is a 
symmetric convex function, and wj,+ = w k j  . For a “first-order” 
neighborhood, one chooses W j k  to equal one for horizontal 
and vertical neighboring pixels, and zero otherwise; for a 
“second-order” neighborhood, one also includes W,jk = 1/fi 
for diagonal neighbors. With either of these standard choices 
for the W j k ’ s ,  we refer to R(0) as a uniformpenalty, since it 
is shift-invariant; i.e., translating the image yields an identical 
value of R(6). 

One of the simplest uniform penalties is the uniform 
quadratic penalty, which refers to the case where $(z) = 
z2/2. In this case, the penalty has a quadratic form 

where R is a &independent p x p matrix defined by 

B. Nonuniformity 

One might expect that a uniform penalty such as (21) would 
induce uniform spatial resolution, just as space-invariant sieves 
do 121. Using the preconditioned conjugate gradient 1401, [22] 
or Gauss-Siedel [20], [21] algorithms, one can evaluate (20) 
or (22) and then display the local impulse response for several 
locations within the object. Upon doing this, one immediately 
finds that the local impulse response is very nonuniform, even 
for standard uniform quadratic penalties. (See Section VI.) 

The next section elaborates on this property, but one can par- 
tially understand the source of the resolution nonuniformity by 
considering (22). If the measurement noise was homoscedastic 
with variance v, then D would be simply a scaled identity 
matrix D = v-’I, and from (22) the local impulse response 
would be 

In other words, noise with variance v leads to an impulse 
response that corresponds to an “effective” smoothing pa- 
rameter vP. Thus, the influence of the smoothing penalty is 
not invariant to changes in the noise variance, which perhaps 
explains in part why choosing ,8 is considered by many 
investigators to be a difficult process. The Poisson case is more 
complicated since the values of Do vary along the diagonal. 
Since a given pixel is primarily affected by the detectors whose 
rays intersect it, each pixel sees a different “effective variance” 
and hence a different effective smoothing parameter. 

This resolution nonuniformity can also be explained from 
a Bayesian perspective. The Fisher information A’DeA is a 
measure of the Certainty in the data. For pixels where this data 
certainty is smaller (due to higher noise variance in the rays 
that intersect that pixel), the posterior estimate will give more 

In the quadratic case, the local impulse response simplifies to 

weight to the prior, which (being a smoothness prior) will 
cause more smoothing. In emission tomography, pixels with 
higher activity yield rays with higher counts and hence higher 
absolute variance or lower certainty. Paradoxically, penalized- 

I j ( 0 )  M [A’DeA + PR]-lA’DeAej. (22) 

A. Proiection Deuendence 

When R(0) is a quadratic form so that R is independent of 
6, then, remarkably, the local impulse response approximation 
l j ( 6 )  given by (22) depends on the object 6 only through its 
projections Y(6) (see (19)). Even if the object is unknown, its 
projections are approximately known through the noisy mea- 
surements y. Thus, even for real noisy measurements, we can 
predict the local impulse response simply by replacing P(6) 
with y in (18). This simple approach is effective primarily 
because the diagonal terms in (18) are sandwiched between 
the backprojection and projection operators A’ and A, which 
greatly smooth out the noise in y,  i.e., 

A’D [Ti ( e ) ]  -‘A M A’D [yi] -‘A. (23) 

61f G(z) > 0 for all 5, then it is easily shown that the only vectors in 
the null space of the matrix V2R(B) are of the form ‘U = l P u i ,  where 
1, is the length-p vector of ones. For any tomographic system that satisfies 

likelihood methods using the standard uniform penalty thus 
have lower spatial resolution in high-count regions. This prop- 
erty is certainly undesirable, and may explain in part why 
many authors have characterized the uniform quadratic penalty 
as causing “oversmoothing,” since the most prominent image 
features are generally smoothed the most! 

