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ABSTRACT

Most expectation-maximization (EM) type algorithms for
penalized maximum-likelihood image reconstruction converge
slowly, particularly when one incorporates additive background
effects such as scatter, random coincidences, dark current, or
cosmic radiation. In addition, regularizing smoothness penalties
(or priors) introduce parameter coupling, rendering intractable
the M-steps of most EM-type algorithms. This paper presents
space-alternating generalized EM (SAGE) algorithms for image
reconstruction, which update the parameterssequentiallyusing
a sequence of small “hidden” data spaces, rather thansimul-
taneouslyusing one large complete-data space. The sequen-
tial update decouples the M-step, so the maximization can typi-
cally be performed analytically. We introduce new hidden-data
spaces that are less informative than the conventional complete-
data space for Poisson data and that yield significant improve-
ments in convergence rate. This acceleration is due to statis-
tical considerations, not numerical overrelaxation methods, so
monotonic increases in the objective function are guaranteed.
We provide a general global convergence proof for SAGE meth-
ods with nonnegativity constraints.

I. I NTRODUCTION

IMAGING techniques with Poisson measurement statistics
include: positron emission tomography (PET) [1], single

photon emission computed tomography (SPECT), gamma as-
tronomy, microscopy methods [2], and photon-limited opti-
cal imaging [3]. Statistical methods for image reconstruction
or restoration, such as maximum likelihood (ML), penalized
maximum-likelihood (PML), or maximuma posteriori(MAP),
are computationally challenging due to the transcendental form
of the Poisson log-likelihood. EM algorithms [4] have proven to
be somewhat useful in such problems, except for two important
drawbacks. The first problem is slow convergence, particularly
when one includes the additive effects of “background” events
such as random coincidences [5], scatter [6], dark-current [7],
or background cosmic radiation. The second problem is that
the M-step of the EM algorithm becomes intractable when one
includes smoothness penalties in the objective function, since
these functionals further couple the parameters.
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In [8,9] we introduced a class of methods called space-
alternating generalized EM (SAGE) algorithms that overcome
these limitations of EM algorithms. Rather than using thesimul-
taneousupdate of nearly all EM-type algorithms, SAGE algo-
rithms usesequentialparameter updates in which one iteratively
cycles through a sequence of hidden data spaces—one for each
pixel. By choosing hidden data spaces whose Fisher informa-
tion is smaller than the Fisher information of the ordinary EM
complete data space, one can accelerate convergence yet main-
tain the desirable monotonicity properties of EM algorithms.
The relationship between Fisher information and convergence
rate [4,8,9,10,11,12,13,14] underscores all of the methods we
present. In [9] we described two SAGE algorithm for ML im-
age reconstruction and presented anecdotal results showing that
one of them converged faster than the EM algorithm. This pa-
per describes a third SAGE algorithm thatsupersedes the previ-
ous twoin that it converges faster but negligibly increases CPU
time. Using a quadratic penalty for illustration, we show empir-
ically over a range of background event fractions that the new
SAGE algorithm converges faster than several EM-type algo-
rithms, even when those methods are accelerated using a new
complete data space.

Images reconstructed purely by using the ML criterion [1]
are unacceptably noisy. Methods for reducing the noise in-
clude: stopping rules [15], penalized least squares [16], sepa-
rable (non-smoothness) priors [17,18], adding smoothing steps
[19], and sieves [20]. Recent studies [21] have found that MAP
(or equivalently PML) methods outperform sieves. In this pa-
per, we focus on PML image reconstruction, although the new
complete-data and hidden-data spaces we introduce are also ap-
plicable to unpenalized ML methods. Algorithms for penalized
likelihood objective functions for Poisson statistics can be cat-
egorized as: 1)intrinsically monotonic, 2) forced monotonic
(typically made monotonic using a line search), and 3)non-
monotonicmethods. Since one could convert any nonmono-
tonic method to a forced monotonic method by using a line
search, the latter two categories overlap. Nonmonotonic meth-
ods can diverge unless one explicitly checks that the objec-
tive increases, which often would be expensive in applications
with many parameters. The SAGE methods we propose are in-
trinsically monotonic, so expensive line searches are unneces-
sary. Although it is not our purpose to argue this point, we
believe that convergence properties are relevant to clinical med-
ical imaging, since algorithm divergence could have unfortunate
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consequences.
Intrinsically monotonic methods are those such as the ML-

EM algorithm for PET [1] where the statistical formulation
of the recursion inherently ensures that the objective func-
tion increases every iteration (ignoring finite precision com-
puting). The only intrinsically monotonic methods for penal-
ized maximum-likelihood that we are aware of are: 1) exten-
sions of the EM algorithm including generalized expectation-
maximization (GEM) [22], expectation/conditional maximiza-
tion (ECM) [23,24], and SAGE [9] algorithms, 2) the triv-
ial case with separable (non-smoothness) priors [17,18], 3)
De Pierro’s algorithms [25,26], 4) and the ICM-EM algorithm
[27]. For comparison purposes, we derive an accelerated mono-
tone converging GEM algorithm in Section IV using a new
complete-data space. Most intrinsically monotonic algorithms
converge globally to the unique maximum for strictly concave
objectives.

Perhaps a more accurate name for nonmonotonic methods
would be “not guaranteed monotonic” since most such meth-
ods do havelocal convergence and the PML estimate is usu-
ally a fixed point. An early approach was gradient ascent of
the objective starting from an ML estimate [28,29], which was
stated to “not guarantee convergence to the global [max]imum.”
Gradient ascent is complicated by the nonnegativity constraint.
Most other nonmonotonic methods are variations of the one-
step late (OSL) method of Green [30,31]. In the OSL ap-
proach, one circumvents the problem of coupled equations by
“plugging in” values from the previous iteration. Unfortunately,
such an approach can diverge, unless modified to include a line
search [32]. Similar strategies include the BIP algorithm [33],
the methods in [34,35], and nested gradient or Jacobi iterations
[36,37,21]. Most such strategies include a user-specified step
size parameter, and one user has noted that “finding good val-
ues for [the step size] and the number of times to iterate re-
quires painful experimentation [38].” Other OSL-like methods
are given in [38,39], which have been reported to occasion-
ally diverge [39]. The sequential update of our SAGE meth-
ods is close in form (cf Type-III algorithms in Table 1) to the
coordinate-wise ascent proposed by Bouman and Sauer [40,41].

One could force any of the above methods to be monotonic by
adding a line search. Lange has shown convergence for a line-
search modification of OSL [32], and Mumcuogluet al. have
adapted the conjugate gradient method [42]. We show in Sec-
tion VI that an intrinsically monotonic SAGE algorithm con-
verges faster than even a line-search accelerated EM algorithm.

This paper is condensed from [43], in which we compare
SAGE to many alternative algorithms and show that the conver-
gence rate of SAGE is comparable to even fast nonmonotonic
methods such as [40,41]. Just as one can force a nonmonotonic
algorithm to be monotonic by adding a line search, one can also
often accelerate monotonic methods by over-relaxation. Thus,
for meaningful comparisons, one should first decide whether or
not monotonicity is required. In this paper, we focus solely on
monotonic(intrinsic or forced) algorithms. Additional compar-
isons can be found in [43].

The organization of this paper is as follows. Section II de-
scribes the general structure of the SAGE method. Section III

introduces new complete-data spaces and hidden-data spaces
for Poisson data, and gives several algorithms for unpenalized
maximum-likelihood. Section IV presents PML algorithms.
Sections V and VI illustrate the convergence rates. The Ap-
pendix gives a global convergence proof.

