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ABSTRACT

This paper reviews and compares three maximum likelihood
algorithms for transmission tomography. One of these algo-
rithms is the EM algorithm, one is based on a convexity argu-
ment devised by De Pierro in the context of emission tomogra-
phy, and one is an ad hoc gradient algorithm. The algorithms en-
joy desirable local and global convergence properties and com-
bine gracefully with Bayesian smoothing priors. Preliminary
numerical testing of the algorithms on simulated data suggest
that the convex algorithm and the ad hoc gradient algorithm are
computationally superior to the EM algorithm. This superiority
stems from the larger number of exponentiations required by
the EM algorithm. The convex and gradient algorithms are well
adapted to parallel computing.

Key words: maximum likelihood, smoothing prior, EM algo-
rithm, convergence

I. I NTRODUCTION

THE value of the EM algorithm in emission tomography is
now well established [17, 22, 24]. Not as widely appre-

ciated is the potential of the EM algorithm in transmission to-
mography [17]. This paper reviews the EM algorithm for trans-
mission tomography and compares it to two algorithms recently
introduced by Lange et al. [16] and Lange [12].

The traditional method of image reconstruction in transmis-
sion tomography relies on Fourier analysis and the Radon trans-
form [10]. An alternative to this deterministic reconstruction
method is to pose an explicitly stochastic model that permits
parameter estimation by maximum likelihood [17]. In this con-
text the EM algorithm provides an easily implemented method
for searching the likelihood surface. This does not mean that
the EM or competing stochastic algorithms can match Fourier
methods in computational speed. But the increased realism pos-
sible with a stochastic model does promise better image recon-
struction with lower patient radiation dose.

The object of transmission tomography is to reconstruct the
local attenuation properties of the object being imaged. Atten-
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uation is roughly to be equated with density. In an imaging ex-
periment, X-rays orγ-rays are beamed from an external source
through the imaged object. These high energy photons can be
stopped or deflected by the object, or they can be detected by
a device on the opposite side of the object. Only a fraction of
the photons successfully travel from source to detector along
a given flight path (projection). The probability of a photon
escaping attenuation along a projection is given by exponenti-
ating the negative of the line integral of the attenuation density
along the projection. In deterministic reconstruction, these line
integrals are mathematically massaged to given the final image.
No account is taken of the fact that the observed data actually
consist of photon counts.

The stochastic model depends on dividing the object of inter-
est into small non-overlapping regions of constant attenuation
called pixels. Typically the pixels are squares. To each pixel is
assigned an attenuation parameter. In the absence of the inter-
vening object, the number of photons generated and ultimately
detected along a projection follows a Poisson distribution. At-
tenuation randomly thins these photons. Since thinning a Pois-
son process yields a Poisson process, the number of photons de-
tected also follows a Poisson distribution. The detected photon
counts constitute the observed data for stochastic reconstruc-
tion.

The remainder of this paper builds on the above verbal model
of transmission tomography. Section 2 motivates three com-
peting algorithms for maximum likelihood estimation of the at-
tenuation parameters. Local convergence of the algorithms is
examined under the simplifying assumption that the maximum
point is interior to the feasible region. Section 3 outlines how
the algorithms can be amended to incorporate Bayesian smooth-
ing parameters. Section 4 proves that two of the algorithms are
globally convergent. Section 5 compares the numerical perfor-
mance of the algorithms on simulated data. The concluding dis-
cussion in Section 6 draws some preliminary conclusions about
the numerical efficiency of the algorithms and suggests topics
for further research.