C. Choosing p for  One Pixel 
Since (22) allows one to predict the local impulse response 

(and hence the spatial resolution) at any pixel j as a function 
of /?, one could use (22) to choose a value for ,8 that induces 
a desired resolution at some pixel j of interest in the image. 
However, the induced resolutions at other points in the image 
would still be different, which motivates the modified penalty 
developed in the next section. 

V. RESOLUTION UNIFORMITY 
BoAl, # O<i.e., the projection of a uniform image is nonzero), we can then 
conclude that A’DQA + PR(e) is positive definite and therefore invertible, This section analyzes the problem Of 

as required by (16). mity more closely. This analysis leads to a natural modified 
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penalty function that induces more uniform resolution. For 
simplicity, we focus on emission tomography; parallel argu- 
ments apply to transmission tomography. 

A. Emission Tomography 

In emission tomography, the Fisher information matrix 
A’DeA is an operator that, due to the lexicographic ordering 
of pixels, one can treat as a mapping from image space 
to image space. The operator A’DeA is shift variant for 
emission tomography, which is the crux of the problem of 
resolution nonuniformity. The previous section noted that the 
nonuniform diagonal of the De term is partially responsible 
for the nonuniform local impulse response. But even without 
that term, the spatial resolution would still be nonuniform 
because typically even A’A is a shift-variant operator in PET 
and SPECT. However, one often models the system matrix A 
as a product of three factors: a;j = c i g i j s j ,  such that G‘G 
is approximately shift invariant, where G = {si?} represents 
the object-independent7 geometric portion of the tomographic 
system response. The c i ’ s  represent ray-dependent factors 
that change between studies, including detector efficiency 
factors, dead time, radioisotope decay, and (in PET) atten- 
uation factors. The s j ’ s  represent pixel-dependent factors 
such as spatial variations in sensitivity, and (in SPECT) 
“first-order’’ attenuation correction factors (cf the image-space 
Chang method [41] for SPECT attenuation correction). For our 
PET work thus far, we have simply used s j  = 1. In matrix 
notation 

This factorization is not unique. If one desires resolution 
uniformity, then the analysis that follows suggests that one 
should strive to choose { c i }  and { s j }  so that G’G is “as shift- 
invariant as possible” (cf (38) below). (See [42] for additional 
analyses of shift-invariant and shift-variant imaging systems.) 

Substituting (25) into (18) and simplifying, we obtain 

Zj(6’) M [D[sjlG’D[qi(Q)lGD[~j] + /3R(eY)]-1 
. D[sj]G‘D[qi (Q)]GD[sj]  e’ (26) 

where 

In PET, these q;’s are very nonuniform due to attenuation cor- 
rection factors that range from 1.0 to 100, detector efficiencies 
that vary over an order of magnitude in block crystal systems, 
and the intrinsic count variations of Poisson measurements. 

The Fisher information matrix for estimating 6’ is 

F(6’) = A’D[u;(O)]A = D[~j]G’o[s ; ( e ) ]Go[~ j ] .  (28) 

As a consequence of the nonuniformity of the q i ’ s ,  the diagonal 
of F(6’) is also nonuniform, which contributes greatly to the 
shift variance of the F(0)  operator in PET. 

71n SPECT, G will only be approximately object independent due to 
attenuation. 

Understanding the structure of F(0)  is the key to correcting 
the resolution nonuniformity. From (28), the diagonal elements 
of F(6’) can be written 

F j j ( Q )  = s; c g ; j q i ( Q )  = .;(e) j = 1 1 ,  . . ’ p 
i i 

(29) 

where we define 

Due to the 1 / ~  response of tomographs, F(0)  is fairly concen- 
trated about its diagonal, so (29) suggests the approximation 

F(6’) = D[sj]G’D[qi(6‘)]GD[sj] M AeG’GAe, (31) 

where 

he = D[.j(6’)l (32) 

is a p x p diagonal matrix. From (29), one sees that ap- 
proximation (31) is exact along the diagonal of P(6’), and 
would be exact on the off-diagonal elements if the yi’s were 
equal. The approximation (31) turns out to be reasonably 
accurate even for very nonuniform q i ’ s  because the lc j ’s  vary 
slowly as a function of j due to the smoothing implicit in 
(30). This approximation also reflects the fact that the local 
impulse response of pixel j depends primarily on the yi’s that 
correspond to rays that intersect pixel j. 

