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Mean and Variance of Implicitly Defined Biased 
Estimators (Such as Penalized Maximum 
Likelihood) : Applications to Tomography 

Jeffrey A. Fessler, Member, IEEE 

Abstract-Many estimators in signal processing problems are 
defined implicitly as the maximum of some objective function. 
Examples of implicitly defined estimators include maximum like- 
lihood, penalized likelihood, maximum a posteriori, and nonlinear 
least squares estimation. For such estimators, exact analytical 
expressions for the mean and variance are usually unavailable. 
Therefore, investigators usually resort to numerical simulations to 
examine properties of the mean and variance of such estimators. 
This paper describes approximate expressions for the mean 
and variance of implicitly defined estimators of unconstrained 
continuous parameters. We derive the approximations using the 
implicit function theorem, the Taylor expansion, and the chain 
rule. The expressions are defined solely in terms of the partial 
derivatives of whatever objective function one uses for estimation. 
As illustrations, we demonstrate that the approximations work 
well in two tomographic imaging applications with Poisson sta- 
tistics. We also describe a “plug-in” approximation that provides 
a remarkably accurate estimate of variability even from a single 
noisy Poisson sinogram measurement. The approximations should 
be useful in a wide range of estimation problems. 

I. INTRODUCTION 

ET 6‘ = [e,, . . . , e,]’ E IRp be an unknown real parameter L vector that is to be estimated from a measurement vector 
Y = [Yl, . . . , YN]’ E IRN, where ’ denotes vector or matrix 
transpose. In many areas of signal and image processing, one 
specifies an estimator 6 to be the maximum of some objective 
function: 

Examples of such methods include maximum-likelihood esti- 
mation, maximum a posteriori or penalized-likelihood meth- 
ods, and linear or nonlinear least squares methods. Except 
in very simple cases such as linear least squares estimation: 
there is usually no analytical form that explicitly expresses 6’ 
in terms of Y .  In other words, the objective function (1) only 
implicitly defines 0 as a function of Y .  Statisticians refer to 
(1) as an M-estimate [l]. 
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The absence of an explicit analytical expression of the form 
6 = h(Y) makes it difficult to study the mean and variance of 
the estimator 8, except through numerical simulations. Often 
the estimators of interest depend on one or more “tuning 
parameters,” such as the regularization parameter in penalized- 
likelihood methods, and one would like to be able to easily 
study the estimator characteristics over a range of values 
for those parameters. In such cases, numerical simulations 
can be prohibitively expensive for complicated estimators 
(particularly when p is large). Similar considerations apply 
if one wishes to compare estimator performance against the 
uniform Cramer-Rao bound for biased estimators [ 2 ] ,  [3] to 
examine the bias-variance tradeoff of the estimator. Therefore, 
it would be useful to have approximate expressions for the 
mean and variance of implicitly defined estimators, particularly 
if those approximations require less computation than multiple 
numerical simulations [4]. 

For unbiased maximum-likelihood estimation, the 
Cramer-Rao bound can serve as an approximation to 
the estimator variance. Our focus is on regularized methods 
for which bias is unavoidable, so the unbiased Cramer-Rao 
bound is inapplicable. Approximate covariances for penalized- 
likelihood estimates have been computed for specific iterative 
algorithms [5] ,  but most analyses of penalized-likelihood 
methods have focussed on the asymptotic properties of mean 
squared error, e.g., [6], [7]. For practical signal-to-noise 
ratios, bias and variance may have unequal importance, in 
contrast to their equal weighting in the mean-squared-error 
performance measure. 

In this paper we apply the implicit function theorem, the 
Taylor expansion, and the chain rule to (1) to derive approx- 
imate expressions for the mean and variance of implicitly 
defined estimators 8. Evaluating these expressions numerically 
typically requires a similar amount of computation as one 
or two realizations in a numerical simulation. Therefore, 
these expressions allow one to quickly determine “interesting” 
values for the tuning parameters, etc., for further investigation 
using numerical simulations. In addition, one can use the vari- 
ance approximation to determine how many realizations are 
needed to achieve a desired accuracy in subsequent numerical 
simulations. 

Our expressions are similar to the asymptotic moments 
given by Serfling [ 11 for scalar M-estimates. Our focus here is 
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on presenting a simple derivation of useful approximations for 
multiparameter imaging problems, rather than on asymptotics. 
The Appendix compares in more detail the two approaches. 

Because of the partial derivatives used in the derivation, 
our approximations are restricted to problems where 0 is a 
continuous parameter. Thus the approach is inapplicable to 
discrete classification problems such as image segmentation. 
(Mean and variance are poor performance measures for seg- 

approximation to obtain remarkably accurate estimates of 
variance even from a single noisy measurement (e.g., real 
data) using a simple plug-in approach. Section VI describes 
an emission tomographic imaging application, where we show 
that a penalized least squares estimator has a systematic bias 
at IOW count rates. 

11. APPROXIMATIONS 
mentation problems anyway; analyses of classification errors 
are more appropriate [SI.) Furthemore, strictly speaking we 
must also exclude problems where inequality constraints are 
imposed on 0, since when the maximization in (1) is subject 
to inequality constraints, one must replace (2) below with 
appropriate Karush-Kuhn-Tucker conditions. Our focus is on 
imaging problems, where often the only inequality constraint is 
nonnegativity of 0. Although this constraint is often important 
in unpenalized estimation methods, our primary interest is 
in objective functions @ ( e ,  Y )  that include a regularization 
term. In our experience, the nonnegativity constraints are 
active relatively infrequently with regularized estimates, so the 
variances of the unconstrained and constrained estimators are 
approximately equal for most pixels (cf [9]). We demonstrate 
this property empirically in Section IV, where the mean 
and variance approximation for the unconstrained estimator 
agree closely with the empirical performance of an estimator 
implemented with nonnegativity constraints. 

