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ABSTRACT In [8,9] we introduced a class of methods called space-
alternating generalized EM (SAGE) algorithms that overcome

Most expectation-maximization (EM) type algorithms foEheselimitations of EM algorithms. Rather than usingdineul-
penalized maximum-likelihood image reconstruction conver eneousupdate of nearly all EM-type algorithms, SAGE algo-
slowly, particularly when one incorp(.)ra'tes additive baCkgrou%?i]hms usesequentiaparameter updates in which (;ne iteratively
effect_s suc_h as scatter,_ Ta”dom cm_nqdences, dark currentt Yles through a sequence of hidden data spaces—one for each
cosmic radiation. In addition, regularizing smoothness penalti xel. By choosing hidden data spaces whose Fisher informa-
(or priors) introduce parameter coupling, rendering mtractatﬁgn is smaller than the Fisher information of the ordinary EM

the M-steps of most EM-type algorithms. This paper presenc%mplete data space, one can accelerate convergence yet main-

space—alter_nating generalized EM (SAGE) algoritr_lmsfo.r imagae;n the desirable monotonicity properties of EM algorithms.
;egznitéﬁggogf’ \;vrzlglrll ‘yhr:gg\;},hga?:rsn;iim:z?&arlIﬁzgﬁ The relationship between Fisher information and convergence
q P ' rate [4,8,9,10,11,12,13,14] underscores all of the methods we

taneouslyusing one large complete-data space. The sequeils o “|, [9] we described two SAGE algorithm for ML im-

tial update decouples the M-step, so the maximization can ty%"e reconstruction and presented anecdotal results showing that

cally be performed analytically. We introduce new hidden-da] %e of them converged faster than the EM algorithm. This pa-

spaces that are 'e$S informative than the_,- con\_/en_n_o nal c;ompleptgr describes a third SAGE algorithm tisafpersedes the previ-

data space for Poisson data and that yield significant improve- . . A
. X S2 us twoin that it converges faster but negligibly increases CPU

ments in convergence rate. This acceleration is due to stalis- . . . : .

. . : : : ime. Using a quadratic penalty for illustration, we show empir-

tical considerations, not numerical overrelaxation methods, sQ

. ) L . ically over a range of background event fractions that the new
monotonic increases in the objective function are guarante

. \GE algorithm converges faster than several EM-type algo-
we prpwde agene.re}l global convergence prooffor SAGE me%fhms, even when those methods are accelerated using a new
ods with nonnegativity constraints.

complete data space.

Images reconstructed purely by using the ML criterion [1]
I. INTRODUCTION are unacceptably noisy. Methods for reducing the noise in-
. . . ._.clude: stopping rules [15], penalized least squares [16], sepa-
IMAGINGtechmques with Poisson measurement statistips, (non-smoothness) priors [17,18], adding smoothing steps

hintclude: .p(_)sitron emitssdiotn tomogrﬁphéF()I;l(E:P [1], singl 9], and sieves [20]. Recent studies [21] have found that MAP
photon emission compu eh cc;mozgrap ﬁ ( h I) gargma - equivalently PML) methods outperform sieves. In this pa-
tron_omy,' microscopy rr_let ods [2], an P oton-limite Op,t'er, we focus on PML image reconstruction, although the new
cal 'maging [3]. Statistical ”_‘e‘h"ds_ fo_r Image reconstructi mplete-data and hidden-data spaces we introduce are also ap-
or restoration, such as maximum likelihood (ML), penalize icable to unpenalized ML methods. Algorithms for penalized

maxmum—hkghhood (PML), or maximura posteriori(MAP), likelihood objective functions for Poisson statistics can be cat-
are computationally challenging due to the transcendental fogg]‘orized as: 1)ntrinsically monotonic 2) forced monotonic

of the Poisson Iog-likglihood. EM algorithms [4] have p.roventr(')[ pically made monotonic using a line search), anch@j-

be somewhat use_ful in such pr_oblems, except for two |m_port bnotonicmethods. Since one could convert any nonmono-

drawbacks_. The first proble_n_"n is slow convergence, partlcuIaE hic method to a forced monotonic method by using a line

when one includes fche_ additive effects of “background” eve arch, the latter two categories overlap. Nonmonotonic meth-
such as random coincidences [5], scatter [6], dark-current [ s can diverge unless one explicitly checks that the objec-

or background cosmic radiation. The second problem is ”}ﬂ}e increases, which often would be expensive in applications

the M-step of the EM algorithm becomes intractable when oD%k many parameters. The SAGE methods we propose are in-

includes smoothness penalties in the objective function, S'r}?ﬁsically monotonic, So expensive line searches are unneces-
these functionals further couple the parameters.

sary. Although it is not our purpose to argue this point, we
This work was supported in part by DOE Grant DE—FGOZ—87ER6056_LP,e“?Ve that convergence properties are relevant to clinical med-
NSF grant BCS-9024370 and NIH grants CA-54362-02 and CA-60711-01. ical imaging, since algorithm divergence could have unfortunate




2 Il THE SAGE METHOD

consequences. introduces new complete-data spaces and hidden-data spaces
Intrinsically monotonic methods are those such as the Mfer Poisson data, and gives several algorithms for unpenalized

EM algorithm for PET [1] where the statistical formulatiormaximum-likelihood. Section IV presents PML algorithms.

of the recursion inherently ensures that the objective funBections V and VI illustrate the convergence rates. The Ap-

tion increases every iteration (ignoring finite precision conpendix gives a global convergence proof.

puting). The only intrinsically monotonic methods for penal-

ized maximum-likelihood that we are aware of are: 1) exten- Il. THE SAGE METHOD

sions of the EM algorithm including generalized expectation- Previously we described the SAGE method within a statis-

maximization (GEM) [22], expectation/conditional maximizatical framework [9,8,12]. Here we first describe a generalized

tion (ECM) [23,24], and SAGE [9] algorithms, 2) the triv-version of the method without direct statistical considerations,

ial case with separable (non-smoothness) priors [17,18], &)d then introduce the statistical version as a special case. This

De Pierro’s algorithms [25,26], 4) and the ICM-EM algorithrmew formulation encompasses both the previous SAGE method

[27]. For comparison purposes, we derive an accelerated mof#8,12] and the convexity approach of De Pierro [26,44] as spe-

tone converging GEM algorithm in Section IV using a newial cases.

complete-data space. Most intrinsically monotonic algorithms

converge globally to the unique maximum for strictly concav®- Problem

objectives. Let the observationy have the probability distribution
Perhaps a more accurate name for nonmonotonic methg@g;gtme), where 6, is a parameter vector residing in a

would be “not guaranteed monotonic” since most such metfubset® of the p-dimensional spaci®”. Given a measure-

ods do havdocal convergence and the PML estimate is usyment realizatiory = y, our goal is to compute the penalized

ally a fixed point. An early approach was gradient ascent gfaximum-likelihood estimaté of 6,,.., defined by:

the objective starting from an ML estimate [28,29], which was

stated to “not guarantee convergence to the global [max]imumg £ argmax ®(6), where ®(6) 4 log f(y; 0) — P(8). (1)