To visualize (31), Fig. 2 shows the various matrices for a 
toy PET problem* (with s j  = 1). The nearly Toeplitz-block- 
Toeplitz structure of G’G is apparent. 

Substituting (31) into (26) and rearranging yields the fol- 
lowing approximation to the local impulse response: 

Zj(6’) M [AsG’GAe + /3R(8)]-1A~G‘GAeej 
= A,’[G’G + /3A81R(e”)A,1]-’G’GA,ej 
= ~j(6’)h,l[G’G + /3A;1R(e“)A;1]-’G’Gej, (33) 

because AeeJ = tsj(6’)eJ. 
What does h e  represent statistically? From (30), we see 

that ~ j ( 0 )  is a normalized backprojection of { q i } ,  where qi is 
the inverse of the variance of the ith corrected measurement 
yi/ci .  Thus, ~ j ( 6 ‘ )  represents an aggregate certainty of the 
measurement rays that intersect the j th  pixel. Since the local 
impulse response Z j  is typically concentrated about pixel j ,  a 
somewhat cruder but nevertheless very useful approximation 
that follows from (33) is 

Zj(6’) M [G’G + /3/~~(6’)R(e”)]-’G’Gej (34) 

(cf. (24)). The accuracy of this approximation improves as ,Ll 
decreases (and, hence, Z j  approaches the impulse e j ) .  This ex- 
pression again illustrates the property that the effective amount 
of smoothing P / K ;  (0) increases with decreasing measurement 
certainty ~j (6’). 

‘The object was a 6 x 2 uniform rectangle in an 8 x 6 image. We used 
c, = 1, so the only nonuniformity in the 4;’s was due to the l/Yi(6) 
contribution of Poisson noise. 
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Fig. 2. Illustration of the approximation (31). Upper left: the matrix G’G, 
which is approximately Toeplitz-block-Toeplitz. Upper right: the Fisher in- 
formation F = G’D[q,(B)]G including Poisson noise covariance. The 
nonuniform diagonal is caused by the nonuniform Poisson noise variance. 
Lower right: the approximation AG‘GA; note the agreement with the upper 
right matrix, i.e., F M AG‘GA. Lower left: AA-lG‘D[q,(B)]Gh-l; note 
that this matrix is a reasonable approximation to G’G. 

Approximation (34) illuminates the paradoxical over- 
smoothing of high-count regions with the uniform penalty. 
If pixel j is transected by rays with high counts, then from 
(27) and (30) we see that qi and, hence, .j(S) will be small, 
so the effective smoothing parameter /?/.;(B) above will be 
large, causing lower resolution. As B j  increases, the rays that 
intersect it will also increase, so the local resolution decreases.’ 

B. A Modijied Penalty 

The form of (33) suggests several possible methods for 
modifying the penalty function to improve resolution unifor- 
mity. We focus on one approach that is easily implemented. 
Let R*(B) denote a “target” penalty function of the form 
(21) (presumably shift invariant) whose properties would be 
suitable if we had De = 1. Suppose we have estimates { k j }  
of { ~j ( e ) } ,  and consider the modified penalty 

If R(B) = V2R(8) denotes the Hessian of this modified 
penalty,” then one can show that 

9However, note that even uniform objects (e.g. 0 = [l. ’ .  11) lead to 
nonuniform resolution (i.e. to shift-variant local impulse response), since Y( 0) 
will be a nonuniform vector due to the different lengths of the line integrals 
through the object. 