II. A LGORITHMS FORTRANSMISSION TOMOGRAPHY

The parameters of interest in transmission tomography are
the linear attenuation coefficientsµj defined for each pixelj.
Sinceµj is the probability of photon capture per unit length of
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2 II ALGORITHMS FOR TRANSMISSION TOMOGRAPHY

pixel j, we have the obvious physical constraintµj ≥ 0. The
Poisson nature of X-ray generation implies that the various pro-
jections are independent and that the loglikelihood of the ob-
served photon countsYi can be written as

L(µ) =
∑

i

{−die
−〈li,µ〉 − Yi〈li, µ〉}+ c. (1)

In equation (1),di is the expected number of photon counts
leaving the source along theith projection;c is an irrelevant
constant;µ is the vector of attenuation parametersµj ; li is
the vector of intersection lengthslij for the ith projection; and
〈li, µ〉 denotes the inner product

∑
j lijµj . This inner product

can be interpreted as the line integral of the discretized attenua-
tion from source to detector along projectioni.

A. EM Algorithm

One can deduce an EM algorithm for this model by defin-
ing the complete data as the number of photons entering and
leaving each pixel along each projection. LetUij and Vij
be the numbers of photons entering and leaving, respectively,
pixel j along projectioni. The E step of the EM algorithm re-
quires the conditional expectationsMij = E(Uij | Yi, µn) and
Nij = E(Vij | Yi, µn); Lange and Carson [17] prove that

Mij = Yi + die
−
∑

k∈Sij
likµ

n
k
− die

−〈li,µ
n〉

Nij = Yi + die
−
∑

k∈Sij∪{j}
likµ

n
k
− die

−〈li,µ
n〉,

whereSij is the set of pixels between the source and pixelj
along projectioni. TheQ(µ | µn) function of the EM algorithm
[1] then turns out to be

Q(µ | µn)

=
∑

i

∑

j

[
−Nij lijµj + (Mij −Nij) ln(1− e

−lijµj )
]
.

The M step of the EM algorithm consists in maximizing
Q(µ | µn) with respect toµ. Setting the partial derivative of
Q(µ | µn) with respect toµj equal to 0 yields the transcenden-
tal equation

0 =
∑

i

−Nijlij +
∑

i

(Mij −Nij)lij
elijµj − 1

. (2)

Lange and Carson [17] are quick to point out that the solution
of this transcendental equation can be approximated by

µn+1j =

∑
i(Mij −Nij)

1
2

∑
i(Mij +Nij)lij

, (3)

assuming the productlijµ
n+1
j is small. Ollinger [19] argues

that it is safer to solve (2) iteratively by Newton’s method or
like algorithms.

B. Gradient Algorithm

The EM algorithm is cumbersome because of the large num-
ber of exponentiations it entails. An alternative algorithm sug-
gested in Lange et al. [16] updates the attenuation parameter

vectorµ by

µn+1j = µnj

∑
i die

−〈li,µ
n〉lij∑

i Yilij
(4)

= µnj +
µnj∑
i Yilij

∂

∂µj
L(µn).

This is a scaled gradient algorithm with a nonconstant diago-
nal scaling matrix. For brevity we will refer to (4) simply as
a gradient algorithm. It can be heuristically motivated by not-
ing thatdie−〈li,µ

n〉 is the expected number of photons detected
along projectioni. Yi is the observed number of photons de-
tected. Each of these is weighted by the intersection lengthlij
for pixel j, and the results are summed over all projectionsi
intersecting pixelj. If µnj is too large, the numerator tends to
be smaller than the denominator in (4) andµn+1j < µnj . If

µnj is too small, the reverseµn+1j > µnj tends to occur. Un-
fortunately, there are no obvious guarantees that the algorithm
will either increase the loglikelihoodL(µ) or preserve param-
eter nonnegativity constraints. These defects can be remedied
by taking only a fractional step in the direction implied by the
incrementµn+1 − µn defined in (4).