Gradient ascent is complicated by the nonnegativity constraint. 6co

Most Iothercl)ﬂé)l_nmonot:oglc ]r(ngthods ggesvlarla'ilonf] Ofég?_ ONBis an optional penalty function. When analytical solutions for
step late ( ) method of Green [30,31]. In the Ry are unavailable, one must resort to iterative methods, most of

Pf:)ach: one C|r|cum\f/ents ;[]he problem of coupled ;aquatlonls Nich update all pixelsimultaneously SAGE algorithms use
plugging in” values from the previous iteration. Unfortunate ysequentiaUpdates.

such an approach can diverge, unless modified to include a line
search [32]. Similar strategies include the BIP algorithm [338. Algorithm

the methods in [34,35], and nested gradient or Jacobi iterationﬁ_0 describe the SAGE method, we adopt the notation used in

[36,37,21]. Most such strategies include a user-specified s . ;
size parameter, and one user has noted that “finding good gf Define anindex set to be anonempty subsetff, . .., p},

) ; . and S its complement. If the cardinality of is m, then@g
ues for [the step size] and the number of times to iterate re- . . 7
; : ) . " . dd?enotes then dimensional vector consisting of the elements
quires painful experimentation [38].” Other OSL-like methods; ", -
. . . . of 6 indexed by the members ¢f. Similarly 8; denotes the
are given in [38,39], which have been reported to occasion- . . o L
. ; — m dimensional vector consisting of the remaining elements
ally diverge [39]. The sequential update of our SAGE metf; . ~
. . . . of 6. For example, ip = 5 andS = {1, 3,4}, thenS = {2,5},
ods is close in form (cf Type-lll algorithms in Table 1) to the p . )
. . = [01 03 04", and@s = [0, 05]', where’ denotes vector
coordinate-wise ascent proposed by Bouman and Sauer [40,2:? . X . . : :
One could force any of the above methods to be monotonicg spose. Finally, fupgtlons ke (6) e>_<pect ap—d_lmensmnal
adding a line search. Lanae has shown converaence for a I.vé’gtor argument, but it is often convenient to split the argument
ing a line search. 9 S Show Verg 'B8nto two vectorsfs andé z, as defined above. Therefore, we
search modification of OSL [32], and Mumcuogdtial. have : _
: . .~ ~equate expressions such @8§8s,0:) = ®(0).
adapted the conjugate gradient method [42]. We show in SecL 16° ¢ © b initial ; timate. Givehi —
tion VI that an intrinsically monotonic SAGE algorithm con- € €SAGI§ a||”1 ml'tI: para(rjne er estimate. i I\éfélzt;
verges faster than even a line-search accelerated EM algoritllhh‘?.’ oo @ a gor|- M produces a new estim y
; . . . the following two steps:
This paper is condensed from [43], in which we compare : . -
i : E-step: Choose an index sgt
SAGE to many alternative algorithms and show that the conver- and a functionabi(6:: ') satisfying:
gence rate of SAGE is comparable to even fast nonmonotonic S5 g
methpds such as [40,411. Just as one can force a nonmonotonic q’(@si,%i) _ (I)(ei) > ¢1(0gi;07) — o gi;ai). @)
algorithm to be monotonic by adding a line search, one can also
often accelerate monotonic methods by over-relaxation. Thus,

for meaningful comparisons, one should first decide whether or M-step: 04" = argmax¢'(0s:;6") (3)
not monotonicity is required. In this paper, we focus solely on si
monotonid(intrinsic or forced) algorithms. Additional compar- gig{rl - gzs (4)

isons can be found in [43].
The organization of this paper is as follows. Section Il d&he maximization in (3) and the inequality in (2) are over the
scribes the general structure of the SAGE method. Sectiondét{fg: : (0s:,0%,) € O}.



This is an “algorithm” in a loose sense, since there is coand admissible hidden-data spa¢e%’}, and then generating
siderable latitude for the algorithm designer when choosing the’} functionals using (5)-(7). The “majorization” method of
index sets{S?} and functionals{¢‘} (see Appendix). The De Pierro [26,44] is an alternative method for choosifunc-
basic idea behind the SAGE method is that if maximizintipnals [43].
(I)(esi,egi) over Og: at theith iteration is difficult, then we
instead maximize some user-specified functiofdBq:; 6°),
carefully chosen to ensure (using (2)) that increases iyield In this section we first review the linear Poisson model that
increases ifb. Often one can maximizé'(-; 8°) analytically, is often used in image reconstruction problems, and summa-
obviating expensive line searches. We discuss choices for tize the classical EM algorithm (ML-EM-1) for maximizing the
index setsS? in [9]. Here we focus on single-pixel index setslikelihood [1]. We then introduce a new complete-data space

Il. M AXIMUM LIKELIHOOD

e.g.:8* = {1 + (i modulo p)}. that leads to a new, faster converging EM algorithm: ML-EM-3.
. Even less informative hidden-data spaces lead to new SAGE al-
C. Convergence Properties gorithms that converge faster than both ML-EM-3 and the line-

It follows from (2) and (3) that the sequence of estimg®g ~ search accelerated EM algorithm (ML-LINU) [45]. We pre-
generated by any SAGE algorithm witionotonicallyincrease sented some of this material in [9,12]; we include it here since
the objectived(8"). If the objective function is bounded abovethe concepts behind the new complete-data spaces and hidden-
then this monotonicity ensures th®(6°)} converges, but it data spaces are easier to explain in the maximum-likelihood
does not guarantee convergence of the sequgi¢eIn [9], we framework than in the PML case described in the next section.
provided regularity conditions under which the seque{”&"e}
also converges monotonically norm and derived an expres—A' The Problem
sion for the asymptotic rate of convergence. The nonnegativityl et the emission distribution be discretized iptpixels with
constraint forimage reconstruction violates one of the regularitpnnegative emission ratés = [A1,...,A,]" > 0. Let Ny
conditions in [9]. Therefore, in the Appendix we prove globadenote the number of emissions from #te pixel that are de-
convergence under mild conditions suitable for image recaected by theath of N detectors, assumed to have independent
struction with nonnegativity constraints. Poisson distributions:

D. Hidden-Data Spaces N ~ Poisson{antAr },

A naturf]ll app(;oalch to chqoslngl; functlonarstfhﬁt satlsbfly (2) \here thea,,), are nonnegative constants that characterize the
s to use the underlying statistical structure of the problem. Qlicier 1] Witha, — 3. ae > 0. The detectors record

ten one can simplify the form of the log-likelihood by (concepsyyissions from several source locations as well as background
tually) augmenting the observed data with some additional UWients. so we observe

observable or “hidden” data. The hidden-data spaces we defined
in [9] were all independent of the iteratian Here we present Y, = Z N + Ry, ~ Poisson{z Ak Ak + 70}, (8)
a less restrictive definition that allows one to use hidden-data A k

spaces that change with iteration. ) ) )
where {R,} are independent Poisson variatesk, -~