”One can easily verify that this Hessian is nonnegative definite if 6 > 0. 

so that if D[k,]  zz A0 and we let R*(0) = V2R*(0) ,  then 

R(0) M AeR*(0)Re. (36) 

This approximation relies on the fact that neighboring pixels 
have very similar certainties, i.e., ~ k ( 0 )  E .,(e) for k E 
N,, which again follows from the smoothing effect of (30). 
Substituting (36) into the expression for the local impulse 
response (33) yields the new approximation 

P ( 8 )  M K,(S)A,’[G’G + /3R*(g)]-1G’Ge3. (37) 

If the geometric response G is nearly space invariant, then to 
within our approximation accuracy, (37) corresponds to nearly 
uniform resolution except for the following features. 

Unlike the uniform quadratic target penalty, for which 
R* is constant along its diagonal, nonquadratic penal- 
ties lead to object-dependent Hessians R*( ;). However, 
users of nonquadratic penalties presumably desire certain 
nonuniformities, i.e. more smoothing in flat regions and 
less smoothing near edges. Our modified penalty (35) 
preserves this important characteristic of nonquadratic 
penalties. Our modification only corrects for the resolu- 
tion nonuniformities that are induced by the interaction 
between the nonuniform statistics and the penalty func- 
tion. Essentially we are correcting for the &‘RA,’ term 
in (33). 
Since K , ( O ) / K , ( Q )  M 1 for k E N,, the term K,(O)A,’ 
in (37) effectively acts as an identity matrix for pixels 
near j ,  so for local impulse responses that are fairly 
narrow we can disregard the K,(O)A,~ term, leading to 
the approximation 

l 3  ( e )  M [GIG + PR*(;)]-1G’Ge3. (38) 

By “narrow” we mean relative to the scale of the spatial 
fluctuations in .,(e). However, in regions where the 
certainty K~ ( e )  is more rapidly varying as a function of 
spatial position (such as near the edge of an object), the 
presence of the term K,(S)A,’ indicates that there will 
be some asymmetry in the local impulse response. As 
illustrated in Section VI, such asymmetry can occur with 
or without our modifications to the penalty. Further work 
is needed to correct these asymmetries. 

C. Practical Implementation 

In practice, the term K, ( e )  is unknown, since it depends on 
the noiseless measurement mean Y( 0).  Fortunately, we can 
manipulate the noisy data to provide a reasonable estimate R, 

We first compute from the measurements an estimate qI of 
of .,(e). 
the term q l ( S )  defined by (27): 

(39) c? 
max {YZ, 10) ‘ 

4 = 

The ‘‘lo” factor ensures that the denominator is not too close 
to zero, and hopefully provides a little robustness to model 
mismatch by giving no rays an inordinate weighting. We then 
replace the q,(Q) term in (30) with GZ to precompute k,, 
which we then use in (35). Thus, implementing the modified 

fessler
Sticky Note
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penalty (3.5) simply requires one extra backprojection. (To save 
a little computation, one could probably replace (30) with 
an approximate backprojector.) The cost of multiplying by 
k j k k  in (35) is negligible compared to the forward projections 
required by iterative reconstruction algorithms. 

Since the kJ’s depend on the data, our modified penalty 
(35) is data-dependent! Bayesian-minded readers may find the 
idea of a data-dependent “prior” to be somewhat disconcerting. 
We make absolutely no pretense that this approach has any 
Bayesian interpretation. The purpose of the penalty is solely 
to control noise, and the purpose of our modification to the 
penalty is solely to control the resolution properties. As an 
alternative to (39), one could periodically update the k j ’s  by 
substituting one’s current estimate of 8 into (30) within an 
iterative algorithm. But the extra effort is unlikely to change 
the final estimate very much, since, as noted earlier, small 
changes in the q;’s have minor effects on the estimate due to 
the “sandwich” effect described in footnote 5 and by (23). 