C. Convex Algorithm

Lange [12] discusses yet a third algorithm for transmission
tomography. This algorithm bears a striking resemblance to the
EM algorithm although it does not invoke any notions of miss-
ing data. To motivate the algorithm, rewrite the loglikelihood
as

L(µ) = −
∑

i

fi(〈li, µ〉)

using the strictly convex functionsfi(t) = die−t+Yit. We can
construct the algorithm by imitating certain arguments of De
Pierro for emission tomography [2,3]. The crux of the matter is
that at iterationn

L(µ) = −
∑

i

fi(
∑

j

lijµ
n
j

〈li, µn〉

µj

µnj
〈li, µ

n〉)

≥ −
∑

i

∑

j

lijµ
n
j

〈li, µn〉
fi(

µj

µnj
〈li, µ

n〉) (5)

= Q(µ | µn),

with strict inequality unlessµj
µn
j
〈li, µn〉 =

µk
µn
k

〈li, µn〉 for all i

and all j 6= k. If µj = µnj for all j, then the inequality (5)
is an equality. The functionQ(µ | µn) defined on the right of
(5) is the analog of the function by the same name in classical
EM theory [1]. It is specifically designed so that the difference
L(µ)−Q(µ | µn) attains its minimum of0 atµ = µn.

Just as in the usual EM theory, we chooseµn+1 to maximize
Q(µ | µn). If µn+1 is so selected, then

L(µn+1) = L(µn+1)−Q(µn+1 | µn) +Q(µn+1 | µn)

≥ L(µn)−Q(µn | µn) +Q(µn | µn)

= L(µn),
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with strict inequality whenµn+1 6= µn. We will refer to this
method of selectingµn+1 as the convex algorithm.

To maximizeQ(µ | µn) set

0 =
∂

∂µj
Q(µ | µn)

= −
∑

i

lijf
′
i(
µj

µnj
〈li, µ

n〉) (6)

= −
∑

i

lij [−die
−
µj

µn
j
〈li,µ

n〉
+ Yi].

The transcendental equation (6) can not be solved exactly. It
does have a unique solution, however. Ordinarily, this solution
is positive. Indeed, the right hand side of (6) is strictly decreas-
ing in µj . Forµj = 0, its value is−

∑
i lij [−di + Yi], which is

usually positive becauseYi ≈ di for a projection that does not
sample the object andYi � di for a projection that does sub-
stantially sample the object. Forµj =∞, the right hand side of
(6) is−

∑
i lijYi, which is negative. Thus typically the solution

falls somewhere on the open interval(0,∞).
We can solve equation (6) by Newton’s method. Since

∂2

∂µ2j
Q(µ | µn) |µ=µn

= −
∑

i

lij

µnj
〈li, µ

n〉f ′′i (
µj

µnj
〈li, µ

n〉)

= −
∑

i

lij

µnj
〈li, µ

n〉die
−
µj

µn
j
〈li,µ

n〉
,

and

∂

∂µj
Q(µ | µn) |µ=µn =

∂

∂µj
L(µn)

for µnj > 0, one step of Newton’s method gives the approximate
solution

µn+1j = µnj +
µnj∑

i lij〈li, µ
n〉die−〈li,µ

n〉

∂

∂µj
L(µn)

= µnj +
µnj
∑
i lij [die

−〈li,µ
n〉 − Yi]∑

i lij〈li, µ
n〉die−〈li,µ

n〉
(7)

= µnj

∑
i lij [die

−〈li,µ
n〉(1 + 〈li, µn〉)− Yi]∑

i lij〈li, µ
n〉die−〈li,µ

n〉
.

This approximate solution of the M step coincides with the al-
gorithm proposed in equation (9) of [12]. The idea of solv-
ing the M step approximately by one step of Newton’s method
is motivated in [14]. One of the results in [14] says that even
this approximate solution of the M step leads to an increase in
L(µ) in a neighborhood of the optimal point. (This theory does
not quite fit the current problem because of the presence of the
boundariesµj ≥ 0.)

The algorithm (7) also has the potential disadvantage of giv-
ing µn+1j < 0 whenµnj > 0. This drawback is apt to be more
theoretical than practical, however. As argued above, the ex-
act solution of (6) is usually positive. If the Newton iterate (7)
approximates this solution well, then the Newton iterate will
usually be positive as well.