Definition 1 LetS’L denote the index set for thth iteration. A POiSSOH{T’n}. We assume the background ratésn} are
random vectorX with probability distributionf(z;0:,0%:) known. This assumption is not essential to the general method,

is an admissible hidden-data spaeeéth respect tofg: for and one could generalize the approach to jointly estimate [11]
f(y;05:,05,) at 6" if the joint distribution of X andY" sat- (), } and{r,}.

isfies Given realizationdy, } of {Y,,}, the log-likelihood for this
f(y,w:05.0%,) = f(ylw;05,) f(2:05,0%,), (5) Proplemisgvenby(l]

i.e., the conditional distributiorf (y|z; 6%,) must be indepen- ~ L(A) =log f(y; A) = > (nloggn(A) —7a(N),  (9)

dent of@g:. n

Any complete-data space associated with a conventional EX€re B

algorithm is a special case of this definition [9]. Jn(A) =D ankAe + 7. (10)
Given an admissible hidden-data spa&edefine the follow- k

ing conditional expectation: (We use the symbol” between expressions that are equiva-

lent up to constant terms that are independerk.pfWe would

Q(65:;6") = E {log f(X; 05, eiéi) Y =940} (6 Jiketo compute the ML estimate > 0 fromy = [yy,...,yn]’.

Combine this conditional expectation with the penalty functiorg‘ ML-EM Algorithms

#(B8gi;0%) 2 Q(0s::6") — PO, qui). (7) The classical EM complete-data space [1] for this problem is
. o the set of unobservable random variates
From [9], any¢ generated using (5)-(7) satisfies (2). Thus,
one can design SAGE algorithms by choosing index §6t$ X' = {{Nux Yoy {Ra} I, (11)
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which has the following log-likelihood: wherea,. = ), ani. ClearlyY,, = >, X, has the appropri-
) ate distribution (8). The Fisher information f&? is diagonal
log f(X2) =D Y (N log(ankAe) — ankAr) - and smaller than that oX *:
k n
As shown in [1], Fx: (5\) = diag {Z ank/(ﬂk + rn/an.)} < Fx1.

. 7 _ 3 — 3
EANukl¥ = 45 X'} = Mokt /Gn(X)- Unfortunately, the functiof)x: (formed using (6)) has no ana-
Thus, the@ function (6) forX " is (see eqn. (4) of [1]): lytical maximum (unless the ratig, /a,,. iIs a constant indepen-
i 1 i dent ofn), so the M-step appears intractable. Such tradeoffs be-
Qx1 (A A") = Eflog f(X5N)[Y =y; A} tween convergence rate and computation per-iteration are com-
mon [11].

=2 (O ex(W)log A — asde) (12) 75 obtain an tractable M-step, we would like to replace
b the termr,, /a,. in (15) with a term that iSndependenof n.
where . . Therefore, we propose the following new complete data space
ex(N) = ankyn/Gn(X). (13) [12,43]:

iy i . X’ = {{Mnk}izp {Bn}}r]yzlv

Qe () 19 g;epgrable, coneavs f.unc.t|on)qf, 02 Ap, AN where{M,,;} and{B, } are unobservable independent Poisson
one can maximize it analytically. This yields the ML-EM-1 a variates:
gorithm [1,5], which is a Type-I algorithm in Table 1 with its ’

M-step (41) given by: Myr ~ Poisson{anr(Ax +mg)}
)\?1 _ Zek (/\i)/a.k. (14) B, ~ Poisson{r, — Z nkMi }, (16)
k

ML-EM-1 converges globally [1,11] but slowly. The slow con- ) .
vergence is partly explained by considering the Fisher inform@2d Where{m; } are design parameters that must satisfy
tion of the complete-data spadé' [11]. One can think ofX!

as data from a hypothetical tomograph that knows whether each > ankmi < 7, Y,
detected event is a true emission or a background event, and §

knows in which pixel each event originated. Such a tomogragh that the Poisson rates fB,,} are nonnegative. With these
would clearly be much moraformativethan real tomographs, definitions, clearly

and this intuition is reflected in the Fisher information matri-

ces. The Fisher information of the parameter veetdor the Y, = Z M, + B,

observed datd” evaluated at the ML estimafeis k

17)

has the appropriate distribution (8).

-1
1) 2 — A'd; N
Fy(d) = B V)\L(/\)}‘)‘z;\ A diag {A'\ * r} A, The Fisher information foX? is diagonal:

. . . 1 . . . N N
whereas the Fisher information f& - is diagonal: Fxs(A) = diag {a_k/()\k i mk)} 7 (18)

Fxi(A) = diag {a'k/)‘k} and now depends om, though (19) below. This Fisher infor-

_ . N _ mation is smaller tham‘xl(f\), which leads to faster conver-
(providedA is positive). One can show thlitx: > Fy (i.e. gence. In light of (18), to makExs small the design param-
Fx: —Fy is a positive definite matrix) using a Fisher version Ogters{mk} should be “as large as possible,” but still satisfying
the data processing inequality [46]. Inde#t;: is completely the constraint (17). We have found it natural to choose a set

independent of the background rates, }, reflecting the fact {m;} whosesmallest element is as large as possisimject
that the parameters acempletely isolated from the uncertaintyg (17). A simple solution to this min-max problem is:

due to the background everft®,,} in X* (see (11)).

To accelerate convergence, we would like a less informative mr = min {r,/a,.}. (19)
complete-data space thaki', so we depart from the intuitive ™ .70
relationship betweeX ' and the underlying image formationwe discuss alternatives to (19) based on other min-max criteria
physics, and instead exploit the statistical structure of (8). Tle[43], none of which we have found to perform significantly
first approach we tried was the following new complete-dagtter than (19) for PET, but that might be advantageous else-

space: ) where.