Our derivation assumes the estimate is computed by “com- 
pletely” maximizing an objective function, i.e., the approxi- 
mations are not applicable to unregularized objective functions 
for which one uses a “stopping rule” to terminate the iterations 
long before the maximum is reached. In particular, our results 
are inapplicable to unregularized methods such as iterative 
filtered backprojection [lo], the ordered subsets expectation 
maximization algorithm [ 111, or weighted least squares con- 
jugate gradient [12]. Except in simple linear cases [13], it 
is generally difficult to analyze the performance of methods 
based on stopping rules, although Barrett et al. [14], [15] 
have analyzed the per-iteration behavior of the maximum- 
likelihood expectation maximization algorithm for emission 
tomography. The approximations we derive are somewhat 
easier to use since they are independent of the number of 
iterations (provided sufficient iterations are used to maximize 
the objective function). 

Section I1 develops the mean and variance approximations. 
We expect these approximations to be useful in many types of 
signal processing problems. However, the particular tradeoffs 
between the cost of the computing the approximations and 
the cost of performing numerical simulations will likely differ 
between applications. Therefore, we devote most of the paper 
to concrete illustrations of the utility and accuracy of the 
approximations on two tomographic imaging applications. 
Section 111 describes the (linear) regularized least squares 
estimator. Section IV illustrates that the approximations are 
accurate even for a highly nonlinear penalized-likelihood 
estimator in a transmission tomographic imaging applica- 
tion. Section V illustrates how one can use the variance 

We assume @(.,Y) has a unique global maximum 0 E 0 
for any measurement Y ,  so that 0 is well defined. We also 
restrict our attention to suitably regular objective functions for 
which one can find the required maximum in (1) by zeroing 
the partial derivatives of a(., Y )  

It is this assumption that restricts our approximations to con- 
tinuous parameters and that precludes inequality constraints 
and stopping rules. 

For suitably regular a, the assumption of uniqueness and 
the implicit function theorem [16, p. 2661 ensure that the 
relationship (2) implicitly defines a function 8 = h(Y)  = 
[hl(Y).-.h,(Y)]’ that maps the measurement Y into an 
estimate 8. From (2) the function h(Y) must satisfy 

0 = -@(B,Y) j z  1, . . .  , P .  ( 3 )  
dOj 1 ’  6’=h(Y) 

With perhaps a slight abuse of notation, we will rewrite (3) as 

P (4) 

where we will always use to denote partial derivatives 
with respect to the first argument of the function @ ( B ,  Y ) ,  and 
& to denote partial derivatives with respect to the second 
argument, regardless of what values are used to evaluate the 
resulting derivatives. 

The implicitly defined function h(Y)  can rarely be found 
analytically, and one usually implements an iterative method 
for maximizing @(.,Y) to find 8. Even if one did have an 
analytical expression for h(Y),  it would still be difficult to 
compute its mean or variance exactly since the estimator h(Y) 
is usually nonlinear. Although exact analytical expressions 
for the mean and variance of h(Y)  are unavailable, if we 
knew h(Y)  we could approximate its mean and variance using 
standard methods based on the second-order Taylor expansion 
of h(Y).  If Yn denotes the mean of Y,, then 

86, 

h(Y)(Yn - Fn)(Ym - Ym). d2 +;=,, n m  

(5) 

We use this expansion in the following to derive approxima- 
tions for the covariance and mean of 0 = h(Y).  
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A. Covariance 
For the covariance approximation we use the first-order 

Taylor expansion in matrix form 

h(Y)  M h ( Y )  + Vh(Y)(Y - Y) (6)  

where V = [& . . . 2 1  denotes the (row) gradient operator. 
Taking the covariance' of both sides yields the following 
well-known approximation [ 17, p. 4261: 

ay, 

Cov{B} = Cov{h(Y)} M Vh(Y)Cov{Y}[Vh(Y)]'. (7) 

If we knew h(Y)  then we could directly apply (7) to approx- 
imate the covariance of 8 = h(Y). But since h(Y) is unknown, 
(7) is not immediately useful. However, the dependence on 
h_(Y) in (7) is only through its partial derivatives at the point 
Y .  From the calculus of vector functions [18, p. 3021, one 
can determine the partial derivatives of an implicitly defined 
function by applying the chain rule. Differentiating (4) with 
respect to Y, by applying the chain rule2 yields 

j = 1, . . .  , p ,  n = 1, . . . , N .  This equality gives N sets of p 
equations in p unknowns, and it holds for any Y .  However, 
since (7) only depends on Vh(Y) ,  we only need the special 
case of (8) where Y = y .  Writing that case in matrix form 

0 = V"@(h(Y) ,Y)Vh(Y)  + V'l@(h(Y),Y) (9) 

where the (j, k)th element of the p x p operator VZo is 
a o ~ ~ o k ,  and the (j,n)th element of the p x N operator V'' 
is &. To proceed, we now assume that the symmetric 
matrix - 0 2 0 @ ( h ( Y ) ,  U )  is also positive definite,3 so we can 
solve for Vh(Y)  by rearranging 

Vh(Y)  = [-V2o@(h(q, Y)]-1v%(h(Y), Y ) .  (10) 

If we define 8 = h(Y) ,  then combining (10) with (7) yields 
the following approximation for the covariance of 8: 

Cov{ e} M [ - V20@ (8, Y)] -lv% (8, Y) Cov{Y} 
. [V"@(8, Y)]'[-V"@(8, Y)]- ' .  (11) 

' All expectations and covariances are taken with respect to the probability 
density of the random measurement Y .  Typically one assumes this density 
is of the form f (Y;Otrue) ,  where Btrue is the unknown parameter to be 
estimated using (1). However, our approximations do not require a parametric 
form for the measurement distribution; we need only that the covariance of 
the measurements be known (or can be estimated-see Section V). 

