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Exploring Estimator Bias-Variance Tradeo�s Using
the Uniform CR Bound

Alfred O. Hero, Je�rey A. Fessler, and Mohammad Usman

Abstract

We introduce a plane, which we call the delta-sigma
plane, that is indexed by the norm of the estimator bias
gradient and the variance of the estimator. The norm of
the bias gradient is related to the maximum variation in
the estimator bias function over a neighborhood of param-
eter space. Using a uniform Cramer-Rao (CR) bound on
estimator variance a delta-sigma tradeo� curve is speci�ed
which de�nes an \unachievable region" of the delta-sigma
plane for a speci�ed statistical model. In order to place an
estimator on this plane for comparison to the delta-sigma
tradeo� curve, the estimator variance, bias gradient, and
bias gradient norm must be evaluated. We present a sim-
ple and accurate method for experimentally determining
the bias gradient norm based on applying a bootstrap esti-
mator to a sample mean constructed from the gradient of
the log-likelihood. We demonstrate the methods developed
in this paper for linear Gaussian and non-linear Poisson in-
verse problems.
Key Words: parametric estimation, performance

bounds, bias-variance plane, unachievable regions, inverse
problems, image reconstruction.
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I. Introduction

The goal of this work is to quantify fundamental trade-
o�s between the bias and variance functions for parametric
estimation problems. Let � = [�1; :::; �n]T 2 � be a vector
of unknown and non-random parameters which parameter-
ize the density fY (y; �) of an observed random variable Y .
The parameter space � is assumed to be an open subset of
n-dimensional Euclidean space IRn. For �xed � let t̂ = t̂(Y )
be an estimator of the scalar t�, where t : �! IR is a spec-

i�ed function. Let this estimator have bias b� = E�[t̂]� t�
and variance �2� = E�[(t̂� t�)

2]. Bias is due to `mismatch'
between the average value of the estimator and the true
parameter while variance arises from uctuations in the
estimator due to statistical sampling.
In most applications, estimator designs are subject to a

tradeo� between bias and variance. For example, in non-
parametric spectrum estimation [1], smoothing methods
have long been used to reduce the variance of the peri-
odogram at the expense of increased bias [2], [3]. In image
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restoration, regularization is frequently implemented to re-
duce noise ampli�cation (variance) at the expense of poorer
spatial resolution (bias) [4]. In multiple regression with
multicollinearity, biased shrinkage estimators [5] and bi-
ased ridge estimators [6] are used to reduce variance of the
ordinary least squares estimator. The quantitative study of
estimator bias and variance has been useful for characteriz-
ing statistical performance for many statistical signal pro-
cessing applications including: tomographic reconstruction
[7], [8], [9], functional imaging [10], non-linear and morpho-
logical �ltering [11], [12], and spectral estimation of time
series [13], [14].
However, the plane parameterized by the bias and vari-

ance b� and �2� is not useful for studying fundamental trade-
o�s since an estimator can always be found which makes
both the bias and variance zero at a given point �. Further-
more, the bias value b� unfairly penalizes estimators that
may have large but constant, and hence removable, biases.
In this work we consider the plane parameterized by the
norm or length of the bias gradient �� = krb�k and the

square root variance
q
�2
�
, which we call the delta-sigma

or �� plane. The norm of the bias gradient is directly re-
lated to the maximal variation of the bias function over a
neighborhood of � induced by the norm and is una�ected
by constant estimator bias components. By appropriate
choice of norm, the bias gradient length can be related to
the overall bias variation over any ellipsoidal prior region
of parameter values. For the inverse problems studied here
we select the norm to correspond to an a priori smoothness
constraint on the object.

This paper provides a means for specifying unachievable
regions in the �� plane via fundamental delta-sigma trade-
o� curves. These curves are generated using an extension
of the Cramer-Rao (CR) lower bound on the variance of bi-
ased estimators presented in [15]. This extension is called
the uniform CR bound. In [15] the bound was derived
only for an unweighted Euclidean norm on the bias gradi-
ent and for non-singular Fisher information. Therein the
reader was cautioned that the resulting bound will gener-
ally depend on the units and dimensions used to express
each of the parameters. It was also pointed out in [15]
that the user should identify an ellipsoid of expected pa-
rameter variations, which will depend in the user's units,
and perform a normalizing transformation of the ellipsoid
to a spheroid prior to applying the bound. This parameter
transformation is equivalent to using a diagonally weighted
bias gradient norm constraint in the original untransformed
parameter space. The uniform CR bound presented in this
paper generalizes [15] to allow functional estimation, to
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cover the case of singular or ill-conditioned Fisher matri-
ces, and to account for a general norm constraint on bias
gradient. Some elements of the latter generalization were
�rst presented in [16].

The methods described herein can be used for system
optimization, i.e., to choose the system which minimizes
the size of the unachievable region, when estimator unbi-
asedness is an overly stringent or unrealistic constraint [17],
or they can be used to gauge the closeness to optimality
of biased estimators in terms of their nearness to the un-
achievable region [18]. Alternatively, as discussed in more
detail in [15], these results can be used to investigate the
reliability of CR bound studies when small estimator bi-
ases may be present. Finally, these results can be used for
validation of estimator simulations by empirically verifying
that the simulations do not place estimator performance in
the unachievable region of the �� plane.

In order to place an estimator on the �� plane we must
calculate estimator variance and bias gradient norm. For
most nonlinear estimators computation of these quantities
is analytically intractable. We present a methodology for
experimentally determining these quantities which uses the
gradient of the log-likelihood function r lnfY (y; �) and
a bootstrap-type estimator to estimate the bias gradient
norm.

We illustrate these methods for linear Gaussian and non-
linear Poisson inverse problems. Such problems arise in im-
age restoration, image reconstruction, and seismic deconvo-
lution, to name but a few examples. Note that even for the
linear Gaussian problem there may not exist unbiased es-
timators when the system matrix is ill-conditioned or rank
de�cient [19]. For each model we compare the performance
of quadratically penalized maximum likelihood estimators
to the fundamental delta-sigma tradeo� curve. We show
that the bias gradient rb� of these estimators is closely
related to the point spread function of the estimator when
one wishes to estimate a single component t� = �k. For the
full rank linear Gaussian case the quadratically penalized
likelihood estimator achieves the fundamental delta-sigma
tradeo� in the �� plane when the roughness penalty ma-
trix is matched to the norm chosen by the user to measure
bias gradient length. In this case the bias gradient norm
constraint is equivalent to a constraint on bias variation
over a roughness constrained neighborhood of �. We thus
have a very strong optimality property: the penalized max-
imum likelihood estimator minimizes variance over all esti-
mators whose maximal bias variation is bounded over the
neighborhood. For the rank de�cient linear Gaussian prob-
lem the uniform CR bound is shown to be achievable by
a di�erent estimator under certain conditions. Finally, for
the non-linear Poisson case an asymptotic analysis shows
that the penalized maximum likelihood estimator of [20]
achieves the fundamental delta-sigma tradeo� curve for suf-
�ciently large values of the regularization parameter and a
suitably chosen penalty matrix. We present simulation re-
sults that empirically validate our asymptotic analysis.

A. Variance, Bias and Bias Gradient

Let t̂ be an estimator of the scalar di�erentiable func-
tion t�. The mean-square-error (MSE) is a widely used

measure of performance for an estimator t̂ and is simply
related to the estimator bias b� and the estimator variance
�2� through the relation MSE� = �2� + b2�. While the
MSE criterion is of value in many applications, the estima-
tor bias and estimator variance provide a more complete
picture of performance than the MSE alone. From b� and
�2� one can derive other important measures such as signal-

to-noise-ratio SNR = jt� + b�j2=�2�, coe�cient of variation

1=SNR, and generalized MSE = �g1(b�) + (1 � �)g2(��),
where � 2 [0; 1] and g1; g2 are non-negative functions. The
generalized MSE has been used in response surface design
[21] and in minimumbias and variance estimation for non-
linear regression models [22], [23]. Furthermore, since they
jointly specify the �rst two moments of the estimator prob-
ability distribution, the pair (b�; �

2
�) provides essential in-

formation for constructing and evaluating t̂-based hypothe-
sis tests and con�dence intervals. Indeed the popular jack-
nife method was originally introduced by [24], [25] to esti-
mate bias and variance of a statistic and to test whether
the statistic has prespeci�ed mean [26] .
An estimator t̂ whose bias function b : �! IR is constant

is as good as unbiased since the bias can be removed with-
out knowledge of �. Therefore, in as far as one is interested
in fundamental tradeo�s, it is the bias variation which will
be of interest. When the density function fY (y; �) is su�-
ciently smooth to guarantee existence of the Fisher infor-
mation matrix (de�ned below), b� is always di�erentiable

regardless of the form of the estimator as long as E�[t̂
2]

is upper bounded [27, Lemma 7.2]. In this case the bias
gradient rb� : �! IRn uniquely speci�es the bias b� up to
an additive constant

b� =
nX

k=1

Z �k

�o
k

@bu

@uk
duk + b�o ;

where �o is a point such that the line segment connecting
�o and � is contained in � { such a point is guaranteed
to exist when � is convex or star shaped. Thus the gra-

dient function rb� =
h
@b�

@�1
; : : : ;

@b�

@�1

iT
(a column vector)

characterizes the unremovable bias component of the bias
function.