D. Local Convergence

To analyze the behavior of the algorithm (7) in a neighbor-
hood of the maximum point̂µ, we make the simplifying as-
sumptions that̂µ exists, is unique, and occurs in the interior of
the feasible region. We can then view the iterates given by (7)
as moving toward a fixed point of the map

G(µ) = µ+D(µ)dL(µ),

whereD(µ) is the diagonal matrix withjth diagonal entry

Djj(µ) =
µj∑

i lij〈li, µ〉die
−〈li,µ〉

,

anddL(µ) is the score vector withjth entry

∂

∂µj
L(µ) =

∑

i

lij [die
−〈li,µ〉 − Yi].

According to a theorem of Ostrowski [20], the fixed pointµ̂ is
locally attractive provided the spectral radius of the differential
dG(µ̂) is strictly less than 1. This spectral radius determines the
linear convergence rate of the algorithm. SincedL(µ̂) = 0, it
follows that

dG(µ̂) = I +D(µ̂)d2L(µ̂)

= D(µ̂)[D(µ̂)−1 + d2L(µ̂)],

whered2L(µ̂) is the second differential or Hessian matrix of
L(µ). To estimate the spectral radius ofdG(µ̂) requires a
lemma.

Lemma 1 SupposeA andB are symmetric matrices withA
andB positive definite andA − B positive semidefinite. Then
the eigenvalues ofA−1(A−B) lie on [0, 1).

PROOF: This well-known result is proved with minor nota-
tional differences by Green [9].

In the usual EM theory [1], the matrix differenceA − B is
identified with the expected information of the complete data
given the observed data. In the current algorithm, we identifyA
with D(µ̂)−1 andB with −d2L(µ̂). Assuming that all̂µj > 0,
the matrixA is positive definite. Positive definiteness ofB is a
consequence of strict concavity ofL(µ). Strict concavity is hard
to verify in practice; a necessary condition is that the number of
projections exceeds the number of pixels.

In any case to apply the lemma, we need to verify thatA−B
is positive semidefinite. Direct computation with an arbitrary
vectorv gives

vt(A−B)v =
∑

i

die
−〈li,µ̂〉〈li, µ̂〉

∑

j

lij
v2j
µ̂j

(8)

−
∑

i

die
−〈li,µ̂〉〈li, v〉

2.

Now Cauchy’s inequality implies

〈li, µ̂〉[
∑

j

lij
v2j
µ̂j
] ≥ 〈li, v〉

2. (9)
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When (9) is multiplied bydie−〈li,µ̂〉, and the result summed on
i, the required inequality

vt(A−B)v ≥ 0

follows. Local attractiveness is now established by appealing to
Ostrowski’s theorem and the lemma.

In the event that〈li, µ̂〉 ≤ 1 for all i, the algorithm (4) is also
locally attractive. Indeed, the nonnegativity of (9) then yields

∑

i

die
−〈li,µ̂〉

∑

j

lij
v2j

µ̂j

−
∑

i

die
−〈li,µ̂〉〈li, v〉

2 ≥ 0. (10)

Now substitute the identity
∑
i die

−〈li,µ̂〉lij =
∑
i Yilij , which

follows from ∂L
∂µj
(µ̂) = 0, in (10). This substitution proves

the positive semidefiniteness ofA − B, whereB = −d2L(µ̂),
A = F (µ̂)−1, andF (µ̂) is diagonal withjth diagonal entry

F (µ̂)jj =
µ̂j∑
i Yilij

.

Thus, if attenuation is sufficiently weak for〈li, µ̂〉 ≤ 1 to hold
uniformly in i, then the gradient algorithm (4) is locally at-
tracted toµ̂.

In practice, the assumption that〈li, µ̂〉 ≤ 1 holds uniformly
in i is suspect. If we replace this condition by〈li, µ̂〉 ≤ c
uniformly in i for c ≥ 1, then the above argument can be
amended to show that the gradient algorithmµn+1j = µnj +

µnj

c
∑

i
Yilij

∂
∂µj

L(µn) converges locally.