Since (3.5) and (39) define the modified penalty R(8) to be 
a function that depends on y, the matrix Vl lR  is no longer 
exactly zero, so strictly speaking the steps between (14) and 
(16) need modification. However, because of the effective 
smoothing in the definition (30), the partial derivatives with 
respect to y of the modified penalty are very small, so we 
ignore this second-order effect. 

D. Choosing io 
For a quadratic target penalty R*(8), the local impulse 

response (38) induced by our modified penalty (35) is in- 
dependent of the object 8. Thus, the process of choosing 
the smoothing parameter /3 is significantly simplified by the 
following approach. Let j be a pixel in the center of the 
image, for example. For a given system geometric response 
G ,  precompute the local impulse response (38) for a range of 
values of b. For each io, tabulate some measure of resolution, 
such as the FWHM of 1 3 .  Then, when presented with a new 
data set to be reconstructed at some user-spec$ed resolution, 
simply interpolate the table to determine the appropriate value 
for p. Finally, reconstruct the object using the modified 
quadratic penalty. Section VI presents results that demonstrate 
the effectiveness of this approach. Analytical results in [31] 
further simplify the process of building this table for certain 
tomographs. 

Many (but not all) nonquadratic penalties are locally 
quadratic near zero, and it is this quadratic portion of the 
penalty that is active within relatively flat regions in the 
image. For such penalties, one could use the table approach 
described above to specify the desired “resolution” in the 
flat parts of the image, and then adjust any remaining 
penalty parameters to control the influence of edges etc. 
For penalties that are not even locally quadratic, such as the 
generalized Gaussian-Markov random field prior [32], further 
investigation is needed. 

VI. EXAMPLES 
This section demonstrates the improved resolution unifor- 

mity induced by the modified penalty (35) within a penalized- 

Fig. 3. Digital phantom used to examine spatial resolution properties 

likelihood image reconstruction method for PET emission 
measurements. For 8, we used the 128 x 64 emission image 
shown in Fig. 3, which has relative emission intensities of 
1, 2, and 3 in the cold disk (left), background ellipse, and 
hot disk (right), respectively. We included the effects of 
nonuniform attenuation in the c;’s by using an attenuation 
map qualitatively similar to Fig. 3, but with attenuation coef- 
ficients 0.003, 0.0096, and 0.013/mm for the cold disk, back- 
ground ellipse, and hot disk, respectively. The pixel size was 
3 mm. Rather than being anthropomorphic, this phantom was 
designed to demonstrate that the modified penalty induces 
nearly uniform spatial resolution even for problems where the 
standard penalty yields highly nonuniform spatial resolution. 

We simulated a PET emission scan with 128 radial bins 
and 110 angles uniformly spaced over 180”. The gi j  factors 
corresponded to 6-mm-wide strip integrals with 3-mm center- 
to-center spacing. We set 7-i = O.l(l/N) E;) Cj  ai,jOj, which 
corresponds to 10% random coincidences. 

A. Resolution Uniformity 

We computed local impulse response functions l j ( 8 )  for 
three pixels j ,  corresponding to the center of the cold disk, 
the center of the image, and the center of the hot disk. We 
used the recipe following (9) with S = 0.01 to evaluate I j ( 8 ) ,  
for both the standard penalty (21) and the modified penalty 
(35) with $(z) = x2/2. For both penalties, we used a first- 
order neighborhood. We used this recipe rather than any of 
the approximations that followed it (such as (18)) to provide a 
more convincing demonstration; for routine work we usually 
just use (26). (The results of (26) are not shown in Fig. 4 since 
they were indistinguishable from the curves shown, which 
supports the accuracy of the approximations leading to (26).) 
We maximized the objective function (15) to compute 8 in (5) 
using 20 iterations of the PML-SAGE-3 algorithm [18]. 

Fig. 4 displays horizontal and vertical profiles through the 
local impulse responses for the estimators corresponding to the 
two penalty functions. The circles in Fig. 4 are for the unbiased 
estimator (6) for M = 2000 realizations. The standard penalty 
has highly nonuniform spatial resolution, whereas the modified 
penalty yields nearly uniform spatial resolution. These results 
are typical. 