A.1 Bias Gradient Norm and Maximal Bias

De�ne the norm or length of the bias gradient vector

�� = krb�kC (1)

where the norm k�kC is is de�ned in terms of a symmetric
positive de�nite matrix C

kuk2C = uTCu: (2)

We will use the notation kuk2 to denote the Euclidean norm
obtained when C = I.
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The norm of the bias gradient at a point u = � is a
measure of the sensitivity of the estimator mean mu =

Eu[t̂] to changes in u over a neighborhood of �. Below we
derive a relation between bias gradient norm and maximal
bias variation over an arbitrary ellipsoidal neighborhood.
De�ne the ellipsoidal region of parameter variations C =

C(�;C) = fu : (u� �)TC�1(u� �) � 1g where � is a point
in � and C is a symmetric positive de�nite matrix. The

maximal width of the ellipsoid is 2
q
�CM , where �CM is the

maximal eigenvalue ofC. Assume that the bias function bu
is continuously twice di�erentiable and that the magnitude
of the eigenvalues of of the Hessian matrix r2bu = rrTbu
are upper bounded over u 2 C by a non-negative constant
� < 1. Then, using (1) and the Taylor expansion with
remainder, the maximal squared variation of the bias bu
over C is

(3)

max
u2C

jbu � b�j
2 = max

u2C
jrTb��u+ 1

2
�uTr2b��uj2

where �u = u� � and � is a point along the line segment
joining � and u. Now, expanding the square on the right
hand side of (3) and collecting terms we obtain

max
u2C

jbu � b�j
2 = max

u2C
jrT b��uj2(1 + �o); (4)

where j�oj � �(1+0:25�) and � = �CM
�p

rT b�Crb�
. De�n-

ing �~u = C�
1

2�u and using the Cauchy-Schwarz inequal-
ity we obtain

max
u2C

jrT b��uj2 = max
k�~uk�1

jrT b�C
1

2�~uj2

= max
�~u

jrTb�C
1

2�~uj2

k�~uk2

= rT b�Crb�: (5)

Therefore, combining (5)-(3)

krb�k
2
C = max

u2C
jbu � b�j

2(1 + �); (6)

where � = O(�[1 + 0:25�]). Hence we see that when �� 1
the norm krbukC is approximately equal to the maximal
bias variation over the ellipsoidal neighborhood D(�;C) of
�. Note that this occurs when when the product of the
ellipsoid width �CM and the ratio of the curvature � of the

bias function to the bias gradient norm
q
rT b�Crb� is

small. For the special case where the bias is a linear func-
tion (b� = LT ��c, L 2 IR), � = 0 in which case the relation
between bias gradient norm (1) and maximal bias variation
(3) is exact.
The above discussion suggests that the choice of norm k�

kC should reect the range C of joint parameter variations
which are of interest to the user. This will be illustrated in
Section IV.

II. Unachievable Regions

For any estimator with bias gradient norm �� and vari-
ance �2� we plot the pair (��; ��) as a coordinate in the

plane IR2. We will call this parameterization of the plane
the delta-sigma or �� plane. A region of the �� plane is
called unachievable if no estimator can exist having coor-
dinates in this region. While no non-empty unachievable
region can exist in the bias-variance plane parameterized
by (b�; ��), we will show that interesting unachievable re-
gions almost always exist in the delta-sigma plane.

A. The Biased CR Bound

The Cramer-Rao lower bound on estimator variance,
�rst published by Frechet [28] and later by Darmois [29],
Cramer [30], and Rao [31], is commonly used to bound the
variance of unbiased estimators. For a biased estimator t̂ of
t� with mean m� = E�[t̂] the CR bound has the following
form, referred to here as the biased CR bound

�2� � [rm�]
T F+Y [rm�]

=
�
rt� +rb�

�T
F+Y

�
rt� +rb�

�
; (7)

where FY = FY (�) is the n� n Fisher information matrix

FY = E�

�
[r� lnfY (Y ; �)] [r� ln fY (Y ; �)]

T
	
;

and F+Y denotes the Moore-Penrose pseudo-inverse matrix
of the possibly singular matrix FY .
The non-singular-FY form of the biased CR bound has

been around for some time, e.g. [32]. The more general
pseudo-inverse-FY form given in (7) is less well known but
can be easily derived by identifying U = t̂ � t� and V =
r� ln fY (Y ; �) in the relation [33, Lemma 1]

E�

�
UUT

�
� E�

�
UV T

� �
E�

�
V V T

��+
E�

�
V UT

�
;

and using the well known identities E�[r� lnfY (Y ; �)] = 0

and E�[t̂r� ln fY (Y ; �)] = rm� (easily derivable from (18)
below).
The biased CR bound (7) only applies to the class of

estimators t̂ which have a particular bias gradient func-
tion rb�. Therefore (7) cannot be used to simultaneously
bound the variance of several estimators, each of which
have di�erent but comparable bias gradients.

B. The Uniform CR Bound

In [15] a \uniform" CR bound was presented as a way to
study the reliability of the unbiased CR bound under con-
ditions of very small estimator bias. In [34] this uniform
bound was used to trace out curves over the sigma-delta
plane which includes both large and small biases. The fol-
lowing theorem extends the results of [15] and [34] to allow
singular Fisher information matrices, arbitrary weighted
Euclidean norm k � kC , and arbitrary di�erentiable func-
tion t�. For a proof of this theorem see Appendix A.

Theorem 1: Let t̂ be an estimator of the scalar di�eren-
tiable function t� of the parameter � = [�1; : : : ; �n]

T . For a
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�xed � � 0 let the bias gradient of t̂ satisfy the norm con-
straint krb�kC � �, where C is an arbitrary n�n symmet-
ric positive de�nite matrix. De�ne PB as the n�n matrix

which projects onto the column space ofB = C�
1

2F+YC
� 1

2 .
Then the variance of t̂ satis�es:

�2� � B(�; �); (8)

where if �2 � rT t�C
1

2PBC
1

2rt� then B(�; �) = 0, while

if �2 < rT t�C
1

2PBC
1

2rt� then:

B(�; �) =
�
rt� + dmin

�T
F+Y

�
rt� + dmin

�
; (9)

= �2rT t�C
�
�C + F+Y

��1
F+Y

�
�C + F+Y

��1
Crt�;

where in (9)

dmin = �
�
�C +F+Y

��1
F+Yrt�: (10)

In (9) and (10) � > 0 is determined by the unique positive
solution of g(�) = �2 where

g(�) = rT t�F
+
Y

�
�C +F+Y

��1
C
�
�C + F+Y

��1
F+Yrt�: (11)
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Fig. 1. The Normalized Uniform CR bound on the �� tradeo� plane
for a speci�ed value of �.