X? = {Xae oo nons The design (19) clearly satisfies (17), and at least one of the
where the{X,,;} are unobservable independent Poisson vafl. constraints in (17) is met with equality. Thus, thé,;
ates that includall of the background events: terms absorb some of the background events, but usually not

all. For tomographic systems, thg.’s vary by orders of mag-
Xk ~ Poisson{ank(Ax + rn/an.)}, (15) nitude between rays traversing the center of the object and rays
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grazing the object’s edge, SO, a,rm; << 7, for mostn. Inthe few PET experiments we tried, “accelerating” ML-EM-3
Many of the background events remain separatdsijnin con- using a line-search to choos& > 1 only slightly increased the
trast, in image restoration problems, if the point-spread functioonvergence rate.

is roughly spatially invariant and the background rafes}

are uniform, then the ratio$r,, /a,.} will be fairly uniform D. ML-SAGE Algorithms

and nearly all of the background events will be absorbed intogjnce ML-EM-3 is a simultaneous update, the background

{ M} events in (16) must be shared among all the pixels, so the val-
Using a similar derivation as for (12) one can show: ues formy, are fairly small. We now derive a class of SAGE
Oxs (A \F) = algorithms that use sequential updates with= {k}, where
k = 1 + (i modulo p). Two algorithms in this class were pre-
Z (( Z + mk)ek()\i) log( A, + mp) — ax( A + mk)) , sented in [9]; here we also present a third algorithm. A subtle
& advantage of sequential updates is that we can associate nearly

_ _ _ ~(20)  all of the background events with whichever pixel is being up-
wheree;, was defined by (13). Lik€x:, this function is also dated, yielding much less informative hidden-data spaces and
separable, and its partial derivatives are: thus faster convergence.

i Define unobservable independent Poisson variates:
S Qxs (X)) = e (W) T —ag | .
k kT v~ Poisson{ank(Ax + 21)}

To implement the M-step, one cannot simply maximizg: B Poissondr — a2 i

N . o .. ~ — + aniN:}, 24
by zeroing its partial derivatives, because of the nonnegativity nk {ra — ani2i ; niths (24)
constraint. HoweverQxs is a concave function with respect
to Az, so if its derivative vanishes at a negativg, then the \yhere {2} are nonnegative design parameters (discussed in
point A, = 0 will satisfy the Karush-Kuhn-Tucker conditionsmore detail below) that must satisfy
for the nonnegativity constraint. This leads to the ML-EM-3
algorlthm,_whlch, like ML-EM-1, is also a Type-I algorithm of Azl <o + Z anjkﬁ-, vn, (25)
Table 1, with (14) replaced by: iZk

+1 [ % _ .

A = [+ mider(N) /a —me] (21) 5o thatthe Poisson ratesiBf,, are nonnegative. This constraint
where[z], = z if > 0 and is zero otherwise. This simplelS much less restrictive than (17). Cleally = Z,, + B, has
change to the implementation of ML-EM-1 accelerates convéfl€ appropriate distribution (8) for arty We let the hidden-data
gence, both theoretically and empirically, provided that sons@ace for\; onlybe
my, > 0. Random coincidences are pervasive in PET,so 0 i i PR
for all n andm, > 0 for all k. k= {Zpk Bk tn=1-

Like ML-EM-1, since ML-EM-3 is an EM algorithm it
monotonically increases the likelihood every iteration. Unlik
ML-EM-1, the iterates generated by ML-EM-3 can move op, e: AF) = (0 i i i i

. . COxi ; = + A log( Ak +21) — a.s (A + 21).
and off the boundary of the nonnegative orthant each |terat|(;c|?1).(k( £ A) = (A +21) en(X) log (e +24) — k(A gé)

T.his mar?/ partly explain the faster C(;nvergence of. ML'EM':?\VIaximizinngi(-; A’) analytically (subject to the nonnegativ-
since when ML-EM-1 converges to the boundary, it can do ﬁ?/ constraint), yields the ML-SAGE class of algorithms, which

atsublinearates [11]. are Type-lll algorithms of Table 1, with M-steps (44) given by:

lélsing a similar derivation as f@pxs, one can show:

C. ML Line-Search Algorithms

. . N = 1O+ 2k)en(N) Ja — 21 - 27)
Kaufman [45] noted that ML-EM-1 is the special case where
a = 1 of the form: Type-Ill algorithms update the parametsegjuentiallyand im-
i mediately update the predicted measuremgntsithin the in-
141 [ )‘k 8 A . . .
e = A ta . WL(A ) (22) ner loop, whereas Type-I algorithms wait until all parameters
i+ k + have been updatéd

The ML-LINB-1 and ML-LINU-1 algorithms [45] use a line- The recursion (27) does not completely specify an algorithm
search to choose am’ > 1, which accelerates convergenceuntil we have chosen suitabié’s satisfying the constraint (25).
For ML-LINB-1, the search oven is boundedsuch thatx’*!  The Fisher information foX}, with respect to\;, is the scalar
is positive, whereas ML-LINU-1 allows amconstrainedbent value
line” search, in which can be chosen large enough that some Fxi (M) = ax/On + 25),
pixels would become negative, but are set to zero [45]. Simi=; — . .

Incremental updates like (45) will accumulate numerical error, so must

|ar|y= ML-EM-3 is the special case whete= 1 of the form: be treated with caution if used repeatedly. Fortunately, the SAGE algorithms

\i o converge in a small number of iterations. In those rare occasions that we run
At — % +a kT Mk L()\i) ) (23) SAGE for many iterations, we “reset” the estimated projectigis} using (10)
k a.g n roughly every 20 iterations.

Ok
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which (cf (18)) again suggests that we would like #i& to be IV. PENALIZED MAXIMUM LIKELIHOOD

as large as possible subject to (25). We described the ML algorithms above primarily to introduce

. R ) L .
_ The obvious choice is; = 2, = 0, which trivially salis- {he new hidden data spaces. In this section we turn to penal-
fies (25), and we then refer to the recursion (27) as ML-SAGEJeq |ikelihood objectives. We first present SAGE algorithms

[9,8,1.?]. This algorithm is gene_:rally ineffectiv.e.exce'pt for wellssed on the hidden-data spadés.}. For fair comparison
conditioned problems [8], which is unsurprising since Whejith ajternative methods, we also derive a new version of the
z;, = 0 the Fisher information foiX, is just thekth diagonal ggpm algorithm [22] using the new complete-data space.
entry ofFx.. o We derived modified versions of the parallelizable algorithm of
A second choice is based on the following idesince we pe pierro [26] and the one-step late algorithm of Green [30] in
are updating one pixel at a time, we can associate nearly @3] As we show in Section V, these modified algorithms based
of the background events with each pixel as it is updaléds  on X3 a)| converge somewhat faster than their original versions
may be unintuitive in terms of the imaging physics, but is conased orix*, but still none converge as fast as SAGE on a serial
pletely admissible and sensible from a statistical perspecti¥gmputer. Nevertheless, they should be useful for some parallel

The choice computers, and they allow us to perform the most conservative
N 28 comparison between SAGE and its alternatives.
S n:gil,f;o{rn/a"’“}’ (28) " We have implemented the SAGE method with non-quadratic

penalties [43]. However, to simplify notation, in this paper we

clearly satisfies (25), and when substituted into the reccus on a simple quadratic smoothness penalty:
sion (27) we refer to the resulting algorithm as ML-SAGE-2
[9]. We precompute _the,(f) terms in (28) prior to iterating, - P(A) = 51 Sy lwkj()\k ) (30)
so the computation difference between ML-SAGE-1 and -2 is 24 i~ 2
negligible. However, this small change significantly accelerates
convergence [9]. where;, is a neighborhood of thith pixel andwy; = w;jy.