II. T HE SAGE METHOD

Previously we described the SAGE method within a statis-
tical framework [9,8,12]. Here we first describe a generalized
version of the method without direct statistical considerations,
and then introduce the statistical version as a special case. This
new formulation encompasses both the previous SAGE method
[9,8,12] and the convexity approach of De Pierro [26,44] as spe-
cial cases.

A. Problem

Let the observationY have the probability distribution
f(y;θtrue), whereθtrue is a parameter vector residing in a
subsetΘ of the p-dimensional spaceIRp. Given a measure-
ment realizationY = y, our goal is to compute the penalized
maximum-likelihood estimatêθ of θtrue, defined by:

θ̂
4
= argmax

θ∈Θ
Φ(θ), whereΦ(θ)

4
= log f(y;θ)− P (θ). (1)

P is an optional penalty function. When analytical solutions for
θ̂ are unavailable, one must resort to iterative methods, most of
which update all pixelssimultaneously. SAGE algorithms use
sequentialupdates.

B. Algorithm

To describe the SAGE method, we adopt the notation used in
[9]. Define anindex setS to be a nonempty subset of{1, . . . , p},
and S̃ its complement. If the cardinality ofS is m, thenθS
denotes them dimensional vector consisting of them elements
of θ indexed by the members ofS. Similarly θS̃ denotes the
p−m dimensional vector consisting of the remaining elements
of θ. For example, ifp = 5 andS = {1, 3, 4}, thenS̃ = {2, 5},
θS = [θ1 θ3 θ4]

′, andθS̃ = [θ2 θ5]
′, where′ denotes vector

transpose. Finally, functions likeΦ(θ) expect ap-dimensional
vector argument, but it is often convenient to split the argument
θ into two vectors:θS andθS̃ , as defined above. Therefore, we
equate expressions such as:Φ(θS ,θS̃) = Φ(θ).

Let θ0 ∈ Θ be an initial parameter estimate. Givenθi, i =
1, 2, . . ., a SAGE algorithm produces a new estimateθi+1 by
the following two steps:

E-step: Choose an index setSi

and a functionalφi(θSi ;θ
i) satisfying:

Φ(θSi ,θ
i
S̃i
)− Φ(θi) ≥ φi(θSi ;θ

i)− φi(θiSi ;θ
i). (2)

M-step: θi+1Si = argmax
θSi
φi(θSi ;θ

i) (3)

θi+1
S̃i

= θi
S̃i

(4)

The maximization in (3) and the inequality in (2) are over the
set{θSi : (θSi ,θ

i
S̃i
) ∈ Θ}.
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This is an “algorithm” in a loose sense, since there is con-
siderable latitude for the algorithm designer when choosing the
index sets{Si} and functionals{φi} (see Appendix). The
basic idea behind the SAGE method is that if maximizing
Φ(θSi ,θ

i
S̃i
) over θSi at theith iteration is difficult, then we

instead maximize some user-specified functionalφi(θSi ;θ
i),

carefully chosen to ensure (using (2)) that increases inφi yield
increases inΦ. Often one can maximizeφi(·;θi) analytically,
obviating expensive line searches. We discuss choices for the
index setsSi in [9]. Here we focus on single-pixel index sets,
e.g.:Si = {1 + (imodulo p)}.

C. Convergence Properties

It follows from (2) and (3) that the sequence of estimates{θi}
generated by any SAGE algorithm willmonotonicallyincrease
the objectiveΦ(θi). If the objective function is bounded above,
then this monotonicity ensures that{Φ(θi)} converges, but it
does not guarantee convergenceof the sequence{θi}. In [9], we
provided regularity conditions under which the sequence{θi}
also converges monotonicallyin norm, and derived an expres-
sion for the asymptotic rate of convergence. The nonnegativity
constraint for image reconstruction violates one of the regularity
conditions in [9]. Therefore, in the Appendix we prove global
convergence under mild conditions suitable for image recon-
struction with nonnegativity constraints.

D. Hidden-Data Spaces

A natural approach to choosing functionalsφi that satisfy (2)
is to use the underlying statistical structure of the problem. Of-
ten one can simplify the form of the log-likelihood by (concep-
tually) augmenting the observed data with some additional un-
observable or “hidden” data. The hidden-data spaces we defined
in [9] were all independent of the iterationi. Here we present
a less restrictive definition that allows one to use hidden-data
spaces that change with iteration.

Definition 1 LetSi denote the index set for theith iteration. A
random vectorX with probability distributionf(x;θSi ,θ

i
S̃i
)

is an admissible hidden-data spacewith respect toθSi for
f(y;θSi ,θ

i
S̃i
) at θi if the joint distribution ofX andY sat-

isfies

f(y,x;θSi ,θ
i
S̃i
) = f(y|x;θi

S̃i
)f(x;θSi ,θ

i
S̃i
), (5)

i.e., the conditional distributionf(y|x;θi
S̃i
) must be indepen-

dent ofθSi .

Any complete-data space associated with a conventional EM
algorithm is a special case of this definition [9].

Given an admissible hidden-data spaceX, define the follow-
ing conditional expectation:

Q(θSi ;θ
i) = E

{
log f(X;θSi ,θ

i
S̃i
)|Y = y;θi

}
. (6)

Combine this conditional expectation with the penalty function:

φ(θSi ;θ
i)
4
= Q(θSi ;θ

i)− P (θSi ,θ
i
S̃i
). (7)

From [9], anyφ generated using (5)-(7) satisfies (2). Thus,
one can design SAGE algorithms by choosing index sets{Si}

and admissible hidden-data spaces{Xi}, and then generating
{φi} functionals using (5)-(7). The “majorization” method of
De Pierro [26,44] is an alternative method for choosingφi func-
tionals [43].

III. M AXIMUM LIKELIHOOD

In this section we first review the linear Poisson model that
is often used in image reconstruction problems, and summa-
rize the classical EM algorithm (ML-EM-1) for maximizing the
likelihood [1]. We then introduce a new complete-data space
that leads to a new, faster converging EM algorithm: ML-EM-3.
Even less informative hidden-data spaces lead to new SAGE al-
gorithms that converge faster than both ML-EM-3 and the line-
search accelerated EM algorithm (ML-LINU) [45]. We pre-
sented some of this material in [9,12]; we include it here since
the concepts behind the new complete-data spaces and hidden-
data spaces are easier to explain in the maximum-likelihood
framework than in the PML case described in the next section.

A. The Problem

Let the emission distribution be discretized intop pixels with
nonnegative emission ratesλ = [λ1, . . . , λp]′ ≥ 0. Let Nnk
denote the number of emissions from thekth pixel that are de-
tected by thenth ofN detectors, assumed to have independent
Poisson distributions:

Nnk ∼ Poisson{ankλk},

where theank are nonnegative constants that characterize the
system [1] witha·k =

∑
n ank > 0. The detectors record

emissions from several source locations as well as background
events, so we observe

Yn =
∑
k

Nnk +Rn ∼ Poisson{
∑
k

ankλk + rn}, (8)

where {Rn} are independent Poisson variates:Rn ∼
Poisson{rn}. We assume the background rates{rn} are
known. This assumption is not essential to the general method,
and one could generalize the approach to jointly estimate [11]
{λk} and{rn}.