III. I NCORPORATION OFSMOOTHING PRIORS

How can the above algorithms be modified to take into ac-
count a smoothing prior [6,7]? The loglikelihood is changed to
the log posterior∆(µ) = L(µ) − U(µ), whereU(µ) is some
energy function penalizing large deviations between neighbor-
ing pixels. For the EM algorithm and the convex algorithm, the
Q(µ | µn) function is then changed toQ(µ | µn) − U(µ). The
maximumµn+1 of this amended function satisfies

0 =
∂

∂µj
Q(µ | µn)−

∂

∂µj
U(µ), (11)

Green [8,9] decouples and approximately solves the set of equa-
tions (11) by pretending that the argument of∂

∂µj
U(µ) is the

constantµn instead of the unknownµ.
The Gibbs priors introduced by Geman and McClure [6, 7]

take the form

U(µ) = γ
∑

{j,k}∈N

wjkψ(µj − µk),

whereγ and the weightswjk are positive constants,N is a set
of unordered pairs{j, k} defining a neighborhood system, and
ψ(r), r real, is a potential function. For instance, if the pixels
are squares, we might define the weights bywjk = 1 for or-
thogonal nearest neighbors andwjk = 1√

2
for diagonal nearest

neighbors. Defining the pixels as regular hexagons eliminates
diagonal nearest neighbors and permits all weights to be equal.
The constantγ scales the overall strength assigned to the prior.

Choice of the potential functionψ(r) is the most crucial fea-
ture of the Gibbs prior. It is convenient to assume thatψ(r) is
even, twice continuously differentiable, and strictly convex with
ψ′′(r) > 0 for all r. Strict convexity leads to strict concavity
of the log posterior∆(µ) = L(µ) − U(µ) and permits simple
modification of the EM algorithm and the convex algorithm.
There are many potential functions satisfying these conditions.
One obvious example isψ(r) = r2. This choice tends to deter
the formation of boundaries, and Green [8,9] has suggested the
gentler alternativeψ(r) = ln[cosh(r)], which grows for large
|r| linearly rather than quadraticly. Lange [13] lists a number of
other potential functions exhibiting linear growth at|r| =∞.

De Pierro [2,3] has proposed an elegant alternative to Green’s
method of handling the energy functionU(µ)when maximizing
Q(µ | µn) − U(µ). Paralleling his treatment of the loglikeli-
hood, De Pierro exploits convexity so as to reduce maximiza-
tion of Q(µ | µn) − U(µ) to a sequence of one-dimensional
maximization problems. Now convexity and evenness of the
potential functionψ(r) together imply

ψ(µj − µk)

= ψ(
1

2
[2µj − µ

n
j − µ

n
k ] +

1

2
[−2µk + µ

n
j + µ

n
k ])

≤
1

2
ψ(2µj − µ

n
j − µ

n
k ) +

1

2
ψ(2µk − µ

n
j − µ

n
k ), (12)

with strict inequality unlessµj+µk = µnj +µ
n
k . Inequality (12)

in turn yields

−U(µ)

= −γ
∑

{j,k}∈N

wjkψ(µj − µk)

≥ −
γ

2

∑

{j,k}∈N

wjkψ(2µj − µ
n
j − µ

n
k )

−
γ

2

∑

{j,k}∈N

wjkψ(2µk − µ
n
j − µ

n
k )

= −V (µ | µn).