*We restrict attention to objective functions @(e,  Y )  for which the partial 
derivatives we use exist. 

3The assumption that -Ozo@(h(Y),Y) is positive definite is much less 
restrictive than the usual assumption that a(., Y )  is globally strictly concave 
for any measurement vector Y .  We only require that @(h(Y),  Y )  be locally 
strictly concave (near 0 )  for noise-free data 9. 

When p is large, storing the full covariance matrix is 
inconvenient, and often one is interested primarily in the 
variance of certain parameters in a region of interest. Let 
e3 be the j th  unit vector of length p ,  and define u3 = 
[-V"@(e', Y)]-'ej. Note that one does not need to perform 
a p x p matrix inversion to compute U'; one simply solves 
the equation [-V2*@(8,Y)]uj = ej ,  which can be done 
directly when p is small, or via fast iterative methods such as 
Gauss-Siedel when p is large [19]. From (11) it follows that 

for j ,  k = 1,. . . , p .  One can compute any portion of the 
covariance matrix of 0 by using (12) repeatedly for appropriate 
j and I C .  In general, computing Var(8j) using this formula 
requires O(p2 + n p  + n2) operations. In many problems, 
such as the tomographic examples in Sections IV and VI, 
the covariance of Y is diagonal and the partial derivatives 
have a sparse structure, so the actual computation is much 
less. 

To summarize, (11) and (12) are the main results of 
this subsection: approximate expressions for the estimator 
(co)variance that depend only4 on the partial derivatives of the 
objective function @(e,  Y ) ,  and do not require an expression 
for the implicit function h(Y) .  

B. Mean 
To approximate the mean of 0 = h(Y)  one has two choices. 

The simplest approach is to take the expectation of the 0th- 
order Taylor expansion, yielding the approximation 

E{B} = E { h ( Y ) }  M h ( Y )  = e. (13) 

This approximation is simply the value produced by ap- 
plying the estimator (I)  to noise-free data. This approach 
requires minimal computation, and works surprisingly well for 
penalized-likelihood objectives. It has been used extensively 
by investigators in emission tomography 1141, [15], [20]. 
Apparently, the principal source of bias in penalized-likelihood 
estimators is the regularizing penalty that one includes in 
@, so (13) allows one to examine the effects of the penalty 
separately from the effects of noise. However, the approxi- 
mation (13) is certainly not always adequate, as the example 
in Section VI illustrates. Therefore, we next derive a mean 
approximation based on the second-order Taylor expansion, 
which is more accurate, but has the disadvantage of greater 
computation. 

Taking the expectation of both sides of the second-order 
Taylor expansion (5) yields the following well-known approx- 

4Note that (11) and (12) do depend on 6 = h(P).  By the-definition ( 3 )  of 
h(Y), we see that 6 = argmaxs @ ( O , Y ) ,  so we compute 0 by applying the 
estimation algorithm to the noise-free data Y .  
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imation for the mean of h(Y) :  

where 

is the (n,m)th element of the covariance matrix of Y .  The 
approximation (14) requires the second partial derivatives of 
h(Y). To obtain those partial derivatives, we use the chain 
rule to differentiate (8) again with respect to U,, obtaining 

f o r j  = l,...,p,n = l , . . . , N , m  = l , . . . , N  . Onecan 
substitute in 8 = h ( Y )  and Y = Y in the above ex- 
pression to obtain N 2  sets of p equations in the p un- 
knowns { &hk(Y)} i= l .  Solving each of those systems 
of equations and then substituting back into (14) yields an 
approximation to E{8} that is independent of the unknown 
implicit function h(Y).  If p and n are large in a given problem, 
then one must weigh the relative computational expense of 
solving the above equations versus performing numerical 
simulations. The tradeoff will depend on the structure of the 
objective function a. Note that (15) depends on the first 
partials & / L ~ ( Y ) ,  so one must first apply (10) to compute 
those partials. 

Unlike expression (S), which we were able to write in 
the matrix form (9), there does not appear to be a simple 
form for rewriting (15), except by introducing tensor products 
(which really do not offer much simplification). However, the 
equations in (15) do simplify for some special cases for @, 
described next. 

C. Independent Measurements 

If the measurements Yl , . . . , YN are statistically indepen- 
dent, then (14) simplifies to 

(16) 
This expression depends only on the diagonal elements of 
the covariance of Y and on the diagonal of the matrix of 
second partial derivatives of h(Y). Therefore, one needs only 

the cases where m = n in (15), i.e., one needs to solve N sets 
of p equations in p unknowns of the form 

23 

D. Scalar Parameter 

If p = 1, i.e., B is a scalar, then (15) simplifies to 

a3 a 
0 = -Q(h(Y), Y)-h(Y) [ a03 8% 

n = I,... , N , m  = 1,. . .  , N .  (17) 

By rearranging we can solve explicitly for the second partials 
of h(Y)  

Substituting this expression into (14) yields the approximate 
mean for a scalar parameter estimator. 

111. EXAMPLE: REGULANZED LEAST SQUARES 

The approximations for mean and covariance derived above 
are exact in the special case where the estimator is linear, since 
in that case the first-order Taylor expansion (6) is exact. In this 
section we verify this property by computing (1 1) and (15) for 
a regularized least squares problem. The expressions are useful 
for making comparisons with the corresponding approximation 
for nonlinear estimators derived in the subsequent sections. 