Given realizations{yn} of {Yn}, the log-likelihood for this
problem is given by [1]:

L(λ) = log f(y;λ) ≡
∑
n

(yn log ȳn(λ)− ȳn(λ)) , (9)

where
ȳn(λ) =

∑
k

ankλk + rn. (10)

(We use the symbol “≡” between expressions that are equiva-
lent up to constant terms that are independent ofλ.) We would
like to compute the ML estimatêλ ≥ 0 fromy = [y1, . . . , yN ]′.

B. ML-EM Algorithms

The classical EM complete-data space [1] for this problem is
the set of unobservable random variates

X1 = {{Nnk}
p
k=1, {Rn}}

N
n=1, (11)
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which has the following log-likelihood:

log f(X1;λ) ≡
∑
k

∑
n

(Nnk log(ankλk)− ankλk) .

As shown in [1],

E{Nnk|Y = y;λ
i} = λikankyn/ȳn(λ

i).

Thus, theQ function (6) forX1 is (see eqn. (4) of [1]):

QX1(λ;λ
i) = E{log f(X1;λ)|Y = y;λi}

≡
∑
k

(
λik ek(λ

i) logλk − a·kλk
)
, (12)

where
ek(λ

i) =
∑
n

ankyn/ȳn(λ
i). (13)

QX1(·;λ
i) is a separable, concave function ofλ1, . . . , λp, and

one can maximize it analytically. This yields the ML-EM-1 al-
gorithm [1,5], which is a Type-I algorithm in Table 1 with its
M-step (41) given by:

λi+1k = λikek(λ
i)/a·k. (14)

ML-EM-1 converges globally [1,11] but slowly. The slow con-
vergence is partly explained by considering the Fisher informa-
tion of the complete-data spaceX1 [11]. One can think ofX1

as data from a hypothetical tomograph that knows whether each
detected event is a true emission or a background event, and
knows in which pixel each event originated. Such a tomograph
would clearly be much moreinformativethan real tomographs,
and this intuition is reflected in the Fisher information matri-
ces. The Fisher information of the parameter vectorλ for the
observed dataY evaluated at the ML estimatêλ is

FY(λ̂) = E{−∇
2
λL(λ)}

∣∣∣
λ=ˆλ

= A′diag
{
Aλ̂+ r

}−1
A,

whereas the Fisher information forX1 is diagonal:

FX1(λ̂) = diag
{
a·k/λ̂k

}
(providedλ̂ is positive). One can show thatFX1 > FY (i.e.
FX1−FY is a positive definite matrix) using a Fisher version of
the data processing inequality [46]. Indeed,FX1 is completely
independent of the background rates{rn}, reflecting the fact
that the parameters arecompletely isolated from the uncertainty
due to the background events{Rn} inX1 (see (11)).

To accelerate convergence, we would like a less informative
complete-data space thanX1, so we depart from the intuitive
relationship betweenX1 and the underlying image formation
physics, and instead exploit the statistical structure of (8). The
first approach we tried was the following new complete-data
space:

X2 = {{Xnk}
p
k=1}

N
n=1,

where the{Xnk} are unobservable independent Poisson vari-
ates that includeall of the background events:

Xnk ∼ Poisson{ank(λk + rn/an·)}, (15)

wherean· =
∑
k ank. ClearlyYn =

∑
kXnk has the appropri-

ate distribution (8). The Fisher information forX2 is diagonal
and smaller than that ofX1:

FX2(λ̂) = diag

{∑
n

ank/(λ̂k + rn/an·)

}
< FX1 .

Unfortunately, the functionQX2 (formed using (6)) has no ana-
lytical maximum (unless the ratiorn/an· is a constant indepen-
dent ofn), so the M-step appears intractable. Such tradeoffs be-
tween convergence rate and computation per-iteration are com-
mon [11].

To obtain an tractable M-step, we would like to replace
the termrn/an· in (15) with a term that isindependentof n.
Therefore, we propose the following new complete data space
[12,43]:

X3 = {{Mnk}
p
k=1, {Bn}}

N
n=1,

where{Mnk} and{Bn} are unobservable independent Poisson
variates:

Mnk ∼ Poisson{ank(λk +mk)}

Bn ∼ Poisson{rn −
∑
k

ankmk}, (16)

and where{mk} are design parameters that must satisfy∑
k

ankmk ≤ rn, ∀n, (17)

so that the Poisson rates of{Bn} are nonnegative. With these
definitions, clearly

Yn =
∑
k

Mnk +Bn

has the appropriate distribution (8).
The Fisher information forX3 is diagonal:

FX3(λ̂) = diag
{
a·k/(λ̂k +mk)

}
, (18)

and now depends onrn though (19) below. This Fisher infor-
mation is smaller thanFX1(λ̂), which leads to faster conver-
gence. In light of (18), to makeFX3 small the design param-
eters{mk} should be “as large as possible,” but still satisfying
the constraint (17). We have found it natural to choose a set
{mk} whosesmallest element is as large as possiblesubject
to (17). A simple solution to this min-max problem is:

mk = min
n : an· 6=0

{rn/an·} . (19)

We discuss alternatives to (19) based on other min-max criteria
in [43], none of which we have found to perform significantly
better than (19) for PET, but that might be advantageous else-
where.

The design (19) clearly satisfies (17), and at least one of the
N constraints in (17) is met with equality. Thus, theMnk
terms absorb some of the background events, but usually not
all. For tomographic systems, thean·’s vary by orders of mag-
nitude between rays traversing the center of the object and rays
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grazing the object’s edge, so
∑
k ankmk << rn for mostn.

Many of the background events remain separated inBn. In con-
trast, in image restoration problems, if the point-spread function
is roughly spatially invariant and the background rates{rn}
are uniform, then the ratios{rn/an·} will be fairly uniform
and nearly all of the background events will be absorbed into
{Mnk}.

Using a similar derivation as for (12) one can show:

QX3(λ;λ
i) ≡∑

k

(
(λik +mk)ek(λ

i) log(λk +mk)− a·k(λk +mk)
)
,

(20)
whereek was defined by (13). LikeQX1 , this function is also
separable, and its partial derivatives are:

∂

∂λk
QX3(λ;λ

i) = ek(λ
i)
λik +mk
λk +mk

− a·k.

To implement the M-step, one cannot simply maximizeQX3
by zeroing its partial derivatives, because of the nonnegativity
constraint. However,QX3 is a concave function with respect
to λk, so if its derivative vanishes at a negativeλk, then the
point λk = 0 will satisfy the Karush-Kuhn-Tucker conditions
for the nonnegativity constraint. This leads to the ML-EM-3
algorithm, which, like ML-EM-1, is also a Type-I algorithm of
Table 1, with (14) replaced by:

λi+1k =
[
(λik +mk)ek(λ

i)/a·k −mk
]
+
, (21)

where[x]+ = x if x > 0 and is zero otherwise. This simple
change to the implementation of ML-EM-1 accelerates conver-
gence, both theoretically and empirically, provided that some
mk > 0. Random coincidences are pervasive in PET, sorn > 0
for all n andmk > 0 for all k.

Like ML-EM-1, since ML-EM-3 is an EM algorithm it
monotonically increases the likelihood every iteration. Unlike
ML-EM-1, the iterates generated by ML-EM-3 can move on
and off the boundary of the nonnegative orthant each iteration.
This may partly explain the faster convergence of ML-EM-3,
since when ML-EM-1 converges to the boundary, it can do so
at sublinearrates [11].