In both the EM and the convex algorithms, we now substitute
the comparison function

Υ(µ | µn) = Q(µ | µn)− V (µ | µn)

for the comparison functionQ(µ | µn)−U(µ). By construction
this amended strictly concave comparison function provides the
bound

∆(µ)−Υ(µ | µn) ≥ ∆(µn)−Υ(µn | µn), (13)

on the log posterior∆(µ). If the maximum ofΥ(µ | µn) oc-
curs atµ̂n, then some componentŝµnj may satisfyµ̂nj = 0. We
can avoid these boundary problems by defining the next iter-
ateµn+1 to have componentsµn+1j = max(µ̂nj , εµ

n
j ) for some
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constantε in the open interval(0, 1). To prove the crucial in-
equality∆(µn+1) ≥ ∆(µn), we now argue as follows. The
choice ofµ̂nj entails

∂

∂µj
Υ(µ | µn) |µj=µnj (µ̂

n
j − µ

n
j ) ≥ 0 (14)

becauseΥ(µ | µn) separates the parametersµj and ∂
∂µj
Υ(µ |

µn) has the same sign as the differenceµ̂nj − µ
n
j . The inequal-

ity (14) remains valid whenµn+1j is substituted for̂µnj and the
partial derivative is evaluated at any pointµ̄nj betweenµnj and
µn+1j . Inequality (13) and the mean value theorem then imply

∆(µn+1)

≥ ∆(µn) + Υ(µn+1 | µn)−Υ(µn | µn) (15)

= ∆(µn) +
∑

j

∂

∂µj
Υ(µ | µn) |µj=µ̄nj (µ

n+1
j − µnj )

≥ ∆(µn),

with strict inequality whenµn+1 6= µn.
In practice, instead of maximizingΥ(µ | µn), one could set-

tle for one step of Newton’s method and use the algorithm

µn+1j = µnj −

∂
∂µj
Υ(µ | µn) |µ=µn

∂2

∂µ2
j

Υ(µ | µn) |µ=µn

= µnj −

∂
∂µj
∆(µn)

∂2

∂µ2
j

Υ(µ | µn) |µ=µn
. (16)

How to accommodate a smoothing prior in algorithm (4) is
not altogether obvious. The problem is that algorithm (4) is
not motivated by optimization of a simple functionQ(µ | µn)
designed to force an increase inL(µ). It is interesting that the
quadratic function

Q(µ | µn)

=
∑

j

{µj
∑

i

dilije
−〈li,µ

n〉 −
(µj)

2

2

∑
i Yilij

µnj
} (17)

is maximized by (4), but this choice ofQ(µ | µn) may not
guarantee the increaseL(µn+1) > L(µn). For this reason there
is little point in applying De Pierro’s transformation ofU(µ) to
V (µ | µn). Our limited numerical experience suggests that the
alternative algorithm

µn+1j = µnj −

∂
∂µj
∆(µn)

∂2

∂µ2
j

Q(µ | µn) |µ=µn −
∂2

∂µ2
j

U(µn)
(18)

= µnj +
µnj∑

i Yilij + µ
n
j
∂2

∂µ2
j

U(µn)

∂

∂µj
∆(µn)

performs better, whereQ(µ | µn) is defined by formula (17).
This is just one step of Newton’s method applied to the function
Q(µ | µn) − U(µ), but omitting the off-diagonal entries of the
Hessiand2U(µn).

IV. GLOBAL CONVERGENCE OF THEALGORITHMS

Both the EM algorithm and the convex algorithm converge
to the global maximum of the log posterior. Our proof of this
fact incorporates features from previous proofs of Lange and
Carson [17] and De Pierro [2]. As noted above, the next iterate
µn+1 of either of these algorithms is defined componentwise by
µn+1j = max(µ̂nj , εµ

n
j ), whereµ̂nj either equals0 or provides

the unique root of ∂
∂µj
Υ(µ | µn) = 0, and whereε is some con-

stant in the interval(0, 1). Observe that our definition ofµn+1

differs slightly from De Pierro’s [2], who takesµn+1j = µ̂nj
whenever̂µnj > 0. It is convenient to assume thatµ0j > 0 for
all j since thenµn+1j > 0 for all n and j. It is also natural
to assume that for each pixelj there is some projectioni with
Yilij > 0.