B. Asymmetry 

In part because of the large eccentricity of the ellipse 
in Fig. 3, the local impulse responses of both penalties are 
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Fig. 4. Horizontal and vertical profiles (concatenated left to right) through 
three local impulse response functions for a penalized-likelihood estimate 
of the image shown in Fig. 3. The standard quadratic penalty yields highly 
nonuniform resolution (upper profiles), whereas the proposed modified penalty 
leads to nearly uniform spatial resolution (lower profiles). Note that for the 
standard penalty the resolution is poorest in the high-count (rightmost) disk. 
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Fig. 5. Contours of the local impulse response functions at 25, 50, 75, and 
99% of each peak. Left: center of cold disk; middle: center of image; right: 
center of hot disk. 

asymmetric. Fig. 5 displays contours at levels 25, 50, 75, and 
99% of the peak value for each PSF, computed using the 
contour function of Matlab. We hope to extend the analysis 
in this paper to develop suitable modifications to the penalty 
that will reduce this asymmetry. (The corresponding contours 
for FBP were virtually circular.) 

C. Choosing 
We now describe how we selected ,8 for this simulation, 

which illustrates the effectiveness of the table-based approach 
described in Section V-D. First, we decided for illustration 
purposes to use a FWHM of 4.0 pixels. Using the analytical 
results detailed in [31] for the system geometry described 
above, the value /3 = 2-4.44 is required for the modified 

penalty.'' Did this choice of ,8 actually give the desired 4.0 
pixels FWHM resolution? Since Fig. 5 shows that the local 
impulse response is asymmetric, clearly the resolution is not 
exactly 4.0 pixels FWHM isotropically. In particular, for the 
same three pixels considered above, the horizontal resolutions 
were 3.10, 3.38, and 3.34 pixels FWHM, whereas the vertical 
resolutions were 5.28,4.83, and 4.76 pixels FWHM. However, 
the averages of the horizontal and vertical resolutions were 
4.19,4.10, and 4.05 pixels FWHM, all of which are within 5% 
of the target resolution of 4.0 pixels FWHM. Thus, although 
further work is needed to correct the asymmetry in such 
eccentric objects, the proposed method for selecting ,8 appears 
to yield local impulse responses whose average resolution is 
very close to the desired resolution. These results are typical 
in our experience. 

VII. WHAT HAPPENS TO THE VARIANCE? 

It is well known that the global smoothing parameter ,L? 
controls an overall tradeoff between resolution and noise: 
larger p's lead to coarser resolution but less noise, and vice- 
versa. The analysis in preceding sections shows that for the 
modified penalty to induce uniform spatial resolution, the 
"local" smoothing parameter must effectively be larger in some 
areas, and smaller in others. Thus, it is natural to expect that 
these changes in the local resolution will also influence the 
noise-but is the influence global or local? In other words, if 
the modified penalty increases the resolution (and hence the 
noise) at a given pixel, will that noise somehow propagate 
to distant pixels and lead to an overall worse resolutiodnoise 
tradeoff? 

To address this question, we generated 100 realizations of 
Poisson distributed simulated PET measurements for the object 
shown in Fig. 3, and for the system properties described in 
Section VI. For each realization y( l ) ,  . . . , y(lo0), we used 
20 iterations of PML-SAGE-3 [ 181 to compute penalized- 
likelihood estimates {O(y(m))}Ezl for several values of ,L? 
for both the standard and the modified quadratic penalties. For 
each value of p, we computed the empirical standard deviation 
of 6j for the pixels at the centers of the two disks in Fig. 3. 
(The results were similar for the pixel at the image center, so 
are not shown.) 