C. ML Line-Search Algorithms

Kaufman [45] noted that ML-EM-1 is the special case where
α = 1 of the form:

λi+1k =

[
λik + α

(
λik
a·k

)
∂

∂λk
L(λi)

]
+

. (22)

The ML-LINB-1 and ML-LINU-1 algorithms [45] use a line-
search to choose anαi ≥ 1, which accelerates convergence.
For ML-LINB-1, the search overα is boundedsuch thatλi+1

is positive, whereas ML-LINU-1 allows anunconstrained“bent
line” search, in whichα can be chosen large enough that some
pixels would become negative, but are set to zero [45]. Simi-
larly, ML-EM-3 is the special case whereα = 1 of the form:

λi+1k =

[
λik + α

(
λik +mk
a·k

)
∂

∂λk
L(λi)

]
+

. (23)

In the few PET experiments we tried, “accelerating” ML-EM-3
using a line-search to chooseαi ≥ 1 only slightly increased the
convergence rate.

D. ML-SAGE Algorithms

Since ML-EM-3 is a simultaneous update, the background
events in (16) must be shared among all the pixels, so the val-
ues formk are fairly small. We now derive a class of SAGE
algorithms that use sequential updates withSi = {k}, where
k = 1 + (i modulo p). Two algorithms in this class were pre-
sented in [9]; here we also present a third algorithm. A subtle
advantage of sequential updates is that we can associate nearly
all of the background events with whichever pixel is being up-
dated, yielding much less informative hidden-data spaces and
thus faster convergence.

Define unobservable independent Poisson variates:

Zink ∼ Poisson{ank(λk + z
i
k)}

Bink ∼ Poisson{rn − ankz
i
k +

∑
j 6=k

anjλ
i
j}, (24)

where{zik} are nonnegative design parameters (discussed in
more detail below) that must satisfy

ankz
i
k ≤ rn +

∑
j 6=k

anjλ
i
j , ∀n, (25)

so that the Poisson rates ofBink are nonnegative. This constraint
is much less restrictive than (17). ClearlyYn = Zink +B

i
nk has

the appropriate distribution (8) for anyk. We let the hidden-data
space forλk onlybe

Xik = {Z
i
nk, B

i
nk}

N
n=1.

Using a similar derivation as forQX3 , one can show:

QXi
k
(λk;λ

i) ≡ (λik+ z
i
k) ek(λ

i) log(λk+ z
i
k)−a·k(λk+ z

i
k).

(26)
MaximizingQXi

k
(·;λi) analytically (subject to the nonnegativ-

ity constraint), yields the ML-SAGE class of algorithms, which
are Type-III algorithms of Table 1, with M-steps (44) given by:

λi+1k =
[
(λik + z

i
k)ek(λ

i)/a·k − z
i
k

]
+
. (27)

Type-III algorithms update the parameterssequentially, and im-
mediately update the predicted measurementsȳn within the in-
ner loop, whereas Type-I algorithms wait until all parameters
have been updated2.

The recursion (27) does not completely specify an algorithm
until we have chosen suitablezik ’s satisfying the constraint (25).
The Fisher information forX ik with respect toλk is the scalar
value

FXi
k
(λ̂k) = a·k/(λ̂k + z

i
k),

2Incremental updates like (45) will accumulate numerical error, so must
be treated with caution if used repeatedly. Fortunately, the SAGE algorithms
converge in a small number of iterations. In those rare occasions that we run
SAGE for many iterations, we “reset” the estimated projections{ȳn} using (10)
roughly every 20 iterations.
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which (cf (18)) again suggests that we would like thezik ’s to be
as large as possible subject to (25).

The obvious choice iszik = z
(1)
k = 0, which trivially satis-

fies (25), and we then refer to the recursion (27) as ML-SAGE-1
[9,8,12]. This algorithm is generally ineffective except for well
conditioned problems [8], which is unsurprising since when
zik = 0 the Fisher information forXik is just thekth diagonal
entry ofFX1 .

A second choice is based on the following idea:since we
are updating one pixel at a time, we can associate nearly all
of the background events with each pixel as it is updated. This
may be unintuitive in terms of the imaging physics, but is com-
pletely admissible and sensible from a statistical perspective.
The choice

zik = z
(2)
k = min

n:ank 6=0
{rn/ank}, (28)

clearly satisfies (25), and when substituted into the recur-
sion (27) we refer to the resulting algorithm as ML-SAGE-2
[9]. We precompute thez(2)k terms in (28) prior to iterating,
so the computation difference between ML-SAGE-1 and -2 is
negligible. However, this small change significantly accelerates
convergence [9].

When the rates{rn} are small, then the{z(2)k } are also small,
and ML-SAGE-2 is little better than ML-SAGE-1. Therefore,
we now introduce a new choice forzik that is effective even
when the{rn} are small or even zero. When updating a single
pixel, we can consider the contributions from all of the other
pixels as “pseudo-background” events. This opportunity is in-
dicated by the form of (24), which the reader should contrast
with (16). The following choice also satisfies (25):

zik = z
i,(3)
k = min

n:ank 6=0
{(rn +

∑
j 6=k

anjλ
i
j)/ank}

= min
n:ank 6=0

{ȳn(λ
i)/ank} − λ

i
k. (29)

Clearly zi,(3)k > z
(2)
k , which yields faster convergence. Note

thatzi,(3)k changes with iteration, which is nevertheless admis-
sible as defined by Definition 1. We refer to the recursion (27)
with the choice (29) as the ML-SAGE-3 algorithm.

Remarkably, with an efficient implementation3 the “extra
work” suggested by the minimizations (29) adds negligibly to
the execution time. Since the ratios̄yn(λ

i)/ank in (29) are
already needed for computingek (see (13)), no extra floating
point divides are required. Only the comparisons for the min-
imization are needed, and those add negligible CPU time (at
least on our DEC 3000).

The definitions (28) and (29) involve only a singleank in
each denominator, rather than the suman· contained in the defi-
nition (19) ofmk. Thus,z(2)k andzi,(3)k are orders of magnitude
larger thanmk, andFXi

k
is much smaller than thekth diagonal

entry ofFX3 , leading to faster convergence.

3The pessimistic results given in [43] were for a very inefficient implemen-
tation of (29). In our more recent optimized implementations, the execution
times per iteration of ML-SAGE-1,2,3 were indistinguishable.

IV. PENALIZED MAXIMUM LIKELIHOOD

We described the ML algorithms above primarily to introduce
the new hidden data spaces. In this section we turn to penal-
ized likelihood objectives. We first present SAGE algorithms
based on the hidden-data spaces{Xik}. For fair comparison
with alternative methods, we also derive a new version of the
GEM algorithm [22] using the new complete-data spaceX3.
We derived modified versions of the parallelizable algorithm of
De Pierro [26] and the one-step late algorithm of Green [30] in
[43]. As we show in Section V, these modified algorithms based
onX3 all converge somewhat faster than their original versions
based onX1, but still none converge as fast as SAGE on a serial
computer. Nevertheless, they should be useful for some parallel
computers, and they allow us to perform the most conservative
comparison between SAGE and its alternatives.