By tracing out the family of points f(�;
p
B(�; �)) : � �

0g one obtains a curve in the �� plane for a particular
� 2 �. The curve is always monotone non-increasing in
�. Since B(�; �) is a lower bound on �2� the region below
the curve de�nes an unachievable region. Figure 1 shows a
typical delta-sigma tradeo� curve plotted in terms of nor-

malized standard deviation � =
q

B(�;�)
B(�;0) . If an estimator

lies on the curve then lower variance can only be bought at
the price of increased bias gradient and vice versa. For this
reason we call this curve the delta-sigma tradeo� curve.
It is important to point out that the delta-sigma tradeo�

curve can be generated without solving the non-linear equa-
tion (11), which generally must be solved numerically. It is
much easier to continuously vary � over the range (0;1)

and sweep out the curve by using the �-parameterizations
of g(�) = �2 and B(�; �) speci�ed by relations (11) and (9),
respectively.
Comments:

� The uniform bound B(�; �) is always less than or equal
to the unbiased CR bound B(�; 0) = rT t�F

+
Yrt�.

The slope of B(�; �) at � = 0 gives a bias sensitivity
index � for the unbiased CR bound. For non-singular
FY and single component estimation (t� = �1) it is

shown in [15] that � = 2
q
1 + cTF�2S c, where c is the

�rst column of FY and FS is the principal minor of
[FY ]11. Large values of this index indicate that the
unbiased form of the CR bound is not reliable for esti-
mators which may have very small, and perhaps even
unmeasurable, biases.

� The orthogonal projection PB can be expressed ei-
ther as PB = B[BTB]+BT = B+B = BB+, or
via the eigendecomposition of B as PB =

Pr

i=1 ��
T ,

where r is the rank of FY and f�gri=1 are the
orthonormal eigenvectors associated with the non-
zero eigenvalues of B. By using properties of the
Moore-Penrose pseudo-inverse it can be shown that

rT t�C
1

2PBC
1

2rt� = rT t�F
+
Y [C

� 1

2F+Y ]
+C

1

2rt�.

� When FY is non-singular, F+Y = F�1Y , PB = I,

rT t�C
1

2PBC
1

2rt� = krt�k2C and (9)-(11) of Theo-
rem 1 reduce to

B(�; �) = [rt� + dmin]
TF�1Y [rt� + dmin] (12)

= �2rT t�
�
C�1 + �FY

��1
FY

�
C�1 + �FY

��1
rt�;

where,

dmin = �C�1
�
C�1 + �FY

��1
rt�; (13)

and � > 0 is given by the unique positive solution of
g(�) = �2 where

g(�) =

rT t�
�
C�1 + �FY

��1
C�1

�
C�1 + �FY

��1
rt�:(14)

When C = I and t� = �1 these are identical to the
results obtained in [15].

� In Theorem 1, dmin de�ned in (10) is an optimal bias
gradient in the sense that it minimizes the biased CR
bound (7) over all vectors rb� satisfying the constraint
krb�kC � �. The bound is independent of the partic-
ular estimator bias as long as the bias gradient norm
constraint holds. From the proof of Theorem 1, if

�2 � rT t�C
1

2PBC
1

2rt�, then the minimizing bias

gradient is of the form dmin = �PBC
1

2rt� + �,

where � is any vector satisfying B� = 0, and k�k2 �

�2�rT t�C
1

2PBC
1

2rt�. Thus for the case of singular
FY there exist many optimal bias gradients.

� An estimator is said to locally achieve a bound in a
neighborhood of a point � if the estimator achieves
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the bound whenever the true parameter lies in the
neighborhood. It has been shown [15] that if FY is
non-singular, if � is small, if t� = �1, and if the un-
biased matrix CR bound is locally achievable by an

unbiased estimator �̂
�
in a neighborhood of a point

�, then one can construct an estimator that locally
achieves the uniform bound in this neighborhood by

introducing a small amount of bias into �̂
�
. However,

since unbiased estimators may not exist for singular
FY , the uniform CR bound for singular FY may not
be locally achievable. An example where the bound is
globally achievable over all � is presented in Section
IV.

� While we will not use it in this paper, a more gen-
eral form of Theorem 1 holds for the case that C
may be non-negative de�nite. This situation is rel-
evant for cases where the user does not wish to pe-
nalize the estimator for high bias variation over cer-
tain hyperplanes in the parameter space. For exam-
ple when estimation of image contrast is of interest,
spatially homogeneous biases may be tolerable and C
may be chosen to be of rank n � 1 having the vector
1 = [1; : : : ; 1]T in its nullspace. Let B(�; �), dmin and
g(�) be as de�ned in Theorem 1. Assume that C is
non-negative de�nite but F+Y + �C is positive de�nite
for 0 < � <1. For �xed � > 0 let the bias gradient of
t̂ satisfy the semi-norm constraint krb�kC � �. Then

var�(t̂) � B�(�; �), where

B�(�; �) =

8<: B(�; g(1)); 0 � �2 < g(1)
B(�; �); g(1) � �2 � g(0)
0; g(0) < �2 <1

and g(1) = lim�!1 g(�) and g(0) = lim�!0 g(�).

C. Recipes for Uniform Bound Computation

As written in Theorem 1 expressions (9)-(11) are not in
the most convenient form for computation as they involve
several matrix multiplications and inversions. An equiva-
lent form for the pair B(�; �) and g(�) in (9) and (11) was
obtained in the process of proving the theorem ((46) and
(47))

B(�; �) = �2rT t�C
1

2 [�I+B]�1B [�I +B]�1C
1

2rt�

g(�) = rT t�

h
C

1

2B(�I +B)�2BC
1

2

i
rt� = �2;

where B = C�
1

2F+YC
� 1

2 . If an eigendecomposition of the
matrix B is available, the delta-sigma tradeo� curve can
be e�ciently computed by sweeping out � in the following
pair of weighted sums of inner products

B(�; �) =
nX
i=1

�2�i
(�+ �i)2

jrT t�C
1

2 �
i
j2 (15)

�2 =
nX
i=1

�2i
(�+ �i)2

jrT t�C
1

2 �
i
j2; (16)

where �i and �
i
denote an eigenvalue and eigenvector of B.

When FY is ill-conditioned the computation of B may
be numerically unstable. In the case of non-singular FY a
simple algebraic manipulation in (12)-(14) yields

B(�; �) = �2rT t�C
1

2 [I + �G]�1G [I+ �G]�1C
1

2rt�;

�2 = rT t�C
1

2 [I + �G]�2C
1

2rt�; (17)

where G = B�1 = C
1

2FYC
1

2 . Note that computation of
the form (17) requires only one matrix inversion [I+�G]�1.
Since � > 0 and FY is positive de�nite this inversion is well
conditioned except if � is very large.
The eigendecomposition ofG can be used in (17) to pro-

duce a pair of expressions similar to (15)-(16) for computing
the delta-sigma tradeo� curve for non-singular FY . Alter-
natively, the right hand sides of (17) can be approximated
by using iterative equation solving methods such as Gauss-
Seidel (GS) or preconditioned conjugate gradient (CG) al-
gorithms [35]. See [45], [36] for a more detailed discussion
of the application of iterative equation solvers to CR bound
approximation. This approach can be implemented in the
following sequence of steps.

1. Select � 2 (0;1).

2. Compute x = [I+ �FYC]
�1rt� by applying CG or

GS iterations to solve the following linear equation for
x:

[I+ �FYC]x = rt�:

3. Compute y = Cx.
4. Compute the point (�; B(�; �)) via

B(�; �) = �2 xTFY x

� =
q
xT y:

Since step 2 must be repeated for each value of �, this
method is competitive when one is interested in evalua-
tion of the curve B(�; �) at only a small number of values
of � = �(�). When a denser sampling of the curve is de-
sired an eigendecomposition method, e.g. as in (15)-(16),
becomes more attractive since, once the quantities �i and

jrT t�C
1

2 �
i
j2 are available, the curve can be swept out over

� without performing additional vector operations.