A. Just What You Expected 

Fig. 6 shows the tradeoff between resolution (measured by 
the average FWHM of the local impulse response) and noise 
(measured by the empirical standard deviation) as p is varied. 
Fig. 6 also shows predicted standard deviations computing 
using the variance approximations described in [38]. (The good 
agreement between empirical and predicted results in Fig. 6 is 
further confirmation of the utility of the approximations in 

In Fig. 6, the resolutionhoise data points follow an essen- 
tially identical tradeoff curve for both the standard and the 

[381.) 

"For the standard penalty, we used the above value of B scaled down by 
ii; for the single j corresponding to the pixel at the center of the image, as 
suggested by (34) and described in Section IV-C. This choice matched the 
resolution at the image center for the two penalties, as illustrated in the center 
plots of Figs. 4 and 5. 
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Fig. 6. Resolutionhoise tradeoff for penalized-likelihood emission image 
reconstruction with standard and modified quadratic penalties. The two 
penalties induce virtually identical tradeoff curves. (The dotted lines connect 
points that correspond to the same p value.) 

modGedpenalty. This is true both for the analytically predicted 
tradeoff (the solid line and the dashed line overlap almost 
perfectly) as well as for the empirical results (the circle and 
the plus symbols lie on the same curve). These results suggest 
that the effects of the modified penalty are essentially local: A 
given pixel moves up or down its own resolutiodnoise tradeoff 
curve to the specified resolution, and then has a variance that 
is the same value as would be obtained if one were to use 
the standard penalty but globally adjust /3 to enforce that 
specified resolution at the given pixel. This property probably 
hinges on the fact that the / ~ . j  factors are spatially smooth. If 
one were to artificially create a / s . ~  map having discontinuities 
and then apply the modification (35) ,  then it is plausible that 
the results would be less regular than indicated in Fig. 6. 
Readers who apply variations of (35) to induce some type 
of data-based nonuniform resolution will need to consider the 
resolutiodnoise tradeoff in more detail. 

Fig. 7 shows central horizontal profiles through empirical 
standard deviation maps of the penalized likelihood estimates 
for both the modified and the standard quadratic penalties. 
Also shown is a calculated prediction of the variance, an 
approximation developed in 1311. As noted in footnote 11, the 
penalties were chosen to have matched resolution at the image 
center, and in Fig. 7 the estimator variance is also matched at 
the image center. Note, however, that whereas the variance 
for the standard penalty is fairly uniform (at least for this 
object), the variance for the modified penalty is nonuniform. 
(Of course as we have shown it is the other way around for 
the spatial resolution.) This nonuniformity is consistent with 
the results of Fig. 6. The relative variance is more uniform for 
the modified penalty. 

B. Quadratic Penalties A x  Useful 

Fig. 8 compares the resolutionlnoise tradeoff of penalized 
likelihood with that of images reconstructed by FBP with a 

Variance of Penalbed Likelihood Estimates 
I 

Horizontal Pixel 

Fig. 7. Central horizontal profiles through empirical standard deviation maps 
for penalized likelihood emission estimates with the standard and modified 
penalties. 
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Fig. 8. Resolutiodnoise tradeoff of FBP with Hamming window and the 
constrained least-squares (CLS) window (40). At any given resolution, the 
variances of the penalized-likelihood estimates are smaller than those of FBP. 

Hanning window and with the following constrained least- 
squares (CLS) window developed in [31]: 

sinc (2u ) l s inc  ( U )  

s i n 2  ( 2 ~ )  + /3u3 ' 

(where U denotes spatial frequency: cycles per radial sample). 
This window induces a PSF indistinguishable from that of 
penalized-likelihood estimates with the first-order quadratic 
penalty [31]. As shown by Fig. 8, at any given resolution the 
empirical standard deviations for the FBP images are higher 
than for the penalized-likelihood estimates. This demonstrates 
that even using the oft-maligned quadratic penalty, penalized- 
likelihood image reconstruction can outperform FBP in terms 
of the tradeoff between resolution and noise. Of course, non- 
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quadratic prior models may give even better results for objects 
that are consistent with those models, but results such as Fig. 8 
show that quadratic penalties provide a useful reduction in 
image noise over a large range of spatial resolutions. 