We have implemented the SAGE method with non-quadratic
penalties [43]. However, to simplify notation, in this paper we
focus on a simple quadratic smoothness penalty:

P (λ) = β
1

2

∑
k

∑
j∈Nk

1

2
wkj(λk − λj)

2 (30)

whereNk is a neighborhood of thekth pixel andwkj = wjk.
For the results in Section V, we letNk be the 8 pixels adjacent to
thekth pixel, and setwkj = 1 for horizontal and vertical neigh-
bors andwkj = 1/

√
2 for diagonal neighbors. Combining (30)

with the log-likelihood (9) yields the penalized likelihood ob-
jective function (1):

Φ(λ) =
∑
n

(yn log ȳn(λ)− ȳn(λ))− βP (λ).

For the penalty given by (30),Φ is strictly concave under mild
conditions onA = {{ank}}.

A. Penalized SAGE Algorithm

For generality we derive the SAGE algorithm for PML with
genericzik arguments: any choice satisfying (25) can be used.
Following (7), define

φk(λk;λ
i) = QXi

k
(λk;λ

i)− P (λk,λ
i
−k)

≡ (λik + z
i
k)ek(λ

i) log(λk + z
i
k)− a·k(λk + z

i
k)

−β
∑
j∈Nk

wkj
1

2
(λk − λ

i
j)
2, (31)

whereQXi
k

was defined in (26), andλi−k is the vector of length

(p − 1) obtained by removing thekth element fromλi. The
M-step (3) requires maximizingφk(·;λ

i), which we can do an-
alytically by zeroing its derivative sinceφk(λk;λ

i) is a strictly
concave function ofλk. The derivative ofφk(·;λ

i)with respect
to λk is:

∂

∂λk
φk(λk;λ

i) = −a·k+ek(λ
i)
λik + z

i
k

λk + zik
−β

∑
j∈Nk

wkj(λk−λ
i
j).
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Note that updating only one parameter obviates coupled equa-
tions (cf (34)). Zeroing this derivative yields a quadratic for-
mula:

(λk + z
i
k)
2 + 2Bk(λk + z

i
k)− ek(λ

i)(λik + z
i
k)/(βwk·) = 0,

wherewk· =
∑
j∈Nk

wkj and

Bk = [a·k − β
∑
j∈Nk

wkj(λ
i
j + z

i
k)]/(2βwk·). (32)

Just as in the derivation of (21), the constrained maximum of
φk(·;λ

i) corresponds to either the positive root of the quadratic,
or the valueλk = 0, sinceφk is strictly concave. This leads to
the PML-SAGE class of algorithms, which are of Type-III in
Table 1 with M-steps (44) given by:

λi+1k =

[
−Bk +

√
B2k + ek(λ

i)(λik + z
i
k)/(βwk·)− z

i
k

]
+

.

(33)
In words, we first compute theek correction term from the
current projection estimate, then update thekth pixel using a
quadratic formula that involves both the data and the neighbor-
ing pixels, and then immediately update the projection estimate
before proceeding to the next pixel. In practice, the actual im-
plementation has two important differences: 1) the pixels are
updated in four different raster scan orders rather than using the
same order each iteration (cf frequency analysis in [47]), and
2) the quadratic formula is computed using numerically stable
formulae [43] [48] (p. 156), rather than the conventional form
(33).

We refer to the recursion (33) with the choice (29) forzik as
PML-SAGE-3, and define PML-SAGE-1 and -2 analogously.
(PML-SAGE-1 is essentially identical to the ICM-EM algo-
rithm of Abdalla and Kay [27].) As described in Section V,
PML-SAGE-3 converges fastest. Global convergence of PML-
SAGE is established in the Appendix.

B. Modified GEM Algorithm

The GEM algorithm for image reconstruction [22] is an intu-
itive approach to extending the EM algorithm to the PML case.
Rather than usingX1 as in [22], here we develop a GEM al-
gorithm using the new complete-data spaceX3. Following (7),
let

φ3(λ;λi) = QX3(λ;λ
i)− P (λ),

whereQX3 was defined in (20). The GEM algorithm is sim-
ilar to the special case of the SAGE algorithm of Section II
whereSi = {1, . . . , p} andφi = φ3 for all i. Thus, the M-
step (3) requires us to maximizeφ3(·;λi). Unfortunately, its
partial derivatives are coupled:

∂

∂λk
φ3(λ;λi) =

−a·k+ ek(λ
i)
λik +mk
λk +mk

−β
∑
j∈Nk

wkj(λk−λj), k = 1, . . . , p.

(34)

This coupling prohibits analytical maximization. The GEM
method [22] abandons maximization in favor of simply increas-
ing φ3(·;λi) using coordinate-ascent. It is easier to increaseφ3

thanΦ(·) using coordinate-ascent since we can solve (34) with
respect toλk (while holding the other parameters fixed) using
essentially the same quadratic formula as (33). Extending the
derivation in [22] leads to the PML-GEM-3 algorithm, which is
a Type-II algorithm of Table 1, with the M-step (42) given by:

Bk = [a·k − β
∑
j∈Nk

wkj(λ
?
j +mk)]/(2βwk·) (35)

λi+1k =

[
−Bk +

√
B2k + ek(λ

i)(λik +mk)/(βwk·)−mk

]
+

.

(36)
Here,λ?k denotes themost recentestimate ofλk, e.g.λ?j = λ

i+1
j

if j < k, otherwiseλ?j = λ
i
j , i.e., the updates are done “in

place”. We refer to the GEM algorithm based onX1 (where
mk = 0 ∀k) as PML-GEM-1.

One can easily verify thatλi+1k given by (36) satisfies the one-
dimensional Karush-Kuhn-Tucker conditions with respect to
the nonnegativity constraint. Thus PML-GEM-3 monotonically
increases the objectiveΦ. Global convergence of GEM follows
from Theorem 3 of [23], provided the objective is strictly con-
cave.

Note that PML-SAGE-2,3 and PML-GEM-3 are somewhat
similar, except that PML-SAGE-2,3 use the less informative
hidden data spaceXik, and update the projections immediately
after each parameter update. Although subtle, these two differ-
ences lead to PML-SAGE-2,3 converging significantly faster.

C. Modified One-Step-Late (OSL) Algorithm

An alternative to the above algorithms is preconditioned
steepest-ascent. Using a derivation similar to that for (22),
Lange [32] has shown that Green’s OSL algorithm [30] can be
expressed in the form:

λi+1k =

[
λik + α

(
λik

a·k +
∂
∂λk
P (λi)

)
∂

∂λk
Φ(λi)

]
+

, (37)

which is a Type-I algorithm in Table 1. Forα = 1, this method
is not necessarily monotonic, but by choosingα using a line-
search, one can ensure monotonicity and global convergence
[32], and also accelerate OSL (often significantly, see [43]). We
refer to (37) as PML-LINB-1 or PML-LINU-1, depending on
whether the line-search forα is bounded or unbounded (cf Sec-
tion III.C).

V. SIMULATION METHODS

We have evaluated the convergence rates of the algorithms
using a 2-D slice of the digital Hoffman brain phantom shown
in Fig. 1, with intensity 4 in the gray matter, 1 in the white mat-
ter, and 0 in the background, discretized on a 80 by 110 grid
with 2mm square pixels. The phantom was forward projected
using precomputed factorsank corresponding to an idealized
PET system having 100 angles evenly spaced over180◦, and



8 VII DISCUSSION

70 radial samples with 3mm spacing. Eachank was precom-
puted as the area of intersection between the square pixel and a
strip of width 6mm. (Since the strip width is wider than the ra-
dial spacing, the strips overlap.) The detector response is thus a
6mm rectangular function. Only image pixels within a support
ellipse of radii 39 by 54 pixels were reconstructed.