Suppose the measurements obey the standard linear model 
with additive noise 

Y = AB + noise 

where A is a known N x p matrix. For such problems, 
the following regularized weighted least squares objective 
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function is often used for estimation: 
1 
2 

Q(0,Y) = --(Y - A0)’lI(Y - A@) - pR(0) 

where II is a nonnegative definite weighting matrix and R(0) 
is a roughness penalty of the form 

where wjk = 1 for horizontal and vertical neighbors, w j k  = 
1/fi for diagonal neighbors, and is 0 otherwise. Note that 

VllR(0) = 0 

and define 

R(0) = V2R(0)  (19) 

to be the matrix of second partials of R(0).  The (j ,k)th 
element of R(0) is 

z w j k / d ( e j  - 8 k / ) ,  j = k { k t  - W j k $ ( o j  - O k ) ,  j # k 

where 4 denotes the second derivative of 4. 
Consider the quadratic case where q5(z) = x2 /2 ,  so R(0) = 

iQ’R0. Assume R is a symmetric nonnegative definite reg- 
ularization matrix whose null space is disjoint from the null 
space of lIA. In this case, one can derive an explicit expres- 
sion for the estimator 

S = h ( ~ )  = (A’IIA + PR)-~A’IIY (20) 

from which one can derive exact expressions for the mean 
and covariance. However, for didactic purposes, we instead 
derive the mean and covariance using the “approximations” 
(11) and (15). 

The partial derivatives of @(e,Y) are 

--VZo@ = A‘IIA + ,OR 
VI1@ = -A’H 
V30@ = p Q =  V12Q = 0 (21) 

so substituting into (15), one finds that V2h(Y) = 0. Thus 
from (14) 

E{@ = h ( Y )  = (A‘IIA + PR)-~A’IIY 

which of course is exactly what one would get from (20). 
Substituting (21) into (1 1) yields the estimator covariance 

Cov{S} 
= [A’IIA + ,L3R]-1A’rIC~~{Y}rIA[A’IlA + 0RI-l 

which again agrees with (20). If the measurement covariance is 
known, then usually one chooses II-l = Cov{Y}, in which 
case 

cov{Q = (F + PR)-~F(F + P R ) - ~  (22) 

where F = A’COV(Y}-~A is the Fisher information for 
estimating 0 from Y ,  when the noise has a normal distribu- 
tion. The covariance approximations derived in the following 
sections are similar to (22). 

Since our approximations for the mean and covariance 
are exact for quadratic objective functions, one might expect 
the approximation accuracy for a nonquadratic objective will 
depend on how far the objective deviates from being quadratic. 
Many objective functions are locally quadratic, so we expect 
that the approximation accuracy will depend on the signal- 
to-noise ratio (SNR) of the measurements. Indeed, from (5) 
it is clear that as the noise variance goes to zero, we will 
have Y, -+ Y,, so the Taylor approximation error will vanish. 
This asymptotic property is illustrated empirically in the next 
section. 

IV. EXAMPLE: TRANSMISSION TOMOGRAPHY 

To illustrate the accuracy of the approximation for estimator 
covariance given by (1 l), in this section we consider the prob- 
lem of tomographic reconstruction from Poisson distributed 
PET transmission data. Our description of the problem is brief, 
for more details see [21]-[23]. Since PET transmission scans 
are essentially measurements of nuisance parameters, one 
would like to use very short transmission scans. Since short 
scans have fewer counts (lower SNR), the conventional linear 
filtered backprojection (FBP) reconstruction method performs 
poorly. Statistical methods have the potential to significantly 
reduce the error variance, but since they are nonlinear, only 
empirical studies of estimator performance have been pre- 
viously performed to our knowledge. Analytical expressions 
for the variance will help us determine (without exhaustive 
simulations) conditions under which statistical methods will 
outperform FBP. 

In transmission tomography the parameter 8j denotes the 
attenuation coefficient in the j th  pixel. The transmission 
measurements have independent Poisson distributions, and we 
assume the mean of Y, is 

where the a,j factors denote the intersection length of the 
nth ray passing though the j th  pixel, {b,} denote the rates 
of emissions from the transmission source, {T,} denote addi- 
tive background events such as random coincidences, and T 
denotes the scan duration. These nonnegative factors are all 
assumed known. The log-likelihood is 

neglecting constants independent of 0. Since tomography is ill- 
conditioned, rather than performing ordinary ML estimation, 
many investigators have used penalized-likelihood objective 
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functions of the form5 

(25) 
1 
T 

@(e ,  Y )  = --L(Q, Y )  - /3R(Q) 

where the roughness penalty R was defined in (18). 
Due to the nonlinearity of (23) and the nonquadratic like- 

lihood function (24) for Poisson statistics, the estimate 8 
formed by maximizing (25) is presumably a very nonlinear 
function of Y .  Furthermore, since attenuation coefficients are 
nonnegative, one usually enforces the inequality constraint s 2 0. Therefore, this problem provides a stringent test of 
the accuracy of the mean and variance approximations. 

A. Covariance Approximation 
Since the number of measurements (or rays) N and the 

number of parameters (pixels) p are both large, we would like 
to approximate the variance of certain pixels of interest using 
(12), which requires the following partial derivatives: 

Combining the above expressions in matrix form with the 
expressions for the partials of R given in Section 111 

-V20Qi(B, Y )  = A'diag{q,(B)}A + ,f?R(B) 

where A = {a,j} is a large sparse matrix, and diag{v,} 
denotes a N x N diagonal matrix with elements V I ,  . . . , VN 

along the diagonal. For simplicity we focus on the case 
where T, = 0, in which case qn(0) = p,(6') and the above 
expressions simplify to 

-V2'@(6', Y )  = A'diag{p,(Q)}A + PR(6') 
1 
T 

V1'Qi(6', Y )  = --A'. 