When the rate¢r, } are small, then thez,(f)} are also small, Forthe resultsin SectionV, we |&f; be the 8 pixels adjacent to
and ML-SAGE-2 is little better than ML-SAGE-1. Thereforethekth pixel, and setv,; = 1 for horizontal and vertical neigh-
we now introduce a new choice faf, that is effective even bors andwy; = 1/+/2 for diagonal neighbors. Combining (30)
when the{r,,} are small or even zero. When updating a singlith the log-likelihood (9) yields the penalized likelihood ob-
pixel, we can consider the contributions from all of the othgective function (1):
pixels as “pseudo-background” events. This opportunity is in-
dicated by the form of (24), which the reader should contrast O(A) = Z (Yn 10g Grn (X)) — Gn (X)) — BP(A).

with (16). The following choice also satisfies (25): n
i _ Li(3) _ . A\ For the penalty given by (30% is strictly concave under mild
%= % n:gillcr;éo{(r” * ];C anAj)/@nrc} conditions onA. = {{a,x}}.
. N i A. Penalized SAGE Algorithm
= min {Fn(A")/ank} — A (29) J

mitnk#0 For generality we derive the SAGE algorithm for PML with

Clearly 227(3) > zl(f), which yields faster convergence. Noté;eneriCz:,i arguments: any choice satisfying (25) can be used.

thatz-'® changes with iteratiopwhich is nevertheless admis-Following (7). define

sible as defined by Definition 1. We refer to the recursion (27)
with the choice (29) as the ML-SAGE-3 algorithm.
Remarkably, with an efficient implementatfbthe “extra

G (M A') = Qxi (s A') = Pk, ALy)

work” suggested by the minimizations (29) adds negligibly to = (A + 2 )er(A") log(Ax + 2;) — a.x (A + 2;)

the execution time. Since the rati@g()\i)/ank in (29) are 1 .

already needed for computing (see (13)), no extra floating —p Z wkja()\k — A})Q, (31)
point divides are required. Only the comparisons for the min- JENK

imization are needed, and those add negligible CPU time (at i . P

least on our DEC 3000). whereQxi was defined in (26), anA’ , is the vector of length

The definitions (28) and (29) involve only a singlg; in (p — 1) obtained by removing théth element from\*. The
each denominator, rather than the suncontained in the defi- M-step (3) requires maximizingj (-; A*), which we can do an-
nition (19) ofmy. Thus,z'> andz}"® are orders of magnitude alytically by zeroing its derivative sinag;,(\y; A') is a strictly
larger thanmy,, andFy: is much smaller than theth diagonal concave function of.. The derivative ofpy (-; A") with respect

entry of Fxs, leading to faster convergence. to A is:

'3The pessimistic results given in [43] were for a very ingfficient implemen- o ; ; 2 + lec ;
tation of (29). In our more recent optimized implementations, the execunog)\—(bk()\k; AY) = —a.pter(A )ﬁ—ﬁ Z wkj()\k—)\j).
times per iteration of ML-SAGE-1,2,3 were indistinguishable. k kT 2y FEN
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Note that updating only one parameter obviates coupled eqiligis coupling prohibits analytical maximization. The GEM
tions (cf (34)). Zeroing this derivative yields a quadratic formethod [22] abandons maximization in favor of simply increas-
mula: ing ¢ (+; )J') using coordinate-ascent. It is easier to incregse
. , o , than®(-) using coordinate-ascent since we can solve (34) with
(M +27)° + 2Be (M + 21) — ex(A) (N, + 21)/(Bwr.) =0, respect tok, (while holding the other parameters fixed) using
essentially the same quadratic formula as (33). Extending the
wherewy. =3¢ v, wk; and derivation in [22] leads to the PML-GEM-3 algorithm, which is

. . a Type-Il algorithm of Table 1, with the M-step (42) given by:
Bp=[ax—B Y wij(\s+2p)]/(28wy.).  (32)

JENR By = [a.k - p Z Wi ()\; + mk)]/(ZBwk) (35)

: N . . iEN
Just as in the derivation of (21), the constrained maximum of N

oK (+; )\i) corresponds to either the positive root of the quadratic, _
or the value\, = 0, sincegy, is strictly concave. This leads to A\, = |:—Bk + \/B,i + e (A (AL + my)/(Bwk.) — my,
the PML-SAGE class of algorithms, which are of Type-Ill in

Table 1 with M-steps (44) given by:

(36)
Here,\;, denotes thenost recenestimate of\,, e.g.A¥ = X"

i N PR p ; if j < k, otherwise\; = )\; i.e., the updates are done “in
A= [_B’“ ™ \/Bk +ex(A) (A, + 2)/ (Bwr.) — Zk] * place”. We refer to the GEM algorithm based &h' (where
(33) my = 0Vk) as PML-GEM-1.

In words, we first compute the;, correction term from the — One can easily verify that** given by (36) satisfies the one-
current projection estimate, then update &l pixel using a dimensional Karush-Kuhn-Tucker conditions with respect to
quadratic formula that involves both the data and the neighbtite nonnegativity constraint. Thus PML-GEM-3 monotonically
ing pixels, and then immediately update the projection estiméiigreases the objectivk. Global convergence of GEM follows
before proceeding to the next pixel. In practice, the actual iffom Theorem 3 of [23], provided the objective is strictly con-
plementation has two important differences: 1) the pixels agave.
updated in four different raster scan orders rather than using thélote that PML-SAGE-2,3 and PML-GEM-3 are somewhat
same order each iteration (cf frequency analysis in [47]), astnilar, except that PML-SAGE-2,3 use the less informative
2) the quadratic formula is computed using numerically stadidden data spacX ;,, and update the projections immediately
formulae [43] [48] (p. 156), rather than the conventional forrfter each parameter update. Although subtle, these two differ-
(33). ences lead to PML-SAGE-2,3 converging significantly faster.
We refer to the recursion (33) with the choice (29) fgras B )
PML-SAGE-3, and define PML-SAGE-1 and -2 analogousl{s- Modified One-Step-Late (OSL) Algorithm
(PML-SAGE-1 is essentially identical to the ICM-EM algo- An alternative to the above algorithms is preconditioned
rithm of Abdalla and Kay [27].) As described in Section Vsteepest-ascent. Using a derivation similar to that for (22),
PML-SAGE-3 converges fastest. Global convergence of PMLange [32] has shown that Green’s OSL algorithm [30] can be

SAGE is established in the Appendix. expressed in the form:
The GEM algorithm for image reconstruction [22] is an intu-