The projections were multiplied by nonuniform attenuation
factors corresponding to an ellipse with radii 90 and 100 mm
with attenuation coefficient 0.01/mm, surrounded by an ellip-
tical 5mm thick skull with attenuation coefficient 0.015/mm.
Nonuniform detector efficiencies were applied using pseudo-
random log-normal variates with standard deviation 0.2. The
sinogram was globally scaled to a mean sum of 900000 true
events. All of the above effects were also incorporated into
the ank factors. Pseudo-random independent Poisson variates
were drawn according to (8), and a uniform field of Poisson
distributed background events with known mean were added.
Three data sets were studied, with 0%, 5%, and 35% back-
ground events, representing the range of random coincidences
in PET scans. The initial estimateλ0 was reconstructed us-
ing FBP with a 3rd order Butterworth filter with cutoff 0.6 of
Nyquist (10mm resolution). FBP image values below 0.1 were
set to 0.1 so thatλ0 > 0.

VI. RESULTS

We found that the LINU algorithms converged faster than
the LINB algorithms only in the 0% background case, so the
LINU results are shown only then. We focus on the PML al-
gorithms here; results for the unregularized ML case show the
same trends [43].

Figures 3-5 display the objectiveΦ(λi)−Φ(λ0) and illustrate
the following points.

• In all cases, the GEM algorithm and OSL algorithms had
indistinguishable convergence rates.

• PML-GEM-3 converged faster than the conventional
PML-GEM-1, and the increase in speed grows with the
background fraction.

• Even with only 5% random coincidences, PML-SAGE-3
clearly increased faster and reached its asymptote sooner
than PML-GEM-3. The advantage for 35% background is
even greater.

• For 0% background events,z(2)k = 0, so PML-SAGE-2
is identical to PML-SAGE-1 (and the ICM-EM algorithm
of [27]), and converged at the same rate as PML-GEM-1
(which is identical to PML-GEM-3 with 0% background).
However, for 0% background PML-SAGE-3 converged
faster than all of the other algorithms.

• The results given above in terms of the convergence in the
objective functionΦ(λi) also apply to convergence inL2
norm [43].

Since PML-SAGE is a monotonic algorithm applied to a
strictly concave objective, it is robust to the initial estimate. Fig-
ure 2 displays PML-SAGE-2 estimates initialized with a uni-
form image and a FBP image. The difference images rapidly

decrease to values that are invisible on a conventional 8-bit dis-
play, so we have amplified the differences by a factor of 4 for
display. The effects of the initial estimate are negligible by 15-
20 iterations for 5% background, or by 10 iterations with 35%
background [43].

As detailed in [43], the SAGE algorithms require about 25%
more floating point operations per iteration than ML-EM-1, al-
though this could be eliminated by doubling the memory re-
quirements. Nevertheless, even whenΦ(λi) is graphed against
CPU time [43], the SAGE algorithms still have the fastest con-
vergence among monotonic algorithms.

VII. D ISCUSSION

This paper presents algorithms for image reconstruction that
converge rapidly, monotonically, globally, and naturally en-
force nonnegativity constraints. There are two main princi-
ples that lead to the improved convergence rates. The first is
to update the pixel estimates sequentially rather than simul-
taneously. This idea has been used successfully by other au-
thors as well [27,40,41]. The second is to use less informative
hidden data spaces formed by “mixing together” some of the
emission events with the background events. Either ideaby it-
selfonly slightly improves convergence rates (cf PML-SAGE-1,
PML-GEM-3 relative to PML-GEM-1 in Fig. 4), butin tandem
(e.g. PML-SAGE-2 or PML-SAGE-3) the two principles sig-
nificantly accelerate convergence.

The monotonicity of SAGE stems in part from the fact that
all of the (relevant) measured data is used even though only one
pixel is updated at a time. In contrast, another method proposed
for accelerating EM is the ordered-subsets EM (OS-EM) algo-
rithm [49], in which all pixels are updated simultaneously but
the measurements are used sequentially. OS-EM is not guaran-
teed to be monotonic, and its convergence properties are poorly
understood. OS-EM achieves a limited form of “regularization”
through stopping rules, whereas SAGE can be used with any
convex penalty function, including edge-preserving penalties.

We have attempted a fair comparison between SAGE meth-
ods and the alternatives. We presented slightly improved ver-
sions of several alternatives (GEM, OSL, De Pierro, etc.) in
[43], and experimented with several choices for the design pa-
rametersmk. Nevertheless, it is possible that a better choice for
{mk}, or even a better complete-data space will be eventually
found. Such an extension could be very useful since algorithms
such as De Pierro’s method are more suitable for fine-grain par-
allel computers than the SAGE algorithms herein. However, the
generic SAGE method (Section II) offers more flexibility than
we have used here, and we are currently studying alternatives
that may be more suitable to parallel computing [43].

We have compared several algorithms, and the reader may
wonder what is the impact of these results on “practitioners” of
penalized likelihood image reconstruction? Based on our ex-
perience, PML-SAGE-3 is the fastest intrinsically monotonic
algorithm for Poisson measurements that we are aware of, and
it converges faster even than PML-LINU, which is the fastest
forced monotonic method we are aware of. Therefore we rec-
ommend using PML-SAGE-3 when using conventional serial
computers. However, given the considerable recent progress in
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accelerating algorithms for image reconstruction, it is doubt-
ful that SAGE will be the final word. It is noteworthy that the
statistical principles behind the SAGE methods yield conver-
gence rates that rival conventional numerical tools such as line-
searches and Newton’s methods, yet ensuring algorithm mono-
tonicity. Further development using statistical perspectives will
likely lead to additional improvements.

VIII. A PPENDIX: CONVERGENCE

The proof in [9] of local monotonic convergence in norm to a
fixed point is inapplicable to problems with nonnegativity con-
straints, except when the fixed point lies in the interior of the
nonnegative orthant. In this appendix, we prove convergence of
a general form of SAGE that allows the limit to lie on the bound-
ary of the nonnegative orthant. The proof structure is based on
[1] and [26].

We begin by stating some general sufficient conditions for
convergence. These conditions make no specific references to
the Poisson likelihood or penalty used in this paper, so this proof
will apply to a broad class of nonnegatively constrained estima-
tion problems. Following the general proof, we verify that the
specific SAGE algorithms presented in this paper meet the re-
quired conditions under the linear Poisson model.

Define the following sets:

<+S = {θS : θk ≥ 0, k ∈ S},

Θ+ = {θ ∈ <p : θk ≥ 0, k = 1, . . . , p},

S(θ0) = {θ : Φ(θ) ≥ Φ(θ0)}.

Also define:

∇10k φ
i(θ?Si ; θ̄)

4
=
∂

∂θk
φi(θSi ; θ̄)

∣∣∣∣
θSi=θ

?

Si

and

Ji(θSi ; θ̄)
4
= −
1

2
∇20φi(θSi ; θ̄),

where fork, j ∈ Si

[
∇20φi(θSi ; θ̄)

]
kj
=

∂2

∂θk∂θj
φi(θSi ; θ̄).

To eliminate the interior restriction used in [9], we impose the
following two regularity conditions onΦ.

Assumption 1 Φ(θ) is strictly concave (and continuous and
differentiable) onΘ+.