It follows from the assumption that the measurements 
have independent Poisson distributions that Cov{Y}  = 
diag{ Yn(Btrue)}. Substituting into (1 1) and simplifying yields 
the following approximation to the estimator covariance: 

Cov(8) M $ [ F ( 8 )  + PR(e)] - lF(6 '" ' "" )[F(s)  + PR(8)]-' 
(26) 

where 

F(Q) = A'diag{p,(Q)}A (27) 
5Due to the term in (25), one can show that for a fixed /3, as T 4 03, 

the maximum penalized-likelihood estimate will converge in probability to 
0, a biased estimate [l]. For asymptotically unbiased estimates, one must let 
p 4 0 at an appropriate rate as T + 00 [6]. 

Fig. 1. Simulated thorax attenuation map used to evaluate the mean and 
variance approximations for penalized-likelihood estimators in transmission 
tomography. 

is 1/T times the Fisher information for estimating 6' from Y .  
Note the similarity to (22). 

We compute the approximate variance of 0, by using the 
following recipe. 

Compute 8 = argmaxs @(e,  Y) by applying to noise- 
free data y a maximization algorithm such as the fast 
converging coordinate-ascent algorithm of Bouman and 
Sauer [24], [25]. 

an3g3 + r,. e Forward project 8 to compute p,(d) = 
3 

Likewise, for pn(BtrUe). 
Pick a pixel j of interest and solve the equation 

[A'diag{p,(B)}A + /3R(8)]u3 = e3 

for U J  using a fast iterative method such as preconditioned 
conjugate gradients [26] or Gauss-Siedel [ 191. 

* Compute $ (uJ)'A'diag{pn(Qtrue)}Au3 by first forward 
projecting u3 to compute 'U = A d ,  and then summing 

The overall computational requirements for this recipe are 
roughly equivalent to two maximizations of a. Thus if one 
only needs the approximate variance for a few pixels of 
interest, it is more efficient to use the above technique than 
to perfom numerical simulations that require dozens of max- 
imizations of <D. 

B. Empirical Results 

To assess the accuracy of approximation (26), we performed 
numerical simulations using the synthetic attenuation map 
shown in Fig. 1 as Qtrue. This image represents a human 
thorax cross section with linear attenuation coefficients 0.0165 
mm-l, 0.0096 mm-', and 0.0025 mm-l, for bone, soft tissue, 
and lungs, respectively. The image was a 128 by 64 array of 
4.5 mm pixels. We simulated a PET transmission scan with 
192 radial bins and 96 angles uniformly spaced over 180". 
The a,j factors corresponded to 6 mm wide strip integrals 
with 3 mm center-to-center spacing. (This is an approximation 
to the ideal line integral that accounts for finite detector 
width.) We generated the b, factors using pseudorandom log- 
normal variates with a standard deviation of 0.3 to account 
for detector efficiency variations. We performed four studies 
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.- 
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Fig. 2. Variance for center pixel of attenuation map as predicted by (26) 
compared with simulation results from penalized-likelihood estimator (25).  
Also shown is the variance of conventional FBP. 

with the scale factor T set so that E, Tn(BtrUe) was 0.25, 1, 
4, and 16 million counts. We set T,  = 0 for simplicity. For 
each study, we generated 100 realizations of pseudorandom 
Poisson transmission measurements according to (23) and 
then reconstructed using the penalized-likelihood estimator 
described by (25) using a coordinate-ascent algorithm [23]. 
This algorithm enforced the nonnegativity constraint 8 2 0. 
For simplicity, we used the function 4(x) = x2/2 for the 
penalty in (18). We also reconstructed attenuation maps using 
the conventional FBP algorithm at a matched resolution. The 
FBP images served as the initial estimate for the iterative 
algorithm. 

We computed the sample standard deviations of the esti- 
mates for the center pixel from these simulations, as well as 
the approximate predicted variance given by (26). Fig. 2 shows 
the results as well as the (much inferior) performance of the 
conventional FBP method. The predicted variance agrees very 
well with the actual estimator performance, even for measured 
counts lower than are clinically relevant (20% error standard 
deviations would be clinically unacceptable). Therefore, for 
clinically relevant SNR’s, the variance approximation given 
by (26) can be used to predict estimator performance reliably. 
For the simulation with 250K counts, the approximation 
agreed within 7% of the empirical results. For the simulations 
with more than 1M counts, the difference was smaller than 
1 %. Note the asymptotic property: better agreement between 
simulations and predictions for higher SNR. 

Many authors have reported that the zeroth-order mean 
approximation (13) is reasonably accurate for maximum- 
likelihood estimators [14], [15], [20]; we have found similar 
results for penalized-likelihood estimators such as (25). (This 
is fortuitous since the second-order expressions for mean are 
considerably more expensive to compute since p = 128.64 and 
N = 192 . 96 are very large in this example.) Fig. 3 displays 
a representative cross section through the mean predicted by 
(13) and the empirical sample mean computed from the 1M 

0.0181 , I1 

horizontal pixel 

Fig. 3. Horizontal cross section through predicted estimator mean and em- 
pirical sample mean. Despite the nonlinearity of the estimator, the prediction 
agrees closely with the empirical performance. 

count simulations. The predicted mean agrees very closely 
with the sample mean. These results demonstrate that the 
mean and variance approximations (13) and (11) are useful 
for predicting penalized-likelihood estimator performance in 
transmission tomography. 

v .  POST-ESTIMATION PLUG-IN VARIANCE APPROXIMATION 

The approximation (11) for the estimator covariance de- 
pends on both d and Cov{Y), so as written its primary use 
will be in computer simulations where s’ and Cov{Y} are 
known. Sometimes one would like to be able to obtain an 
approximate estimate of estimator variability from a single 
noisy measurement (such as real data), for which Otrue is 
unknown, and Cov{Y} may also be unknown. In some 
problems this can be done using a “plug-in” estimate in which 
we substitute the estimate O in for s’ in (1 1). The effectiveness 
of this approach will undoubtably be application-dependent, so 
in this section we focus on the specific problem of transmission 
tomography. 