. Ao 0 ,

{ — | — (N 37
3 , ! k+a<a.k+—a§ P()J)) e )] » 87
itive approach to extending the EM algorithm to the PML case. . +

Rather than using(" as in [22], here we develop a GEM alyhich is a Type-l algorithm in Table 1. For = 1, this method

gorithm using the new complete-data spacé. Following (7). i not necessarily monotonic, but by choosingising a line-

let 5 ) ) search, one can ensure monotonicity and global convergence
P*(A;A") = Qxs (A A7) — P(X), [32], and also accelerate OSL (often significantly, see [43]). We

whereQx: was defined in (20). The GEM algorithm is simJ€fer to (37) as PML-LINB-1 or PML-LINU-1, depending on

ilar to the special case of the SAGE algorithm of Section Whether the line-search foris bounded or unbounded (cf Sec-

whereSi = {1,...,p} and¢’ = ¢3 for all i. Thus, the M- tionll.C).

step (3) requires us to maximiz& (-; A*). Unfortunately, its

partial derivatives are coupled:

B. Modified GEM Algorithm
A =

V. SIMULATION METHODS

5 We have evaluated the convergence rates of the algorithms

N 3(,\; ,\i) - using a 2-D slice of the digital Hoffman brain phantom shown
Ok in Fig. 1, with intensity 4 in the gray matter, 1 in the white mat-
5i ter, and 0 in the background, discretized on a 80 by 110 grid
—a +ek(,\i)w -3 Z wii (A —Aj), k=1,...,p. With 2mm square pixels. The phantom was forward projected
Mot ! . T usin ted fact ding to an idealized
JEN g precomputed factors,, corresponding to an idealize

(34) PET system having 100 angles evenly spaced @8ét, and
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70 radial samples with 3mm spacing. Eagh, was precom- decrease to values that are invisible on a conventional 8-bit dis-

puted as the area of intersection between the square pixel apdbs, so we have amplified the differences by a factor of 4 for

strip of width 6mm. (Since the strip width is wider than the radisplay. The effects of the initial estimate are negligible by 15-

dial spacing, the strips overlap.) The detector response is thiaterations for 5% background, or by 10 iterations with 35%

6mm rectangular function. Only image pixels within a suppobackground [43].

ellipse of radii 39 by 54 pixels were reconstructed. As detailed in [43], the SAGE algorithms require about 25%
The projections were multiplied by nonuniform attenuatiomore floating point operations per iteration than ML-EM-1, al-

factors corresponding to an ellipse with radii 90 and 100 mthough this could be eliminated by doubling the memory re-

with attenuation coefficient 0.01/mm, surrounded by an elliguirements. Nevertheless, even whie(r)\") is graphed against

tical 5mm thick skull with attenuation coefficient 0.015/mmCPU time [43], the SAGE algorithms still have the fastest con-

Nonuniform detector efficiencies were applied using pseudeergence among monotonic algorithms.

random log-normal variates with standard deviation 0.2. The

sinogram was globally scaled to a mean sum of 900000 true VIIl. DISCUSSION

events. All of the above effects.were also incor'porated i.nt0-|-hiS paper presents algorithms for image reconstruction that
the a,; factors. Psepdo-random mdepe.ndent Pmsson V?‘”aé%?qverge rapidly, monotonically, globally, and naturally en-
were drawn according to (8), and a uniform field of Poissagrce nonnegativity constraints. There are two main princi-
distributed background events with known mean were addgfks that lead to the improved convergence rates. The first is
Three data sets were studied, with 0%, 5%, and 35% bagk-ypdate the pixel estimates sequentially rather than simul-
ground events, representing the range of random coincidenggfously. This idea has been used successfully by other au-
in PET scans. The initial estimate’ was reconstructed Us-thors as well [27,40,41]. The second is to use less informative
ing FBP with a 3rd order Butterworth filter with cutoff 0.6 ofyidden data spaces formed by “mixing together” some of the
Nyquist (10mm resolution). FBP image values below 0.1 weggnission events with the background events. Either e
setto 0.1so thax” > 0. selfonly slightly improves convergence rates (cf PML-SAGE-1,
PML-GEM-3 relative to PML-GEM-1 in Fig. 4), buh tandem
(e.g. PML-SAGE-2 or PML-SAGE-3) the two principles sig-
We found that the LINU algorithms converged faster thagificantly accelerate convergence.
the LINB algorithms only in the 0% background case, so the The monotonicity of SAGE stems in part from the fact that
LINU results are shown only then. We focus on the PML aly|| of the (relevant) measured data is used even though only one
gorithms here; results for the unregularized ML case show thgel is updated at a time. In contrast, another method proposed
same trends [43]. _ for accelerating EM is the ordered-subsets EM (OS-EM) algo-
Figures 3-5 display the objectidgA’)—®(X°) andillustrate rithm [49], in which all pixels are updated simultaneously but
the following points. the measurements are used sequenti@i$-EM is not guaran-
e In all cases, the GEM algorithm and OSL algorithms ha§ed to be monotonic, and its convergence properties are poorly
indistinguishable convergence rates. understood. OS-EM achieves a limited form of “regularization”
through stopping rules, whereas SAGE can be used with any
e PML-GEM-3 converged faster than the conventiongbnvex penalty function, including edge-preserving penalties.
PML-GEM-1, and the increase in speed grows with the e have attempted a fair comparison between SAGE meth-
background fraction. ods and the alternatives. We presented slightly improved ver-

« Even with only 5% random coincidences, PML-SAGE-§ions of severql aIternati\{es (GEM, OSI__, De Pierro, et.c.) in
clearly increased faster and reached its asymptote sooit: and experimented with several choices for the design pa-

than PML-GEM-3. The advantage for 35% background [@metersny. Nevertheless, it is possible that a better choice for
even greater. {ms}, or even a better complete-data space will be eventually

found. Such an extension could be very useful since algorithms
e For 0% background events,(f) = 0, so PML-SAGE-2 such as De Pierro’s method are more suitable for fine-grain par-
is identical to PML-SAGE-1 (and the ICM-EM algorithmallel computers than the SAGE algorithms herein. However, the
of [27]), and converged at the same rate as PML-GEMgeneric SAGE method (Section Il) offers more flexibility than
(which is identical to PML-GEM-3 with 0% background).we have used here, and we are currently studying alternatives
However, for 0% background PML-SAGE-3 convergethat may be more suitable to parallel computing [43].
faster than all of the other algorithms. We have compared several algorithms, and the reader may
onder what is the impact of these results on “practitioners” of
&nalized likelihood image reconstruction? Based on our ex-
perience, PML-SAGE-3 is the fastest intrinsically monotonic
algorithm for Poisson measurements that we are aware of, and
Since PML-SAGE is a monotonic algorithm applied to & converges faster even than PML-LINU, which is the fastest
strictly concave objective, it is robust to the initial estimate. Figerced monotonic method we are aware of. Therefore we rec-
ure 2 displays PML-SAGE-2 estimates initialized with a unemmend using PML-SAGE-3 when using conventional serial
form image and a FBP image. The difference images rapidlpmputers. However, given the considerable recent progress in