Assumption 2 For anyθ0 ∈ Θ+, the setS(θ0) is bounded.

As noted in [1], the assumption of strict concavity is adequate
to “make up for” relaxing the restriction to the interior ofΘ+.
We do not consider strict concavity to be an overly restrictive
assumption; ifΦ is not strictly concave, then typically either it
does not have a unique maximum, in which case it is a question-
able choice of objective, or it has local maxima, and no known
deterministic algorithms are guaranteed to find the global max-
ima, including SAGE. Like any monotonic algorithm, for a non-
strictly concave objective SAGE will only find a global maxi-
mum if initialized suitably close to one.

We assume the iterates are produced by an algorithm having
the general form given in Section II, i.e., each iteration is asso-
ciated with an index setSi and a functionalφi(θSi ;θ

i), and the
iterates satisfyθi+1

S̃i
= θi

S̃i
. We assume that the functionalsφi

satisfy the following conditions.

Condition 1 The functionalsφi satisfy (2), i.e.:

Φ(θSi ,θ
i
S̃i
)− Φ(θi) ≥ φi(θSi ;θ

i)− φi(θiSi ;θ
i),

for θSi ∈ <
+
Si

andθi ∈ Θ+.

Condition 2 Each functionalφi(·;θ) is strictly concave and
twice differentiable on<+

Si
for anyθ ∈ Θ+, and eachφi(·; ·) is

continuous on<+
Si
×Θ+.

Condition 3 The following derivatives match∀i:

∂

∂θk
Φ(θ) = ∇10k φ

i(θSi ;θ)

for anyθ ∈ Θ+ andk ∈ Si.

Condition 4 For θi ∈ Θ+, the iterates satisfy the Karush-
Kuhn-Tucker conditions∀k ∈ Si:

∇10k φ
i(θi+1Si ;θ

i)

{
= 0, θi+1k > 0

≤ 0, θi+1k = 0
.

Condition 5 For any bounded setS, there exists aCS > 0
such that for everyi, for all θ̄ ∈ S, and for all(θSi , θ̄S̃) ∈ S:

λmin
{
Ji(θSi ; θ̄)

}
≥ CS ,

whereλmin{J} denotes the minimum eigenvalue ofJ.

Condition 6 For eachk ∈ {1, . . . , p}, there is an index set
S(k) containingk and functionalφ(k) that is used regularly to
update thekth element of the parameterθ. DefineI‖ = {〉 :
S〉 = S(‖) andφ〉 = φ(‖)}. Then for eachk there exists an
integerimax (which may depend onk) such that

∀n ≥ 0 ∃i ∈ [n, n+ imax] s.t. i ∈ I‖.

(This condition is clearly satisfied if the index sets and function-
als are chosen periodically.)

Using the above conditions, we now prove a series of Lem-
mas that establish global convergence.

Lemma 1 The iterates{θi} yield monotonic increases in
Φ(θi), and are thus contained in the setS(θ0). Furthermore,
S(θ0) is compact and convex.

Proof: Monotonicity follows from Conditions 1 and 4. Since
Φ is strictly concave (Assumption 1),S(θ0) is strictly convex.
SinceΦ is continuous (Assumption 1),S(θ0) is closed (p. 91
of [50]). ThusS(θ0) is compact since it is closed and bounded
(Assumption 2), by the Heine-Borel theorem (p. 58 of [50]).2

Lemma 2 There exists aC > 0 such that for anyi

‖θi+1 − θi‖2 ≤ C−1(Φ(θi+1)− Φ(θi)).
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Proof: From Condition 1 and sinceθi+1
S̃i
= θi

S̃i
, it suffices to

show∀i:

‖θi+1Si − θ
i
Si‖
2 ≤ C−1(φi(θi+1Si ;θ

i)− φi(θiSi ;θ
i)).

Expandφi(·;θi) aboutθi+1Si using Taylor’s expansion with re-
mainder (see p. 599 of [51]):

φi(θSi ;θ
i) = φi(θi+1Si ;θ

i) +

∇10φi(θi+1Si ;θ
i)(θSi − θ

i+1
Si ) + (θSi − θ

i+1
Si )

′

∫ 1
0

(1 − t)Ji((1− t)θi+1Si + tθSi ;θ
i) dt (θSi − θ

i+1
Si ). (38)

From Condition 4, it follows that

∇10φi(θi+1Si ;θ
i)(θi+1Si − θ

i
Si) ≥ 0,

so setting inθSi = θ
i
Si in (38) and applying Condition 5 yields

C‖θi+1Si − θ
i
Si‖

2 ≤ φi(θi+1Si ;θ
i)− φi(θiSi ;θ

i),

whereC = C
S(θ0). We have used the fact thatx′Ax ≥

‖x‖2λmin{A} for any positive definite matrixA. 2

Lemma 3 ‖θi+1 − θi‖ → 0 asi→∞.

Proof: Since{Φ(θi)} is monotone increasing (Lemma 1) and
bounded above (by continuity ofΦ and compactness (Lemma 1)
of S(θ0), see p. 78 of [50]), it follows thatΦ(θi+1)−Φ(θi)→
0. Apply Lemma 2. 2

Lemma 4 The sequence{θi} has a limit point4 θ?. For any
such limit point, ifθ?k > 0, then ∂

∂θk
Φ(θ?) = 0.

Proof: By Lemma 1 and [50] (p. 56) there is a subsequenceim
and limit pointθ? ∈ S(θ0) such that‖θim−θ?‖2 → 0 asm→
∞. Now pick any indexk, and definekm to be the smallest
i ≥ im such thati ∈ I‖. By Condition 6,km ≤ im + imax. By
the triangle inequality:

‖θkm − θ?‖2 ≤ ‖θkm − θim‖2 + ‖θim − θ?‖2;

the second term of which goes to 0 asm → ∞. For the first
term, applying the triangle inequality repeatedly:

‖θkm − θim‖2 ≤
im−1∑
i=km

‖θi+1 − θi‖2,

which is a sum of at mostimax terms by Condition 6, each of
which goes to 0 asm→∞ by Lemma 3. Thus‖θkm−θ?‖ → 0
asm→∞. Again using the triangle inequality:

‖θkm+1 − θ?‖2 ≤ ‖θkm+1 − θkm‖2 + ‖θkm − θ?‖2.

Thus‖θkm+1 − θ?‖ → 0 asm→∞.
Sincekm ∈ S(k), i.e. on iterations{km} one updatesθk,

by Condition 4:θkm+1k · ∇10k φ
(k)(θkm

S(k)
;θkm) = 0. Taking the

limit as m → ∞ and using continuity (Condition 2) shows:
θ?k · ∇

10
k φ

(k)(θ?S(k) ;θ
?) = 0. The Lemma then follows from

Condition 3. 2

4The reader should note the distinction between limits and limit points (or
cluster points) (p. 55 of [50]).

Lemma 5 The sequence{θi} converges to a limitθ∞.

Proof: As in Lemma 3 of [1], the number of limit points is finite
(at most2p), due to Assumption 1, the nonnegativity constraint,
and Lemma 4. However, since a bounded (Assumption 2) se-
quence{θi} for which ‖θi+1 − θi‖ → 0 (Lemma 3) has a
connected and compact set of limit points (see p. 173 of [52]),
there must be only one limit point. 2

Lemma 6 The limitθ∞ satisfies the Karush-Kuhn-Tucker con-
ditions forΦ.