Using the transmission tomography model given in the 
previous section, assume we have a single noisy mneasurement 
realization Y and a penalized-likelihood estimate 0 computed 
by maximizing the objective function (25). If we knew s’ and 
etrue, then we could use (26) to approximate the covariance of 
4. If we only have 8, then in light of the form of the covariance 
approximation given by (26), a natural approach to estimating 
the covariance would be to simply plug in 8 for s’ and etrue 
in (26) 

1 h 

Cov{B} = T[F(8) + PR(8)]-1F(d)[F(d) + PR(8)l-’ 
from which one can compute estimates of the variance of 
individual pixels or region-of-interest values using the same 
technique as in (12). 

At first it may seem unlikely that such a simplistic approach 
would yield reliable estimates of variability. However, note 
that in definition (27) of F(B), the only dependence on 8 is 
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Fig. 4. Histogram of 100 post-reconstruction plug-in estimates of variability 
Var{QJ} described by (as), where j corresponds to the center pixel of the 
attenuation map shown in Fig. 1, for 250K count measurements. The empirical 
standard deviation from 100 realizations was 1.74 . 

Fig. 5. 
standard deviation from 100 realizations was 9.30. l op4  mm-l. 

As in previous figure, but for 1M count measurements. The empirical 

nut-’. 

accurate estimates of variability, and clearly demonstrate the 
feasibility of estimating the variability of penalized-likelihood 
estimators even from single noisy measurements. One im- 
portant application of such measures of variability would be 
in computing weighted estimates of kinetic parameters from 
dynamic PET scans [271. 

through its projections p ,  (0). In tomography, the projection 
operation is a smoothing operation, i.e., high spatial-frequency 
details are attenuated (hence the need for a ramp filter in 
linear reconstruction methods). Therefore, if the low and 
middle spatial frequencies of 8 agree reasonably well with 
8 and Otrue, then projections p,(8), p n ( 8 ) ,  and p,(Qtrue) 
will be very similar. Furthermore, the dependence on the VI. EXAMPLE: EMISSION TOMOGRAPHY 
p ,  terms in (26) is through a diagonal matrix that is sand- 
wiched between the A’ and A matrices-which induce further 
smoothing. 

To evaluate the reliability of this post-reconstruction plug-in 
estimate of variance, we used each of the 100 realizations de- 
scribed in the previous section to obtain a post-reconstruction 
estimate of the variance of estimate of the center pixel of the 
object shown in Fig. 1. If 8 - 1  denotes the mth realization 
(m = 1,.  .. , loo),  then the mth estimate of the standard 
deviation of is 

r 7 1 / 2  

1 = I( e3 )’ $ [F( 8) +PR( 8)] -’F( 8) [F( 8) +OR( 8)]  -le’ 

(28) 
100 

Histograms of the standard deviation estimates { ;5(m)}m=l 
are shown in Figs. 4 and 5 for the 250K and 1M count simula- 
tions, respectively. The actual sample standard deviations for 
the two cases were 1.74. and 9.30 . respectively. 
For the 250K count simulations, each of the 100 estimates was 
within 8% of the actual sample standard deviation. For the 1M 
count simulations, each of the 100 estimates was within 0.5% 
of the actual sample standard deviation. These are remarkably 

In this section we examine the accuracy of both the mean 
and the variance approximations for the problem of emission 
tomography. Our description of the problem is brief, for more 
details see [21], [28]. 

In emission tomography the parameter 0j denotes the ra- 
dionuclide concentration in the j th pixel. The emission mea- 
surements have independent Poisson distributions, and we 
assume the mean of Y, is 

where the a,j are proportional to the probability that an 
emission in voxel j is detected by the nth detector pair, {T,} 

denotes additive background events such as random coinci- 
dences, and T denotes the scan duration. These nonnegative 
factors are all assumed known. The log-likelihood for emission 
tomography has the same form as (24), but with definition (29) 
for Y, (8). We again focus on penalized-likelihood objective 
functions of the form (25). 

Due to the nonnegativity constraints, the nonquadratic 
penalty (see below), and the nonquadratic form of the log- 
likelihood, this problem also provides a stringent test of the 
accuracy of our moment approximations. 
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Fig. 6. Simulated brain radiioisotope emission distribution. 

A. Covariance Approximation 

using (12) requires the following partial derivatives: 
Approximating the variance of certain pixels of interest 

Combining the above expressions in matrix form with the 
expressions for the partials of R given in Section I11 

-VZo@(8, Y )  = A'diag A + pR(0) L) I 
1 
T 

Vl1@(0,Y) = --A'diag 

Thus 

-VZo@(e', Y) = A'diag{ 

1 
T 

V"@(e',Y) = --A'diag 

It follows from the assumption that the measurements 
have independent Poisson distributions that Cov{Y} = 
diag{ Yn(Otrue)}. Substituting into (1 1) and simplifying yields 
the following approximation to the estimator covariance: 

Cov{d} M L F  + ,f?R(e')]-lFIF + pR(e')]-l (30) T 
where 

w e  compute the approximate variance of 8.j using a recipe 
similar to that given in Section IV. 