VI. RESULTS

e The results given above in terms of the convergence in t
objective function®(\") also apply to convergence i,
norm [43].



accelerating algorithms for image reconstruction, it is doubt-We assume the iterates are produced by an algorithm having
ful that SAGE will be the final word. It is noteworthy that thethe general form given in Section Il, i.e., each iteration is asso-
statistical principles behind the SAGE methods yield convesiated with an index se¥* and afunctionabi(asi;ei), and the
gence rates that rival conventional numerical tools such as liiterates satisfy)is-f1 = 015 We assume that the functionais
searches and Newton’s methods, yet ensuring algorithm moasatisfy the following conditions.

t_on|C|ty. Further Qt_avelopment using statistical perspectives W(L,“ondition 1 The functionalsy’ satisfy (2), i.e..
likely lead to additional improvements.

VIII. A PPENDIX: CONVERGENCE ?(05:,05.) — 2(0') > ¢'(05:;0") — ¢'(05:;0"),

. The p_roo_fm [9] oflocal monotonic convergence in norm to &y, 8 € §RJSF and@’ c ©+.

fixed point is inapplicable to problems with nonnegativity con- _

straints, except when the fixed point lies in the interior of tfeondition 2. Each functional¢’(-; ) is strictly concave and
nonnegative orthant. In this appendix, we prove convergencdwice differentiable oft; forany® € ©F, and eachy’(; ) is
a general form of SAGE that allows the limit to lie on the boun@ontinuous oy, x ©F,

ary of the nonnegative orthant. The proof structure is based 884ition 3 The following derivatives matot:

[1] and [26].

We begin by stating some general sufficient conditions for 0
convergence. These conditions make no specific references to 90,
the Poisson likelihood or penalty used in this paper, so this proof
will apply to a broad class of nonnegatively constrained estinfar anyd € ©+ andk € S°.
tion problems. Following the general proof, we verify that th " i
specific SAGE algorithms presented in this paper meet the Condition 4 For 6
quired conditions under the linear Poisson model.

®(0) = Vi 9" (05:;0)

€ OT, the iterates satisfy the Karush-
[&hn-Tucker conditionsk € S°:

Define the following sets: o . = i+l
%g = {0s5:6,>0, ke S}, -7k
0f = {8eR:0,>0,k=1,...,p}, Condition 5 For any bounded se§, there exists &8s > 0
SO°) = {6 : d(0) > d(6°)}. such that for every, forall @ € S, and for all(85:,05) € S:
Also define: Amin {J*(85:;0)} > Cs,
inx A A O, _ _ . .
V104i(0%.:6) 2 i (05::0) . where\,i, {J} denotes the minimum eigenvalueJof
si=" st Condition 6 For eachk € {1,...,p}, there is an index set
and S(k) containingk and functionaky(*) that is used regularly to
Ji(0s::0) 4 _1v20¢i(05i.9) update thekth element of the parametér DefineZ; = {) :
2 S’ = S8 and¢ = ¢(D}. Then for eachk there exists an
where fork, j € S° integerin,.x (Wwhich may depend ok) such that
) _ 82 . _ . . .
20 4i (0 .- _ (0 Vn >03i € [n,n+ imaxs.t.i € Z).
[V ¢ (05 30)] kj 89k80]¢ (03,0)

. . . _ i (This condition is clearly satisfied if the index sets and function-
To eliminate the interior restriction used in [9], we impose thg 4re chosen periodically.)

following two regularity conditions 0.
. . . . Using the above conditions, we now prove a series of Lem-
Assumption 1 ®(0) is strictly concave (and continuous andmas that establish global convergence

differentiable) oro+. ,
. . Lemma 1 The iterates{#"} yield monotonic increases in
0 + 0 .
Assumption 2 For any6” € 87, the set5(8") is bounded. ®(6"), and are thus contained in the s8t0°). Furthermore,

As noted in [1], the assumption of strict concavity is adequaﬁé(@o) is compact and convex.

to *make up for"' reIaxmg the restpctlon to the mtenor@f*'. . Proof: Monotonicity follows from Conditions 1 and 4. Since
We do not consider strict concavity to be an overly restrictive strictly concave (Assumption 13,(8°) is strictly convex
assumption; ifd is not St”Ctly concave, then typlc_a_lly either "Since® is continuous (Assumption 1%(8°) is closed (p. 91
does not have a unique maximum, in which case itis aquestl%rp-[So]). ThusS(6°) is compact since it is closed and bounded

able choice of objective, or it has local maxima, and no kno R ; ;
ssumption 2), by the Heine-Borel theorem (p. 58 of [5@J).
deterministic algorithms are guaranteed to find the global mgx— P ). by (b (509

ima, including SAGE. Like any monotonic algorithm, for a non.emma 2 There exists & > 0 such that for any
strictly concave objective SAGE will only find a global maxi- 1 i . 41 ;
mum if initialized suitably close to one. 167" — 0|7 < C™(2(6"") — 2(0°)).



10 VIl APPENDIX: CONVERGENCE

Proof: From Condition 1 and sina&' = 67%,, it suffices to Lemma 5 The sequencgd’} converges to a limie>.

Si
showvi: Proof: As in Lemma 3 of [1], the number of limit points is finite

2 < C*1(¢>i(0ist1; 0") — ¢'( g’ 0Y)). (at most2P), due to Assumption 1, the nonnegativity constraint,

_ _ and Lemma 4. However, since a bounded (Assumption 2) se-
Expandg’(-; ") aboutg’t' using Taylor's expansion with re- quence{#'} for which ||§"** — 8’| — 0 (Lemma 3) has a
mainder (see p. 599 of [51]): connected and compact set of limit points (see p. 173 of [52]),

¢ (05:;0') = ¢'(05;0") + there must be only one limit point. 0
Sis = i

o , . ° , Lemma 6 The limit@*° satisfies the Karush-Kuhn-Tucker con-
V4 (06705 — 05) + (05 — 051 ditions for .