III. Estimation of Bias Gradient Norm

To be able to compare the performance of an estima-
tor against the uniform CR bound of Theorem 1, we need
to determine the estimator variance and the bias gradi-
ent length. In most cases the bias gradient cannot be
determined analytically and it is therefore important to
have a computationally e�cient method to estimate it ei-
ther experimentally or via simulations. A brute force es-
timate would be to estimate the �nite di�erence approxi-
mation rb� �

1
�

�
b�+�e1 � b�; : : : ; b�+�e

n
� b�

�
but this re-

quires performing a simulation run for each coordinate per-
turbation � + �ek. In the following we describe a more di-
rect method for estimating the bias gradient which does
not require performing multiple simulation runs nor does
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it require making a �nite di�erence approximation. The
method is based on the fact that for any random variable
Z with �nite mean

E�

�
Z
@ ln fZ(Z; �)

@�j

�
=

Z
Z

z
@fZ (z; �)

@�j
dz

=
@

@�j

Z
Z

zfZ(z; �) dz

=
@

@�j
E� (Z) : (18)

Thus in particular we have the following relation

rb� = E�

�
t̂(Y )r� ln fY (Y ; �)

�
�rt�:

Since E�

�
r� ln fY (Y ; �)

�
= 0, an equivalent relation is

rb� = E�

�
(t̂(Y ) � �)r� lnfY (Y ; �)

�
�rt�; (19)

for any random variable � statistically independent of Y .
As explained in the following discussion, the quantity �
can be used to control the variance of the bias gradient
estimate.
Substituting sample averages for ensemble averages in

(19) we obtain the following unbiased and consistent esti-
mator of the bias gradient vector rb�

drb� = 1

L

LX
i=1

�
t̂(Yi) � �i

�
r� ln fY (Yi; �) �rt�; (20)

where fYig
L
i=1 is a set of i.i.d. realizations from fY (y; �).

In (20) f�igLi=1 is any sequence of i.i.d. random variables
such that Yi; �i are statistically independent for each i.
It can be shown that when �i = 0 for all i the covariance

matrix of drb� is the matrix sum

S(drb�) =
1

L
cov�

�
(t̂(Yi)�m�)r lnfYi(Yi; �)

�
+
1

L

h
2m�R+m2

�FYi

i
(21)

where
R = E�

h
(t̂(Yi) �m�)[r� ln fYi(Yi; �)][r

T
� ln fYi(Yi; �)]

T
i
,

and FYi = E�

�
[r� ln fY (Yi; �)][r� ln fY (Yi; �)]

T
�
is the

single trial Fisher information. The �rst term on the right
hand side (RHS) of (21) decays as 1=L and is independent
of the mean m�. The second term (in brackets \[ ]) also
decays as 1=L but is unbounded in the mean m�. It is
easily shown that this term can be eliminated by setting
�i = m� = constant but this is not a practical since the

mean m� = E�[t̂(Yi)] is unknown to the user. However,
we can use the punctured sample mean estimate of m�,

�i =
1

L�1
PL

j=1
j 6=i

t̂(Yj) which, as required for the validity of

(19), is statistically independent of Yi. Substitution of this
�i into (20) and simplifying gives the following unbiased
and consistent sample mean estimate of rb�drb� (22)

=
1

L � 1

LX
i=1

0@t̂(Yi) � 1

L

LX
j=1

t̂(Yj)

1Ar� lnfYi(Yi; �) �rt�:

A simple calculation shows that the covariance of (22) is
the matrix sum

S(drb�) =
1

L
cov�

�
(t̂(Yi)�m�)r� lnfY (Yi; �)

�
+

1

L(L � 1)

�
var�(t̂(Yi))FY +rb�r

T b�
�
:(23)

Note that the second term in (23) depends on m� only
through its gradient and decreases to zero at the much
faster asymptotic rate of 1

L2 as compared to the rate 1
L
in

(21).

A. A Bootstrap Estimator for Bias Gradient Norm

A natural \method-of-moments" estimate for �2� =

krb�k2C is the norm squared of the unbiased estimator

�̂2 = kdrb�k2C (20). It can easily be shown that this es-

timator is biased with bias equal to E�

h
kdrb� �rb�k2Ci =

tracefS(drb�)g which, in view of (21) or (23), decays to zero
only as 1=L. Below we present a norm estimator based on
the bootstrap resampling methodology whose bias decays
at a faster rate.
Let Y �1 ; : : : ; Y

�
L denote a bootstrap sample obtained by

randomly resampling the realizations Y1 = y1; : : : ; YL =
yL with replacement. Given the estimate �̂2 =

�̂2(y1; : : : ; yL) = kdrb�k2C , the bootstrap estimate of �2� is

de�ned as the expectation of �̂2� = �̂2(Y �1 ; : : : ; Y
�
L ) with re-

spect to the resampling distribution [37]

E�[�̂2�] =
X
�
�̂2(Y �1 ; : : : ; Y

�
L )

�
L

c1 : : : cL

�
L�L: (24)

In (24) ci is the number of times the value yi appears in
the set fY �j g and

P
� denotes a summation over all non-

negative integers c1; : : : ; cL satisfying
PL

i=1 ci = L. The

bootstrap estimate of the bias of the estimator �̂2 is de�ned
as E�[�̂2�]� �̂2 which leads to the bias corrected estimator

�̂2c

�̂2c = 2�̂2 �E�[�̂2�]: (25)

Due to the simple quadratic dependence of �̂2 on the
single sample quantities t̂(yi)r� ln fY (yi; �), i = 1; : : : ; L,
the expectation (24) can be expressed in analytical form
(see Appendix B) leading to the bias corrected estimate

�̂2c = kdrb�k2C � 1

L2

LX
i=1

kdrb�(yi)� drb�k2C; (26)

where drb�(yi) is the estimate (20) based on a single sample

yi (L = 1) with �i = 0. The bias of �̂2c is equal to

E�

h
�̂2c

i
� krb�k

2
C =

1

L
E�[kdrb� �rb�k2C ];

which, relative to the estimator kdrb�k2C , decays to zero at
the much faster rate of 1=L2. However, if L is insu�ciently

large the bootstrap estimator �̂2c may take on negative val-
ues.
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IV. Application to Inverse Problems

We use the theory developed above to perform a study
of fundamental bias-variance tradeo�s for three general
classes of inverse problems. First we consider well-posed
linear Gaussian inverse problems which have non-singular
Fisher information. Next we consider ill-posed Gaussian
inverse problems where the Fisher matrix is singular. For
these two linear applications an exact analysis is possible
since all curves in the delta-sigma tradeo� plane have ana-
lytic expressions. Finally we study a non-linear Poisson in-
verse problem to illustrate the empirical bias-gradient norm
approximations discussed in the previous section.

A. Linear Gaussian Model

Assume that the observation consists of a vector Y =
Y 2 IRm which obeys the linear Gaussian model:

Y = A� + �; (27)

where A is an m � n coe�cient matrix, called the system
matrix, � is an unknown source, and � is a vector of zero
mean Gaussian random variables with positive de�nite co-
variance matrix �. For concreteness we will refer to �i as
the intensity of the source at pixel i. The Fisher informa-
tion matrix has the well known form [19]

FY = AT��1A: (28)

This matrix is non-singular when A is of full column rank
n. We will consider estimation of the linear combination
t� = hT � where h is a �xed non-zero vector in IRn. Since
FY and rt� = h are not functionally dependent on � the
uniform bound B(�; �) will not depend on the speci�c form
of the unknown source �.
To demonstrate the achievability of the fundamental

delta-sigma tradeo� curve we consider the quadratically
penalized maximum likelihood (QPML) estimator. The
QPML strategy is frequently used in order to obtain stable
solutions in the presence of small variations in experimen-
tal conditions [38] and to incorporate parameter constraints
or a priori information [39]. For the linear Gaussian prob-
lem (27) the QPML estimator of the linear combination

t� = hT � is t̂ = hT �̂ where �̂ minimizes the following ob-
jective function over �

[Y �A�]T��1[Y �A�] + ��TP�: (29)

In the above � > 0 is a regularization parameter and P is
a symmetric nonnegative-de�nite penalty matrix. For ill-
conditioned or singularA the penalty improves the numeri-
cal stability of the matrix inversion [FY +� P]

�1 in (30) be-
low by lowering its condition number. The simplest choice
for the penalty matrix P is the identity I, which yields
a class of energy penalized least squares estimators vari-
ously known as Tikonov regularized least squares in the
inverse problem literature [38], and shrinkage estimation
or ridge regression in the multivariate statistics literature
[6]. A popular choice in imaging applications is to use a

non-diagonal di�erencing type operator to enforce smooth-
ness constraints or roughness priors [40], [41].
The minimizer of (29) is the penalized weighted least

squares (PLS) estimator

�̂ = [FY + �P]
�1
AT��1Y ; (30)

yielding the QPML estimator t̂ = hT �̂.
The estimator bias is

b� = hT
h
[FY + �P]�1 FY � I

i
�;

and its bias gradient is

rb� =
h
FY [FY + �P]�1 � I

i
h (31)

= ��P [�P+ FY ]
�1

h: (32)

Finally, the variance of the QPML estimator t̂ is

�2� =
1

�2
hT
�
P+

1

�
FY

��1
FY

�
P+

1

�
FY

��1
h: (33)

Consider the special case of estimation of a single com-
ponent �k of � for which h = ek = [0; : : : ; 0; 1; 0; : : :; 0]T .
When the matrices FY and P commute, as occurs for
example when P = I, the bias gradient (31) is seen to
be equal to the di�erence between the mean response
[�P+ FY ]

�1
FY ek of the PLS estimator to a point source

� = ek, i.e., the point spread function of the estimator,
and the ideal point response ek. Thus, under the commu-
tative assumption the bias gradient norm can be viewed as
a measure of the geometric resolution of t̂ [16].