B. Empirical Results 

To assess the accuracy of approximation (30), we performed 
numerical simulations using the synthetic brain image shown 
in Fig. 6 as Btrue, with radioisotope concentrations 4 and 
1 (arbitrary units) in gray and white matter, respectively. 
The image was a 112 by 128 array of 2 mm pixels. We 
simulated a PET emission scan with 80 radial bins and 
110 angles uniformly spaced over 180". The unj factors 
correspond to 6 mm wide strip integrals on 3 mm center-to- 
center spacing, modified by pseudorandom log-normal variates 
with a standard deviation of 0.3 to account for detector 
efficiency variations, and by head attenuation factors. Four 
studies were performed, with the scale factor T set so that 
E, Yn(Otrue) was 0.2, 0.8, 3.2, and 12.8 million counts. 
The T, factors were set to a uniform value correspond- 
ing to 10% random coincidences. For each study, 100 re- 
alizations of pseudorandom Poisson transmission measure- 
ments were generated according to (29) and then recon- 
structed using a space-alternating generalized EM algorithm 
[28], which enforces the nonnegativity constraint 0 2 0. 
FBP images served as the initial estimate for the iterative 
algorithm. 

For the penalty function q?I we studied two cases: the simple 
quadratic case q?I(x) = x2/2, as well as a nonquadratic penalty: 
the third entry in [29, Table 1111 

with 6 = 1. This nonquadratic penalty blurs edges less than 
the quadratic penalty. 

We computed the sample standard deviations of the esti- 
mates, as well as the approximate predicted variance given by 
(26) for two pixels: one at the center and one at the right edge 
of the left thalamus (oval shaped region near image center). 

The results for the quadratic penalty are shown in Figs. 7 
and 8. The trends are similar to those reported for transmission 
tomography: good agreement between the empirical standard 
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Fig. 7. Comparison of predicted variance from (30) with empirical perfor- 
mance of penalized-likelihood emission image reconstruction with quadratic 
penalty for pixel at center of thalamus. 
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Fig. 8. As in Fig. 7 but for pixel at edge of thalamus. 

deviations and the analytical predictions, with improving ac- 
curacy with increasing counts. Note that for the quadratic 
penalty, pixels at the center and edge of the thalamus have 
similar variances. 

The results for the nonquadratic penalty are shown in 
Figs. 9 and 10. For the pixel at the edge of the thalamus, 
the predicted and empirical variances agree well. But for the 
pixel at the center of the thalamus, the empirical variance 
was significantly higher than the predicted value for the 0.8M 
count case. Further work is therefore needed for nonquadratic 
penalties. Note that the edge pixel had higher variance than the 
center pixel with the nonquadratic penalty. The importance of 
this nonuniformity also needs investigation. Overall though, 
as in the transmission case we conclude that the variance 
approximation (1 l), (30) gives reasonably accurate predictions 
of estimator performance, with better agreement at higher 
SNR. 

Estimator Variance in Emission Tomography 
'I i 
I A I  1 

Proposed analytical approximation 
Penalized likelihood estimator 10 

\ 

Center of thalamus 
Lange3penalty 

0' 
I o5 1 o6 1 o7 1 o8 

Total Measured Counts [Millions] 

Fig. 9. As in Fig. 7 but for nonquadratic penalty (see text). 

Estimator Variance in Emission Tomography 
I .5 

0' J 
1 o5 . IO6 1 o7 1 os 

Total Measured Counts [Millions] 

Fig. 10. As in Fig. 8 but for nonquadratic penalty (see text). 

We also investigated the post-estimation plug-in approach 
described in Section V for the 0.8M count emission case. 
The plug-in estimates of standard deviation for the two pixels 
considered were all within 1% of the predicted values for 
the standard deviation. Thus plugging in B to (30) yields 
essentially the same value as one gets by using d and Btrue. 
Therefore it appears that the intrinsic error in the approxima; 
tion (30) is more significant than the differences between B 
and Btrue. Practically, this suggests that if one can establish 
by simulation that the approximation error is small for mea- 
surements with more than a certain number of counts from a 
given tomograph, then one can use the plug-in approximation 
with such measurements and have confidence in the accuracy 
of the results even though etrue is unknown. 

As illustrated by Fig. 11, the zeroth-order mean approxima- 
tion (13) again compares closely with the empirical sample 
mean for this likelihood-based estimator. However, the next 
subsection demonstrates that this accuracy does not apply to 
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Fig. 11. Horizontal profile through emission phantom, zeroth-order predicted 
mean, and empirical mean from penalized-likelihood estimator using non- 
quadratic penalty for 0.8M count case. 

the very nonlinear data-weighted least squares estimator for 
emission tomography. 

C. Mean: Second Order 

This subsection illustrates an application of the second- 
order approximation for estimator mean given by (16). In the 
routine practice of PET and SPECT, images are reconstructed 
using nonstatistical Fourier methods [30]. Often one can obtain 
more accurate images using likelihood-based methods. Since 
there is no closed-form expression for Poisson likelihood- 
based estimates, one must resort to iterative algorithms, many 
of which converge very slowly. Therefore, some investigators 
have replaced the log-likelihood objective with a weighted 
least squares or quadratic objective for which there are itera- 
tive algorithms that converge faster (e.g. [241, [251, [311, 1321). 
Unfortunately, in the context of transmission tomography, 
quadratic objectives lead to estimation bias for low-count mea- 
surements [23]. To determine whether a similar undesirable 
bias exists for the quadratic approximation in the emission 
case, we now use the analytical expression (16) for estimator 
mean. 

The log-likelihood is nonquadratic, and the idea of us- 
ing quadratic approximations to the log-likelihood has been 
studied extensively. Bouman and Sauer have nicely analyzed 
the approximations using a second-order Taylor expansion. 
Following [24], [25], the quadratic approximation to the log- 
likelihood @h(B,Y) = L(B,Y) is 

The objective functions @ L  and @Q each implicitly define 
a nonlinear estimator. Even when p = 1, there is no closed- 
form solution for the maximum-likelihood estimate, except in 
the special case when T,/u, is a constant independent of n. 