Proof: For an elementθ∞k > 0, we have∂/∂θkΦ(θ
∞) = 0

by Lemma 4. Now suppose for somek we haveθk = 0 but
∂/∂θkΦ(θ

∞) > 0. Then by continuity (Assumption 1) and
Lemma 3,∂/∂θkΦ(θ

i) > 0 for all i sufficiently large. Thus by
Conditions 3 and 6,

∇10k φ
(k)(θiS(k) ;θ

i) > 0

for all i ∈ I‖ sufficiently large. But sinceφ(k)(·;θi) is strictly
concave (Condition 2), if∇10k φ

(k)(θiS(k) ;θ
i) > 0, thenθi+1k >

θik. This contradictsθik → 0, so if θ∞k = 0 we must have
∂/∂θkΦ(θ

∞) ≤ 0, establishing the Karush-Kuhn-Tucker con-
ditions. 2

Since a strictly concave objective has only one point that
satisfies the Karush-Kuhn-Tucker conditions, namely the con-
strained maximum, the limitθ∞ must be that point. Lemma 6
thus establishes global convergence under a generic set of as-
sumptions and conditions. All that remains is to verify that the
conditions are satisfied for the SAGE algorithms presented in
this paper.
Remark:

In all of SAGE algorithms in this paper, theφi functionals are
additively separablein their first argument, which means that
the curvature matricesJi(θSi ;θ

i) are diagonal. In this case,
Condition 5 reduces to verifying that the diagonal elements of
Ji have a positive lower bound. This is clearly the case for
convex penalties such as the quadratic penalty (30). In other
words, for separableφi functionals, a sufficient condition for
Condition 5 is:
Condition 5′: For any bounded setS, there exists aCS > 0
such that for allθ ∈ S

−
1

2

∂

∂θ2k
P (θ) ≥ CS .

Theorem 1 A sequence{θi} generated by any of the PML-
SAGE algorithms for penalized maximum-likelihood image re-
construction converges globally to the unique maximum of a
strictly concave objective functionΦ having a penalty function
satisfying Condition 5′, providedzik > 0 ∀k.

Proof:

• Assumption 2 follows from the behavior of the Poisson
log-likelihood asλk →∞ [1].

• Condition 1 follows from Theorem 1 of [9].
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• Condition 2 is easily verified for the hidden-data spaces
and penalty functions used in this paper.

• Condition 3 follows by the construction ofφk using (5)-
(7).

• Condition 4 is built into the definition (3), and is satisfied
by (33).

• Condition 5 follows from Condition 5’ since the SAGE al-
gorithms have separableφi functionals.

• Condition 6 is inherently satisfied by the cyclical sequen-
tial update used in PML-SAGE.

2

If one hopes for global convergence, then Condition 5′ is a
reasonable restriction; it is clearly satisfied for the quadratic
penalty (30), and for most strictly convex penalties.

There is an important technical difference between our proof
and the assumptions in [1]. In [1] it was assumed that the se-
quence was initialized in the interior ofΘ+, and remained in the
interior ofΘ+ for every iteration. With our new complete-data
spaces and hidden-data spaces, the iterates can come and go
from boundary ofΘ+ since the termszik are nonzero. However,
whenzik is positive, one can verify that the corresponding func-
tionsφk are well-defined and differentiable on an open interval
containing zero.

Condition 2 as stated is only met ifzik > 0 for all k, which
will be true if rn > 0 for all n. If one were to include the
effects of say, cosmic radiation, then in practice it is always
the case thatrn > 0. However, if somern, and hence some
zik are zero, it is simple to modify the proof to establish global
convergence to the maximum. There is one important technical
detail however; one cannot usezik > 0 in one iteration and then
switch tozik = 0 in a later iteration, since thenλik could get
stuck on the boundary ofΘ+. Provided that one consistently
uses eitheronly the original complete-data space oronly the
new complete-data spaces, then global convergence is assured.

As stated above, the proof does not always apply to the unpe-
nalized maximum-likelihood algorithms ML-EM-1, ML-EM-3,
and ML-SAGE-1,2,3 because the curvature assumption Con-
dition 5 is not necessarily satisfied without a strictly convex
penalty. However, one can replace Condition 5 with an alter-
native condition that eachφi(θSi ;θ

i) must be a monotonically
decreasing function ofθk. This approach was used in [1,11].
With this condition, a small modification of the above proof
establishes global convergence of the unpenalized algorithms,
provided that Assumption 1 is still satisfied. This strict concav-
ity will not be satisfied if the system matrixA does not have full
column rank. We consider this to be a minor point since in the
underdetermined case regularization is particularly essential,
and the above proof shows that PML-SAGE converges glob-
ally for strictly concave penalized maximum-likelihood objec-
tives. We conjecture that the methods of [53] could be extended
to establish convergence of ML-EM-3, ML-SAGE-1,2,3, etc.
without the strict concavity assumption, but such a proof would

probably be of limited academic interest since one rarely iter-
ates a ML algorithm to convergence in the unregularized, un-
derdetermined case.

If one is willing to be content with a local convergence result,
then it is possible to relax the assumption of strict concavity for
theφi functionals, using a region of convergence idea similar to
that in [9,13].
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Type-I Algorithm (e.g. ML-EM, PML-OSL)
and Type-II Algorithm (e.g. PML-GEM)

Initialize λ0

for i = 0, 1, . . . {

ȳn =
∑
k

ankλ
i
k + rn, n = 1, . . . , N

sn = yn/ȳn, n = 1, . . . , N (39)

ek =
∑
n

anksn, k = 1, . . . , p (40)

for k = 1, . . . , p {

λi+1k = gk(ek;λ
i), (Type-I) (see (14), (21), (22), (23), (37)) (41)

λi+1k = gk(ek;λ
?;λi), or (Type-II) (see (36)) (42)

}
}

Type-III Algorithm (e.g. ML-SAGE, PML-SAGE)

Initialize λ0, ȳn =
∑
k ankλ

0
k + rn, n = 1, . . . , N .

for i = 0, 1, . . . {

k = 1 + (i modulo p)

ek =
∑
n

ankyn/ȳn (43)

λi+1k = gk(ek;λ
i) (see (27), (33)) (44)

λi+1j = λij , j 6= k,

ȳn := ȳn + (λ
i+1
k − λik)ank, ∀n : ank 6= 0 (45)

}

Table 1: Three generic pseudo-code algorithm types for penalized maximum-likelihood image reconstruction. All of the algo-
rithms presented in the text are of one of these three types. Within each type, the algorithms differ in form of the functionsg()
used in the M-step.
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Figure 1: Digital brain phantom (left), and filtered backprojection reconstructed image (right).
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Figure 2: PML-SAGE-2 estimates from data with 5% random coincidences at iterationsi = 0, 5, 10, 20 (left to right). Top row:
initialized with uniform image. Middle row: initialized with thresholded filtered-backprojection image. Bottom row: absolute
value of difference between top and middle rows amplified by a factor of 4.
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Figure 3: Penalized likelihoodΦ(λi)− Φ(λ0) vs. iteration from data with 0% random coincidences.
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Figure 4: Penalized likelihoodΦ(λi)−Φ(λ0) vs. iteration from data with 5% random coincidences. Not shown is PML-SAGE-2,
which converges slightly slower than PML-SAGE-3. Also not shown is PML-SAGE-1, which is indistinguishable from PML-
OSL-1.
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