Proof: For an elemertty® > 0, we haved/00,2(6°) = 0
by Lemma 4. Now suppose for somkewe haved, = 0 but
8/00,®(0>) > 0. Then by continuity (Assumption 1) and
Lemma 3,0/00,®(0") > 0 for all i sufficiently large. Thus by
V0051 0") (05" — 6%:) > 0, Conditions 3 and 6,

[

1
/ (1 =) (1 - 105" +t05:;0") dt (05 — 0%5). (38)
0

From Condition 4, it follows that

so setting i g: = @%, in (38) and applying Condition 5 yields Voo™ (0%u;0") >0

1+1 3 i 141 7 i 7 7 .
Cllog: — 05:|* < ¢'(057:0") — ¢'(05::0"), for all i € Z; sufficiently large. But since®(-; 6") is strictly

whereC' = C go,. We have used the fact that Az > CONCave (Condition 2), 720" ( _fq(mei) > 0, thend; ™! >

] *Amin { A} fo(r ar)1 ositive definite matriA o 0 This contradicts), = 0, so if 7% = 0 we must have
min yp _ _ ' 8/00,®(60°) < 0, establishing the Karush-Kuhn-Tucker con-

Lemma 3 |6t —0'|| — 0asi — cc. ditions. ]

Proof: Since{®(6")} is monotone increasing (Lemma 1) and Since a strictly concave objective has only one point that
bounded above (by continuity dfand compactness (Lemma 1atisfies the Karush-Kuhn-Tucker conditions, namely the con-
of S(8”), see p. 78 of [50]), it follows thab (6" ") — ©(6°) —  strained maximum, the lim#@> must be that point. Lemma 6

0. Apply Lemma 2. U thus establishes global convergence under a generic set of as-
Lemma 4 The sequencéd’} has a limit point 6*. For any sumptions and cor'ld?tions. All that remains i§ to verify that thg
such limit point, if% > 0, thena%cfb(a*) —0. tcﬁ;\(zgggf are satisfied for the SAGE algorithms presented in
Proof: By Lemma 1 and [50] (p. 56) there is a subsequénce Remark:

and limit pointg* € S(6°) suchthaf|™" —6*||> — 0asm — | 4l of SAGE algorithms in this paper, thié functionals are

co. Now pick any indexk, and definek;, to be the smallest aqgitively separablén their first argument, which means that
i 2 iy Such that € Zj. By Condition 6,k < im +imax- BY  the curvature matriced?(6.;6') are diagonal. In this case,
the triangle inequality: Condition 5 reduces to verifying that the diagonal elements of
Hekm _er|2 < Hekm — 0|2 + |6 — 04|12 J? have a po;itive lower bound. This. is clearly the case for
convex penalties such as the quadratic penalty (30). In other
the second term of which goes to Oras— oo. For the first words, for separable® functionals, a sufficient condition for

term, applying the triangle inequality repeatedly: Condition 5 is:
A Condition 5": For any bounded s, there exists &'s > 0
Hekm _oim |2 < Z 16t — 072, such that for alb € S
i=km 1
——%P(G) > Cs.
which is a sum of at most, .. terms by Condition 6, each of 200y

which goesto 0 as» — oo by Lemma 3. Thuge* —0*|| — 0

asm — oo. Again using the triangle inequality: Theorem 1 A sequencgf’'} generated by any of the PML-

||.9’<m+1 -0*2 < ||9km+1 _ gka? + Hgkm —0*|% SAGE algorithms for penalized maximume-likelihood image re-
— construction converges globally to the unique maximum of a
Thus|[@™""" — || — 0 asm — oo. strictly concave objective functioh having a penalty function

Sincek,, € S, i.e. on iterations{k,,} one updated, satisfying Condition 5 providedz! > 0 k.
by Condition 4:0;*! - V1°¢(®) (0%, ;6*) = 0. Taking the
limit as m — oo and using continuity (Condition 2) shows:
05 - Vi06(*) (0%);0%) = 0. The Lemma then follows from
Condition 3. |

4The reader should note the distinction between limits and limit points (or -
cluster points) (p. 55 of [50]). e Condition 1 follows from Theorem 1 of [9].

Proof:

e Assumption 2 follows from the behavior of the Poisson
log-likelihood as\, — oo [1].
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Condition 2 is easily verified for the hidden-data spacgsobably be of limited academic interest since one rarely iter-
and penalty functions used in this paper. ates a ML algorithm to convergence in the unregularized, un-
derdetermined case.
Condition 3 follows by the construction af; using (5)- If one is willing to be content with a local convergence result,
. then it is possible to relax the assumption of strict concavity for
the ¢’ functionals, using a region of convergence idea similar to
Condition 4 is built into the definition (3), and is satisfiedhat in [9,13].
by (33).
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tial update used in PML-SAGE.

If one hopes for global convergence, then Conditidrisca

reasonable restriction; it is clearly satisfied for the quadratic

penalty (30), and for most strictly convex penalties.

There is an important technical difference between our pro

and the assumptions in [1]. In [1] it was assumed that the

guence was initialized in the interior &, and remained in the
interior of © for every iteration. With our new complete-data

Condition 6 is inherently satisfied by the cyclical sequenys 4, for providing the digital brain data.
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Type-I Algorithm (e.g. ML-EM, PML-OSL)
and Type-II Algorithm (e.g. PML-GEM)

Initialize A0
fori =0,1,...{
Un = Zank)\};—i—rn, n=1...,N
k
Sn = Yn/Gn,n=1,...,N (39)
e = Zanksn,kzl,...,p (40)
fork=1,...,p{
A= gi(ers XY, (Type-1) (see (14), (21), (22), (23), (37)) (41)
M= gr(er; A5 XY, or (Type-ll) (see (36)) (42)
}
}
\ Type-Ill Algorithm (e.g. ML-SAGE, PML-SAGE)‘
Initialize A% Un = > p @k A} + 71, n=1,...,N.
fori =0,1,...{
k= 1+ (i modulop)
e = Y Gnk¥n/n (43)
ML = gr(es; ') (see (27), (33)) (44)
1+1 _ 7 .
>‘j - >‘j7 J # ka
U = o+ O = AN)ank, Y0 @ ank #0 (45)

Table 1: Three generic pseudo-code algorithm types for penalized maximum-likelihood image reconstruction. All of the algo-
rithms presented in the text are of one of these three types. Within each type, the algorithms differ in form of the fgfictions
used in the M-step.



REFERENCES

Figure 1: Digital brain phantom (left), and filtered backprojection reconstructed image (right).
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Figure 2: PML-SAGE-2 estimates from data with 5% random coincidences at iteratiorfs 5, 10, 20 (left to right). Top row:
initialized with uniform image. Middle row: initialized with thresholded filtered-backprojection image. Bottom row: absolute
value of difference between top and middle rows amplified by a factor of 4.
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Penalized Maximum Likelihood - Quadratic Penalty
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Figure 3: Penalized likelihoo@#(AY) — ®(A%) vs. iteration from data with 0% random coincidences.
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Penalized Maximum Likelihood - Quadratic Penalty
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Figure 4: Penalized likelihoot(A") — ®(A°) vs. iteration from data with 5% random coincidences. Not shown is PML-SAGE-2,
which converges slightly slower than PML-SAGE-3. Also not shown is PML-SAGE-1, which is indistinguishable from PML-
OSL-1.
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Penalized Maximum Likelihood - Quadratic Penalty
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Figure 5: As in Fig. 3, but with 35% random coincidences.
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