For large images, the computation required for solving (16) 
appears prohibitive. Therefore, we consider a highly simplified 
version of emission tomography, where the unknown is a 

scalar parameter ( p  = 1). This simplified problem nevertheless 
provides insight into the estimator bias without the undue 
notation of the multiparameter case. In Table I we derive 
the partial derivatives necessary for evaluating (16) for each 
objective (for p = 1). In this table Fe denotes the Fisher 
information for estimating 0 from {Y,} 

The second and final two rows of Table I show three important 
points: 

For each objective, V1o@(B,Y(B)) = 0, so that 8 = 
h ( Y ( 0 ) )  = 0, i.e., the estimators work perfectly with 
noiseless data. Therefore, the 0th-order approximation 
(13) yields E{8} = 0, which is inaccurate for the @Q 

estimator. 
The variances of the estimators are approximately equal. 
The maximum-likelihood estimate is unbiased to second 
order, whereas the quadratic estimate is biased. 

Fig. 12 compares the bias predicted analytically using the 
approximation (16) with an empirically computed bias per- 
formed by numerical simulations. In these simulations we 
used etrue = l , rn  = O,a, = 1, and N = 10, and varied 
T so that En Yn(Otrue) (average number of counts per 
detector) ranged from 2 to 100. The predicted and empirical 
results again agree very closely except when there are fewer 
than four average counts per detector. These results show that 
if the average counts per detector is below ten, then using 
the quadratic approximation to the Poisson log-likelihood can 
lead to biases exceeding 10%. In practice, the importance of 
this bias should be considered relative to other inaccuracies 
such as the approximations used in specifying a,. When 
the bias due to the quadratic approximation is significant, 
one can apply a hybrid Poisson/polynomial objective function 
similar to that proposed for transmission tomography [23]. 
In this approach, one uses the quadratic approximation for 
the high-count detectors, but the original log-likelihood for 
the low-count measurements, thereby retaining most of the 
computational advantage of the quadratic objective function 
without introducing bias [23]. 

VII. DISCUSSION 

We have derived approximations for the mean and co- 
variance of estimators that are defined as the maximum of 
some objective function. In the context of imaging applications 
with large numbers of unknown parameters, the variance ap- 
proximation and the 0th-order mean approximation should be 
useful for predicting the performance of penalized-likelihood 
estimators. For applications with fewer parameters, one can 
also use the second-order mean approximation for improved 
accuracy. 

In some applications one would like to perform estimation 
by maximizing an objective function subject to certain equality 
constraints. One can use methods similar to the derivation 
of the constrained Cramer-Rao lower bound [33], [34] to 
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TPLBLE I 
OBJECTIVE FUNCTIONS AND PART~AL DERWATW FOR SCALAR EMISSION TOMOGRAPHY PROBLEM WITH Fn (0) = an B 
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Fig. 12. Bias for scalar emission estimation problem for the maxi- 
mum-likelihood estimator and for the weighted least squares estimator 
based on a quadratic approximation to the log-likelihood. Solid lines are 
the analytical formulas in the last row of Table I; the other points are 
empirical results. 

generalize the covariance approximation (1 1) to include the 
reduction in variance that results from including constraints. 

Our empirical results indicate that the accuracy of the 
proposed approximations improve with increasing SNR, which 
is consistent with the asymptotics discussed in the Appendix. 
If the S N R  is too low, the approximation accuracy may be 
poor, but "how low is too low" will obviously be application- 
dependent. The approximations are also likely to overestimate 
the variance of pixels that are near zero when one enforces 
nonnegativity constraints. Thus these approximations do not 
eliminate the need for careful numerical simulations. 

In our own work, thus far we have primarily used the 
approximations to determine useful values of the regularization 
parameter prior to performing simulations comparing various 
approaches (as in Section IV). In the future, we expect to 
evaluate the post-reconstruction estimate of region variability 
(Section V) for performing weighted estimates of kinetic 
parameters from dynamic PET emission scans [27]. Many 
PET scan protocols are indeed dynamic scans acquired for the 
purpose of extracting kinetic parameters; therefore, the ability 
to estimate region variability is essential. Since FBP is a linear 
reconstruction algorithm, it is straightforward to compute esti- 
mates of variability for Poisson emission measurements [27], 
[35]. If nonlinear penalized-likelihood methods are ever to 
replace FBP in the routine practice of PET, reliable estimates 
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of variability (such as the plug-in method we have proposed) 
will be needed for a variety of purposes. 

APPENDIX 

This appendix synopsizes the asymptotic variance of M -  
estimates given by Serfling [l]. The results in Serfling are for 
a scalar parameter 0, so we consider the scalar case below (see 
[36] for the multiparameter case). As in Section I, let Q ( 0 ,  Y)  
be the objective function that is to be maximized to find 8, 
and define 

Assume Y has a probability distribution F ( y ;  Otrue), and let 
e be the value of 0 that satisfies 

Serfling [l] shows that 4 is asymptotically normal with mean 
e and variance 

This asymptotic variance is somewhat inconvenient to use 

The term 0 plays a role similar to our 8, but solving the 
integral equation (32) for e is in general more work than 
calculating 4 by maximizing Q (. , Y) . 
Both 0 and the expression for the asymptotic variance de- 
pend on the entire measurement distribution F (y ;  We),  
whereas our approximation depends only on the mean and 
covariance of the measurements. 

With some additional work, one can show that if +(0,Y)  is 
affine in Y ,  then e and 8 are equal, and (33) is equivalent to 
(1 1). Both Gaussian and Poisson measurements yield 4 that 
are affine in Y (cf (24)), so (1 1) is the asymptotic covariance 
in those cases, provided the penalty is data-independent. For 
data-dependent penalties [37] or for more complicated noise 
distributions, such as the Poisson/Gaussian model for CCD 
arrays [38], the covariance approximation given by (1 1) will 
probably be easier to implement than (33). 

in imaging problems for the following reasons: 
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