A.1 Non-Singular Fisher Matrix

Assume that FY is non-singular and compare (32) and
(33) to the equations (13) and (12) for dmin and the bound
B(�; �), respectively. Identifying rt� = h, � = 1=�, it

is clear that when P is chosen as C�1 the PLS estimator
achieves the bound B(�; �) and has optimal bias gradient
dmin. Thus for linear functions t� the uniform bound is
achievable and the region above and including the funda-
mental delta-sigma tradeo� curve is an achievable region.
Furthermore, since the bias gradient is a linear function,
from relation (6) we have a very strong optimality prop-
erty: the QPML estimator t̂ is a minimum variance biased
estimator in the sense that it is an estimator of minimum
variance among estimators which satisfy the maximal bias
constraint supu2C jbu � b�j � �2, where �2 = g(1=�) and C
is the ellipsoid de�ned above (3).
We used the Computational Recipe presented in Sec-

tion II to trace out the delta-sigma tradeo� curve (uniform
bound) parametrically as a function of � > 0. Figure 2
shows the delta-sigma tradeo� curve for the case of pixel
intensity estimation (h = e67), � = I, and a well condi-
tioned full rank discrete Gaussian system matrix. Specif-
ically we generated a 128 � 128 matrix A with elements

aij = 1p
2�w

e
�(i�j)2

2w2 and w = 0:5. The condition number
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Fig. 2. Bias variance tradeo� study for pixel-intensity estimation and
non-singular Fisher information. The smoothed PLS estimator
(labeled smoothed QPML) exactly achieves the uniform bound.

of this A is 1:7. The matrix C in the norm krb�kC was
selected as the inverse of the second order (Laplacian) dif-
ferencing matrix

C�1 =

2666664
2 �1
�1 2 �1 0

. . .
. . .

. . .

0 �1 2 �1
�1 2

3777775 : (34)

With this norm the restriction krb�kC � � corresponds to
a constraint on maximal bias variation max�2C j�b�j over
a roughness constrained neighborhood C(�;C) of � (recall
relation (6)). Also plotted in Fig. 2 are the performance
curves (krb�k2; ��) for two PLS pixel intensity estimators

(30), one using the smoothing matrix P = C�1, called the
smoothed QPML estimator, and another using the diagonal
\energy penalty" P = I, called the unsmoothed QPML es-

timator. These curves were traced out in the bias variance
tradeo� plane by varying � in the parametric descriptions
of estimator variance (33) and estimator bias gradient (32).

A.2 Singular Fisher Matrix

When A has rank less than n, FY is singular and unbi-
ased estimators may not exist for all linear functions t� of
� [19], [42]. A lower bound on the norm of the bias gra-
dient can derived (see Appendix C) using the relation (6)
between the norm and the maximal bias variation over a
region of parameter space. Since the uniform CR bound is
�nite and equal to the unbiased CR bound at � = 0, we
cannot expect the delta-sigma tradeo� curve to be achiev-
able for all � as in the non-singular case.
To illustrate we repeat the study of Fig. 2 with a rank de-

�cient Gaussian kernel matrix Ar obtained by decimating
the rows of a full rank Gaussian kernel matrix A (w = 2)
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Estimators vs. Uniform Bound: Singular Fisher

Fig. 3. Bias variance tradeo� study for pixel intensity estimation and
singular Fisher information. Neither of the QPML estimators
achieve the uniform bound.

by a factor of 4. This yields the ill-posed problem of esti-
mating a vector of 128 pixel intensities � based on only 32
observations Y . We used the singular value decomposition
of A to compute the delta-sigma tradeo� curve and the
minimal bias gradient norm. The results for pixel intensity
estimation (t� = e67) are plotted in Figure 3 along with the
performance curves associated with the smoothed QPML
(P = C�1 of (34)) and unsmoothed QPML (P = I) esti-
mators. Note that neither of the estimators achieve the
uniform bound for any value of the parameter �. The
minimal bias gradient norm is an asymptote on estima-
tor performance which forces a sharp knee in the estimator
performance curves. At points close to this knee maximal
reduction in bias is only achieved at the price of signi�cant
increase in the variance.
For comparison, in Fig. 5 we plot the analogous curves

for smoothed and unsmoothed QPML estimation of the
contrast function de�ned as t� = hT �, where the elements
of h are plotted in Fig. 4. Observe that the smoothed
QPML estimator of contrast comes much closer to the uni-
form bound than does the smoothed QPML estimator of
pixel intensity shown in Fig. 3.
Under certain conditions the uniform CR bound is ex-

actly achievable even for singular FY , although generally
not by a QPML estimator of the form (30) and generally
not for all �. Consider the estimator

�̂ = hT
�
I+ �F+YP

��1
F+YA

T��1Y : (35)

This estimator reduces to the previous estimator (30) for
the case of non-singular FY . The estimator bias gradient
is

rb� =
�
FY F

+
Y

�
I+ �PF+Y

��1
� I
�
rt�

= �

�
1

�
P�1 + F+Y

��1
F+Y h
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Fig. 4. Coe�cients h of contrast function t� = hT � used for bias
variance tradeo� study shown in Fig. 5.

Uniform Bound  

Smoothed QPML  

Unsmoothed QPML

Minimum Bias   

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BIAS−GRADIENT NORM

S
Q

U
A

R
E

 R
O

O
T

 V
A

R
IA

N
C

E
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Fig. 5. Bias variance tradeo� study for estimation of contrast func-
tion (illustrated in Fig. 4) for singular Fisher information. The
smoothedQPML estimator of contrast virtually achieves the uni-
form bound for bias-gradient norm � greater than 0.2.

�
�
I� FYF

+
Y

� �
I+ �PF+Y

��1
h; (36)

and the estimator variance is

�2� = hTP�1
�
P�1 + �F+Y

��1
F+Y

�
P�1 + �F+Y

��1
P�1h; (37)

where in (37) we have used the property F+Y FYF
+
Y = F+Y

[43]. Noting that here rt� = h, we conclude that the es-
timator variance is equal to the lower bound expression
B(�; �) given in (9) when P = C�1 and � = 1=�. Further-
more, under these conditions the bias gradient (36) di�ers
from the optimal bias gradient dTmin, given in (10), only by
the presence of the second additive term on the right hand
side of (36). Thus the estimator (35) with P = C�1 is an
optimal biased estimator when this second additive term is
equal to zero.
We summarize these results in a theorem which applies

to both singular and non-singular FY .

Theorem 2: Let B = P
1

2F+YP
1

2 where FY is the possibly
singular Fisher information matrix. If

1. �2 < hTP
1

2PBP
1

2h, and
2. the vector h lies in the nullspace of
[I�FYF

+
Y ][I+ �PF+Y ]

�1,
then the estimator t̂ given by (35) achieves the funda-
mental delta-sigma tradeo� in the sense of having mini-
mum variance over all estimators of t� = hT � satisfying
krb�k2P�1 � �2 = g(1=�) where g(�) is the function given
in (11).
Recognizing the matrix I�F+YFY = I�FYF

+
Y as the op-

erator which projects onto the null space of FY , an equiva-
lent condition to (2) is that [I+�PF+Y ]

�1h lie in the range
space of FY . For the special case of � = 0, condition (2) of
Theorem 2 reduces to the well known necessary condition
for achievability of the unbiased CR bound: the vector h
must lie in the range space of the Fisher informationFY . In
order for the uniformCR bound B(�; �) to be achievable for
all values of �, condition (2) must hold for all � > 0. This
is a much stronger condition except when the eigenspace of
[I+ �PF+Y ]

�1 is independent of �, which occurs for exam-
ple when P = I. This suggests that when estimation of any
�xed t� is of interest and the Fisher information is singular,
the uniform bound will rarely be achievable everywhere in
the delta-sigma plane.
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Fig. 6. Coe�cients h of the linear compound t� = hT � satisfying
condition 2 of Theorem 2 and used for computing the curves in
Fig. 7.