VIII. DISCUSSION 

We have analyzed the local impulse response of implicitly 
defined estimators (14) and of penalized-likelihood estimators 
for emission tomography (1 8) and transmission tomography 
[31]. The analysis and empirical results show that the local 
impulse response is asymmetric and has nonuniform resolution 
for Poisson distributed measurements. We proposed a modified 
regularization penalty (35) that improved the spatial resolution 
uniformity but not the asymmetry. 

For the space-invariant tomographs considered here, the res- 
olution nonuniformity arises from the nonuniform diagonal of 
the Fisher information matrix, which in turn is a consequence 
of the nonuniform variance of Poisson noise. In principle, one 
could “avoid” this problem altogether by using an unweighted 
least-squares estimator. We have shown qualitatively in [21] 
that nonuniform weighting is essential to achieve the desirable 
noise properties of statistical methods. In [31], we provide 
additional analyses and quantitative results that demonstrate 
the importance of weighting. Therefore, we advocate retaining 
the nonuniform weighting that is natural for Poisson statistics, 
but modifying the penalty to compensate for the undesirable 
spatial resolution properties. Fortunately, this modification 
does not destroy the benefits of the weighting, as shown in [31] 
and in Fig. 8, apparently because the nonuniform weighting 
is applied in sinogram space, whereas the penalty acts on 
the image space. It is an open question as to whether the 
modified penalty would be effective for problems such as 
restoration of quantum-limited image measurements, where 
both the unknown parameters and the data are images. 

Some colleagues have argued that nonuniform resolution 
is desirable and expected. This opinion is presumably based 
on the idea that statistical methods can make better use 
of the measurement information and, thus, provide higher 
resolution in high-count regions. Ironically, our analysis shows 
that the effect of uniform penalties is just the opposite: 
More smoothing occurs in high-count regions. Although we 
have emphasized methods for achieving resolution unifor- 
mity, one could apply our analysis to develop alternative 
modified penalties that yield higher resolution in high-count 
regions according to some user-specified criterion. Since we 
now see that the statistics of the data themselves do not 
automatically provide a natural resolution-noise tradeoff in 
penalized-likelihood estimators (contrary to what may have 
been a widely held misconception), any such user-specified 
criteria will probably be considered somewhat arbitrary. 

We have shown the somewhat remarkable result that the 
local impulse response induced by quadratic penalties depends 
on the object only through its projections. Thus, one does 
not need to know the object to predict the reconstructed 
resolution, since the noisy measurements serve as an adequate 
approximation to the object’s projections. In contrast, the 
local impulse response for nonquadratic penalties depends 

explicitly on the (unknown) object (cf. (20)) through the 
Hessian of the penalty. Being able to predict and control 
the resolution properties induced by such penalty functions 
remains an important challenge. 

For nonquadratic edge-preserving potential functions $, the 
nonuniform diagonal in (20) may induce additional types of 
nonuniformities beyond the resolution effects reported here. 
Specifically, we conjecture that the “propensity to retain 
edges” (as opposed to smoothing them out) will be space 
variant, again due to coupling between the Hessian of the 
log-likelihood and the Hessian of the penalty in (20). If 
so, then modified penalties such as (35) may be useful for 
restoring the (presumably desirable) space invariance of the 
effects of edge-preserving penalties. The importance of such 
modifications is more likely to appear in rigorous studies of the 
ensemble characteristics of edge-preserving methods, rather 
than in anecdotal examples. 

This paper has emphasized space-invariant tomographs. Fur- 
ther investigation is needed for space-variant systems such as 
SPECT emission measurements and truncated data such as fan- 
beam transmission SPECT and three-dimensional cylindrical 
PET. 

Software related to this paper can be obtained from 
http://www.eecs.umich.edu/-fessler. 
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