To illustrate Theorem 2 we selected a small value of �
and found a vector h lying in the nullspace of the matrix
[I�F+YFY ][I+�PF+Y ]

�1 via singular value decomposition.
This vector is shown in Fig. 6. In view of Theorem 2
we know that the estimator (35) of hT � should achieve
the uniform bound for the chosen value of �. In Fig. 7
we plot the uniform bound for estimators of hT � and the
performance curve of two estimators of the form (35), one
smoothed (P = C�1) and one unsmoothed (P = I). Ob-
serve that the smoothed estimator essentially achieves the
uniform bound for � < 0:2.

B. Poisson Model

In some applications the observations Y are given by the
linear model (27) but with non-Gaussian additive noise.
Here we consider the case of Poisson noise which arises in
emission computed tomography and other quantum limited
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Fig. 7. Bias variance tradeo� study for estimation of nullspace com-
pound hT � for singular Fisher information (h is illustrated in
Fig. 6). The bound is exactly achieved by the smoothed QPML
estimator at the point � = 5:4� 10�6.

inverse problems [44]. The observation Y = [Y1; : : : ; Ym]
T

is a vector of integers or counts with a vector of means � =

[�1; : : : ; �m]T . This vector of counts obeys independent
Poisson statistics with log-likelihood

ln fY (y; �) =
mX
j=1

(yj ln(�j(�)) � �j(�)) + c: (38)

In (38) c is a constant independent of the unknown source
� and the mean number of counts is assumed to obey the
linear model

�(�) = A � + r: (39)

In emission computed tomography � is a vector of mean
object projections measured over m detectors, A is a m�n
system matrix that depends on the tomographic geometry,
� is an unknown image intensity vector, and r is a m � 1
vector representing background noise due to randoms and
scattered photons.
The Fisher information has the form [45]

FY (�) =
mX
j=1

1

�j(�)
Aj�AT

j�; (40)

where AT
j� is the j-th row of A.

To investigate the achievability of the region above the
delta-sigma tradeo� curve, and to illustrate the empirical
computation of bias gradient, we consider again the QPML
strategy. The QPML estimator studied is t̂ = t�̂ where �̂

is the vector � which maximizes the penalized likelihood
function

J(�) = ln fY (y; �) �
�

2
�TP�; (41)

where P is a nonnegative de�nite matrix. In the simula-
tions below we used P = C = I.
Exact analytic expressions for the variance, bias, and

bias gradient of the QPML estimator are intractable. How-
ever, it will be instructive to consider asymptotic approx-
imations to these quantities. In Appendix D expressions
for asymptotic bias, bias gradient and variance are derived
under the assumption that the di�erence between the pro-
jection AE�[�̂] of the mean QPML image and the projec-

tion A�̂ of the true image is small { frequently a very good
approximation in image restoration and tomography. Spe-
cializing the results (57)-(59) in Appendix D to the case of
linear functions t� = hT �, we obtain the following expres-

sions for the asymptotic variance of t̂

�2� = hT [FY (�) + �P]�1FY (�) [FY (�) + �P]�1 h; (42)

and the asymptotic bias gradient

rb� = �P

�
P+

1

�
FY (�)

��1
h+O

�
1

�

�
: (43)

where O(1=�) is a remainder term of order 1=�.
When we identify P = C�1 and � = 1=� we see that

the estimator variance is identical to the optimal variance
(12), and that for linear t� the bias gradient is identical to
the optimal bias gradient (13) to order O(1=�). Therefore,
assuming the bias gradient and variance approximations
(43) and (42) are accurate, for linear t� we can expect that
the fundamental delta-sigma tradeo� curve will be approx-
imately achieved by the QPML estimator for large values
of the regularization parameter � if P = C�1.
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Fig. 8. Emission source � used for Poisson simulations. The spike in
the center was the pixel of interest.

To examine the performance of the methods for estimat-
ing bias gradient norm described in Section III, and to ver-
ify the asymptotic bias and variance performance predic-
tions, we generated simulated Poisson measurements with
means given by (39). In these simulationsAwas a 128�128
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tri-diagonal blurring matrix with kernel (0:23; 0:54; 0:23),
for which the condition number is 12:5. The source inten-
sity � is shown in Fig. 8. The function of interest was chosen
as t� = �65, the intensity of pixel 65 in Fig. 8. We generated
L = 1000 realizations of the measurements each having a
mean total of

Pm

j=1 �j(�) = 2100 counts, including a 5%
background representing random coincidences [20].
We computed three types of estimates of �: the quadrat-

ically penalized maximum likelihood estimator using the
\energy penalty" (P = I), a truncated SVD estimator, and
a \deconvolve/shrink" estimator. We maximized the non-
quadratic penalized likelihood objective using the PML-
SAGE algorithm, a variant of the iterative space alter-
nating generalized expectation-maximization (SAGE) al-
gorithm of [20] adapted for penalized maximum likeli-
hood image reconstruction [46]. We initialized PML-SAGE
with an unweighted penalized least-squares estimate:
(ATA + �?I)�1A0(Y � r); which is linear so can be com-
puted noniteratively. Here �? = �

P
j Ajk=(

P
j Ajk=Yj)

for k = 65 (cf [47], [48]). By so initializing, only 30 itera-
tions were needed to ensure convergence to a precision well
below the estimate standard deviation. For the truncated
SVD estimator, we computed the singular value decom-
position (SVD) of A, and computed approximate pseudo-
inverses ofA by excluding the 10 smallest eigenvalues. The
form of the \deconvolve/shrink" estimator is:

�̂(Y ) = �(ATA)�1AT (Y � r);

where � ranges from 0 to 1.
We applied each estimator to the L = 1000 measurement

realizations and computed the standard sample variance

�̂2 = 1
L�1

PL

i=1(t̂(Yi) � t̂)2 where t̂ = 1
L

PL

i=1 t̂(Yi) is the
estimator sample mean. We estimated the estimator bias
gradient length (BGL) (the norm k � kC with C = I) via
the methods described in Section III. We traced out the
estimator performance curves in the delta-sigma plane by
varying the regularization parameter �.
Figure 9 illustrates the bene�ts of using the bootstrap

estimate of BGL as compared with the ordinary method-
of-moments BGL estimator for the identity penalized like-
lihood estimator. Included are standard error bars (twice
the length gives 95% con�dence intervals) for bias (horizon-
tal lines) and variance (vertical lines smaller than plotting
symbol) of the bootstrap BGL estimator for L = 500 and
L = 1000 realizations. The BGL error bars were computed
under a large L Gaussian approximation to the bias gradi-
ent estimates and a square root transformation. In general
as the smoothing parameter � is decreased QPML esti-
mator bias decreases while QPML estimator variance in-
creases. This increase in variance produces an increasingly
large positive bias in the ordinary BGL estimator causing
the curve to abruptly diverge to the right. However, the
bias of the bootstrap BGL estimator remains small as � de-
creases so that it extends the range of reliable estimation
of the ordinary BGL estimator.
In Figure 10 we compare the three di�erent estimators

to the uniform CR bound. As predicted by the asymp-
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Fig. 9. Performance of penalized likelihood estimator compared to
uniform CR bound. Bias gradient length (BGL) estimates were
computed using both the standard method-of-moments estimate
and the bootstrap estimate described in Section III. Data points
to left fall below bound due to insu�cient number of realizations
for reliable BGL estimation.
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Fig. 10. Performance of three di�erent estimators compared to uni-
form CR bound. QPML estimator virtually achieves the uniform
bound for � > 0:4.

totic analysis the uniform bound is virtually achieved by
the identity penalized likelihood estimator in the high bias
and low variance region (large �). The identity penal-
ized maximum likelihood estimator visibly outperforms the
other two estimators. Unfortunately, for �xed L = 1000 as
the estimator performance curves approach the left side of
the delta-sigma plane, the bootstrap BGL estimates be-
come increasingly variable (recall error bars in Figure 9),
so an increasingly large number of realizations is required
to make reliable comparisons between the estimator per-
formance and the bound. On the other hand ECT images
corresponding to such highly variable estimates of � are
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unlikely to be of much practical interest.

V. Conclusions

We have presented a method for specifying a lower bound
in the delta-sigma plane de�ned as the set of pairs (��; ��)
where �� is the estimator bias gradient norm and �2� is the
estimator variance. For two inverse problems, one linear
and one non-linear, we have established that the bound is
achievable under certain circumstances.
There remain several open problems. In ill-posed prob-

lems the Fisher matrix is singular and an eigendecompo-
sition appears to be required to compute the bound. For
small ill-posed problems this is not a major impediment.
However, for large problems with many parameters, which
includes many image reconstruction and image restora-
tion problems, the eigendecomposition is not practical and
faster numerical methods are needed. Another problem is
that the variance of the bootstrap estimator for bias gra-
dient norm increases rapidly with the number of unknown
parameters. Since the bootstrap estimator is not guaran-
teed to be non-negative this high variance can make the
estimator useless for estimating small valued bias gradi-
ent norms. In such cases, asymptotic bias and variance
formulas may be useful and can be derived along similar
lines as described in Appendix D. Finally, we established a
general relation between bias gradient norm and maximal
bias variation. Although for general estimation problems
the interpretation of the bias gradient norm may be di�-
cult, for the two applications considered in this paper, the
bias gradient norm was interpreted as a measure of spatial
resolution of the estimator.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1: For a �xed � > 0 we perform con-
strained minimization of the biased form of the CR bound
(7) over the feasible set rb� : krb�kC � � of bias gradient
vectors

var�(t̂) � [rt� +rb�]
TF+Y [rt� +rb�]

� min
d:kdkC��

Q(d);

where

Q(d) = [rt� + d]TF+Y [rt� + d];

and d is a vector in IRn. De�ning ~d = C
1

2 d, where C
1

2

is a square root factor of C, the minimization of Q(d) is
equivalent to

min
~d:k ~dk2��

h
C

1

2rt� + ~d]TB[C
1

2rt� + ~d
i
; (44)

where B = C�
1

2F+YC
� 1

2 .
First we consider the case where the unconstrained min-

imum Q(d) = 0 occurs in the interior of the constraint set
kdkC � �. From (44) it is clear that Q(d) can be zero if

and only if C
1

2rt� + ~d lies in the null space of B. Such a

solution ~d
o
must have the form

~d
o
= �PBC

1

2rt� + �

where � is an arbitrary vector in the null space of B. But

for ~d
o
to be a feasible solution it must satisfy k ~d

o
k2 � � so

that, by orthogonality of PBC
1

2rt� and �

�2 � k ~d
o
k22 = kPBC

1

2rt�k
2
2 + k�k22 � kPBC

1

2rt�k
2
2:

We conclude that mind:kdkC�� Q(d) = 0 i� kPBC
1

2rt�k22 =

rT t�C
1

2PBC
1

2rt� � �2.

If rT t�C
1

2PBC
1

2rt� = 0 then we have nothing left to
prove. Otherwise, assume � lies in the range: 0 � �2 <

rT t�C
1

2PBC
1

2rt�. In this case the minimizing ~d lies on

the boundary and satis�es the equality constraint k ~dk2 = �.
We thus need solve the unconstrained minimization of the
Lagrangian:

min
~d

hh
C

1

2rt� + ~d]TB[C
1

2rt� + ~d
i
+ �( ~d

T ~d� �2)
i
; (45)

where we have introduced the undetermined multipler � �
0. Assuming for the moment that � is strictly positive, the
matrix �I+B is positive de�nite and the completion of the
square in the Lagrangian in (45) givesh

~d+ (�I +B)�1BC
1

2rt�
iT

(�I+B)
h
~d+ (�I+B)�1BC

1

2rt�
i

+rT t�F
+
Yrt� �r

T t�

h
C

1

2B(�I +B)�1BC
1

2

i
rt� � ��2:

It follows immediately from (46) that

~d = ~dmin = �(�I +B)�1BC
1

2rt�

achieves the minimum. Noting that dmin = C�
1

2 ~dmin,
expressing B in terms of C and FY , and performing simple
matrix algebra, we obtain (10). Substituting the expression
for ~dmin into (44):

min
d:kdkC��

Q(d)

= [rt� + dmin]
TF+Y [rt� + dmin]

= rT t�C
1

2

�
I� [�I+B]�1B

�T
B
�
I� [�I+B]�1B

�
C

1

2rt�

= �2rT t�C
1

2 [�I+B]�1B[�I+B]�1C
1

2rt� (46)

which, after simple matrix manipulations, gives the expres-
sion (9).
The Lagrange multiplier � is determined by the equality

constraint

�2 = ~d
T

min
~dmin = rT t�

h
C

1

2B[�I+B]�2BC
1

2

i
rt� = g(�): (47)
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Substitution of B with C�
1

2F+YC
� 1

2 yields the expression
(11) after simple matrix algebra.
Let the non-negative de�nite symmetric matrix B have

eigendecompositionB =
Pr

i=1 �i�i�
T

i
where �i are positive

eigenvalues, �
i
are eigenvectors, and r > 0 is the rank of

B. With these de�nitions the function g(�) (47) has the
equivalent form

g(�) =
rX

i=1

�2i
(�+ �i)

jrT t�C
1

2 �
i
j2: (48)

Since by assumption rT t�C
1

2PBC
1

2rt� > 0, C
1

2rt� does

not lie in the nullspace of B and thus jrT t�C
1

2 �
i
j2 > 0

for at least one i, i = 1; : : : ; r. Therefore, from (48),
it is obvious that the function g(�) is continuous mono-
tone decreasing over � � 0 with lim�!1 g(�) = 0 and

lim�!0 g(�) = rt�C
1

2PBC
1

2rt�. Hence there exists a
unique strictly positive � such that g(�) = �2 for any value

�2 2 [0;rt�C
1

2PBC
1

2rt�). 2

Appendix B: Bootstrap Derivation

We start with the following simple estimator drb� =drb�(Y1; : : : ; YL) of the bias gradient rb�
drb� =

1

L

LX
i=1

z(Yi);

where z is the column vector

z(Yi) = t̂(Yi)r
T
� ln fY (Yi; �)�rt�:

The (biased) sample magnitude estimator of the norm
squared �2 = krb�k2C is

�̂2(Y1; : : : ; YL) = kdrb�k2C =
1

L2
k

LX
i=1

z(Yi)k
2
C:

Now given the random sample Y1 = y1; : : : ; YL = yL, the
resampled estimate �̂2� = �̂2�(Y �1 ; : : : ; Y �L ) is [37]

�̂2� =
1

L2
k

LX
i=1

ci z(yi)k
2
C

=
1

L2

LX
i=1

LX
j=1

cicj < z(yi); z(yj) >C ; (49)

where < u; v >C= uTCv is de�ned as the (weighted) inner
product of column vectors u and v. De�ne c = [c1; : : : ; cL]T

and let H = [[< z(Yi); z(Yj) >C ]] denote a L�L matrix of
inner products. Then the resampled estimate (49) has the
equivalent form

�̂2� =
1

L2
cTHc (50)

=
1

L2
tracefH c cTg: (51)

The resampling outcomes c1; : : : ; cL are multinomial dis-
tributed with equal cell probabilities p1 = : : : = pL = 1=L

and
PL

i=1 ci = L. Averaging (51) over c we obtain the
bootstrap estimate of the mean

E�[�̂2�] =
X
�
�̂2�

�
L

c1 : : : cL

�
L�L (52)

=
1

L2
trace

�
H E�[c cT ]

	
:

From the mean and covariance of the multinomial distri-
bution [49, Sec. 3.2]:

E�[c cT ] = I + L�1

L
11T

where 1 is a vector of ones. Applying this identity to (52)

and noting that tracefHg =
PL

i=1 kz(Yi)k
2
C and 1TH1 =

k
PL

i=1 z(Yi)k
2
C , we obtain

E�[�̂2�] =
1

L2
trace

�
H E�[c cT ]

	
=

1

L2

�
trace fHg+

L � 1

L
1TH1

�
=

1

L2

"
LX
i=1

kz(Yi)k
2
C � Lkzk2C + L2kzk2C

#

=
1

L2

LX
i=1

kz(Yi) � zk2C + �̂2;

where z = rb� =
1
L

PL

i=1 z(Yi) is the sample mean and we

have identi�ed �̂2 = kzk2C . Plugging this last expression
into (25) we obtain:

�̂2c = 2�̂2 �E�[�̂2�]

= �̂2 �
1

L2

LX
i=1

kz(Yi)� zk2C ;

which is identical to the expression (26).

Appendix C: Lower Bound on Bias Gradient

Here we derive a simple lower bound on the maximal bias
variation over the region C = fu : (u� �)TC�1(u� �) � 1g
under the assumptions: (i) FY (u) is constant over u 2 C;
and (ii) the functional tu to be estimated is linear over

u 2 C. De�ne: 1) PF = FYF
+
Y = F+YFY as the symmetric

matrix which orthogonally projects onto the range space
of FY , 2) NF = fu : PFu = 0g as the nullspace of FY , 3)
mu = Eu[t̂]. Under assumption (i) the parameter u is not
identi�able for u 2 NF \C and it follows that mu�m� = 0.
Therefore, we obtain the lower bound

max
u2C

jbu � b�j
2 = max

u2C
jmu � t� �m� + t�j

2

� max
u2C\NF

jmu �m� + t� � tuj
2

= max
u2C\NF

jtu � t�j
2

= max
u2C\NF

jhT�uj2

= max
u2C

jhT [I� PF ]�uj2; (53)
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where �u = u��. Now, using an extremal property of the
Rayleigh quotient, the right hand side of (53) is

max
u2C

jhT [I�PF ]�uj2

= max
�u

�uT [I� PF ]hh
T [I�PF ]�u

�uTC�1�u

= max
u

uTC
1

2 [I� PF ]hh
T [I�PF ]C

1

2u

uTu

= hT [I�PF ]C[I�PF ]h (54)

where in the third line u = C�
1

2�u.
In view of the relation (6) combination of (53) and (54)

yields the following lower bound on the norm krbukC

krbukC �
q
hT [I�PF ]C[I� PF ]h+ � (55)

For the case that the bias bu is linear over u 2 C
� in (55) is equal to zero and we have an exact bound

krbukC �
q
hT [I�PF ]C[I�PF ]h. In view of the re-

lation (53), replacing h with rt� in this bound will give
an approximate bound when tu is non-linear but smooth
over u 2 C. The bound (55) with � = 0 will probably
be fairly tight when the range space components of u can
be estimated without bias, which is true for linear models
Y = Au + w. However, the reader is cautioned that for
non-linear models the bound (55) may not be very tight
since unbiased estimators may not exist even for compo-
nents lying in the range space of FY [42].

Appendix D: Asymptotic Approximation of Bias,

Bias Gradient, and Variance for Poisson QPML

De�ne the vector

z = [FY (�) + �P]�1FY (�)�;

=

"
I �

�
P+

1

�
FY (�)

��1
P

#
�: (56)

Here we derive the following asymptotic formulas for vari-
ance, bias, and bias gradient of the Poisson QPML estima-
tor of a general di�erentiable function t�.
Asymptotic Variance:

�2� = rT tz [FY (�) + �P]�1FY (�) [FY (�) + �P]�1rtz: (57)

Asymptotic Bias:

b� = tz � t�; (58)

Asymptotic Bias Gradient:

rb� = FY (�) [�P +FY (�)]
�1 rtz �rt� �O

�
1

�

�
;(59)

where

O

�
1

�

�
=

1

�

mX
j=1


j
(�)AT

j�B
�1rtz (60)


j
(�) =

Aj��TPB�1Aj�
�2j(�)

; (61)

and rtz denotes the evaluation of the gradient of t� at the
point � = z.
De�ne the ambiguity function a(u; �) = E�[J(u)] and

let u = z = z(�) be the root of the equation �(u) =
0 where �(u) = r10a(u; �). Assuming the techni-
cal conditions underlying [50, Corollary 3.2, Sec. 6.3]
are satis�ed2 we have the following approximation: in
the limit of large observation time the estimator �̂ is
asymptotically normal with mean z and covariance ma-

trix � =
�
r20a(z; �)

��1
Gz

�
r20a(z; �)

��T
where Gz =

cov� (rJ(z)). Furthermore, assuming that the function

t� has nonzero derivative at � = z, the estimator t̂ =
t
�̂
is asymptotically normal with mean tz and variance

rT tz�rtz [51, p. 122, Theorem A]. This gives the asymp-

totic expression for bias b� = E�[t̂� t�] = tz � t�, as given
in (58), and an asymptotic expression for variance

var�(t̂) = rT tz
�
r20a(z; �)

��1
Gz

�
r20a(z; �)

��1
rtz: (62)

Since the penalized Poisson likelihood function J(u)
in (41) is linear in the observations Y , and Yi are in-
dependent Poisson random variables, it is simple to de-
rive the following expression for the covariance matrix of

rJ(z) =
PT

j=1Aj�
�

Yj
�j (z)

� 1
�
� �Pz:

cov� [rJ(z)] = F(z; �)

=
X
j=1

Aj�AT
j�

1

�j(�)

�
�j(�)

�j(z)

�2
= FY (�) + o

�
�(z � �)

�
; (63)

where AT
j� is the j-th row of A, FY (�) is the Fisher matrix

(28), and o
�
�(z � �)

�
is a remainder term which is close to

zero when the di�erence between the projections �(z) and
�(�) is small. To obtain the expression (63) with remainder
term we used the series development

�j(�)

�j(z)
= 1�

1

�j(�)
(z � �)TAj� + o

�
(z � �)TAj�

�
:

The ambiguity function is

a(u; �) =
mX
j=1

(�j(�) ln�j(u)� �j(u)) �
�

2
uTPu:

Di�erentiation of the ambiguity function with respect to u
yields

r10a(u; �) =
mX
j=1

Aj�

�
�j(�)

�j(u)
� 1

�
� �Pu (64)

= �

0@ mX
j=1

1

�j(�)
AT
j�Aj�

1A (u� �)� �Pu

+o
�
�(u� �)

�
= �FY (�)(u� �) � �Pu+ o

�
�(u� �)

�
;

2Among other things these conditions involve showing that the gra-
dient function rJ(�) converges a.s. to zero as the observation time
increases.
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and similarly

r20a(u; �) = �FY (�)� �P+ O
�
�(u� �)

�
: (65)

Neglecting the O
�
�(u� �)

�
remainder terms, multiplica-

tion of the inverse of (65) the covariance (63) and the
inverse transpose of (65), yields the asymptotic variance
expression (62). Likewise, neglecting the remainder term
in (64) and solving for the root u = z of the equation
r10a(u; �) = 0 yields the expression for the root (56).
We next derive the expression (59) for the bias gradient.

Applying the chain rule to di�erentiate the bias function
(58) we obtain

rb� = rzT� rtz �rt�; (66)

where rzT� is an n � n matrix of derivatives of z = z�.

From (56) the k-th row of this matrix is

d

d�k
zT� = eTk

"
I� P

�
P+

1

�
FY (�)

��1#
(67)

� �TP
d

d�k

�
P+

1

�
FY (�)

��1
+O

�
�(u� �)

�
:

De�ne the matrix B = P + 1
�
FY (�). From the di�erenti-

ation formula d
d�k

B(�)�1 = �B�1 d
d�k
B(�)B�1, and from

expression (40) for the Fisher informationmatrix FY (�) we
have

� �TP
d

d�k

�
P+

1

�
FY (�)

��1
=

1

�
�TPB�1

d

d�k
FY (�) B

�1

= �
1

�

mX
j=1

Ajk�
TPB�1Aj�
�2j (�)

AT
j�B

�1

= �
1

�

mX
j=1

jk(�) A
T
j�B

�1; (68)

where jk(�) is the k-th element of the vector 
j
de�ned in

(61). Combining the results (67) and (68) we obtain

rz� =

"
I� P

�
P+

1

�
FY (�)

��1#
+ O

�
1

�

�
;

which, when substituted into (66) and neglecting the re-
mainder term O

�
�(u� �)

�
yields the bias gradient expres-

sion (59).
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