Convergence of the iteratesµn hinges on strict concavity of
the log posterior. To establish this fact, we assume that the
neighborhood systemN of the Gibbs priorU(µ) is connected.
If the pixels are considered as nodes of a graph, with two neigh-
boring pixels connected by an edge, then this assumption means
that it is possible to find some sequence of edges leading from
any pixel to any other pixel. Strict concavity and related prop-
erties of the log posterior are summarized in the next lemma.
Recall thatψ(r) is even, twice continuously differentiable, and
satisfiesψ′′(r) > 0 for all r.

Lemma 2 Let∆(µ) = L(µ)−U(µ) be the log posterior. Then

a)∆(µ) is strictly concave.

b) lim‖µ‖→∞∆(µ) = −∞. Consequently,∆(µ) has a unique
maximum.

c) The set{µ : µj ∂∂µj∆(µ) = 0 for all j} of stationary points

of∆(µ) is finite.

PROOF: Strict concavity is verified by examining the quadratic
form

∑

j

∑

k

ξj
∂2

∂µj∂µk
∆(µ)ξk,

which reduces to

−
∑

i

die
−〈li,µ〉〈li, ξ〉

2

−γ
∑

{j,k}∈N

wjkψ
′′(µj − µk)(ξj − ξk)

2. (19)

Because of the assumption thatψ′′(r) > 0 and the connect-
edness of the pixels, the second sum in (19) is negative unless
ξj = ξk for all j andk. If ξj is constant, substitution of this
constant into the first sum of (19) shows that the first sum is
negative.

For b) it suffices to prove that

lim
‖µ‖→∞

L(µ) = −∞

sinceU(µ) is bounded below. Indeed, the boundinfµ U(µ) >
−∞ follows directly from the boundinfr ψ(r) > −∞. The
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limiting behavior ofL(µ) holds because if any componentµj
tends to∞, then the assumptionYilij > 0 for some projection
i forces the conclusionlimn→∞ Yi〈li, µn〉 =∞.

Part c) follows from the fact that an unconstrained, strictly
concave function can have at most one stationary point. Corre-
sponding to each set of possible boundary restrictionsµj = 0,
there is consequently at most one stationary point.

The next lemma states some properties of the iteration
schemeµn.

Lemma 3 Suppose that the iterations begin withµ0 having all
components positive. Then

a) All components of each iterateµn are positive.

b) ∆(µn+1) ≥ ∆(µn), with strict inequality whenµn+1 6=
µn.

c) The iteratesµn all belong to the same compact, convex set.

d) limn→∞∆(µn) exists and is finite.

e) The Euclidean distance‖µn+1 − µn‖ between successive
iteratesµn+1 andµn tends to0.

f) If some subsequenceµnk converges toµ∞, then the subse-
quenceµnk+1 also converges toµ∞.

PROOF: Part a) follows directly from the definition ofµn+1 and
the positivity of the components ofµ0. Part b) restates inequal-
ity (15). Part c) is true since all iterates belong to the set

{µ : ∆(µ) ≥ ∆(µ0)}.

This set is compact because of the coerciveness of∆(µ) estab-
lished in b) of Lemma 2. It is convex because∆(µ) is concave.
Part d) follows from b) and the boundedness of∆(µ) on the
compact set{µ : ∆(µ) ≥ ∆(µ0)}.

To prove e) we expandΥ(µ | µn) − Υ(µn | µn) in a sec-
ond order Taylor’s expansion aroundµn+1. If dΥ(µ | µn)
andd2Υ(µ | µn) denote the first and second differentials of
Υ(µ | µn) with respect to its left argument, then

Υ(µn+1 | µn)−Υ(µn | µn)

= dΥ(µ | µn) |µ=µn+1 (µ
n+1 − µn) (20)

−
1

2
(µn+1 − µn)td2Υ(µ | µn) |µ=µ (µ

n+1 − µn),

whereµ is some point on the line segment betweenµn and
µn+1. The linear term in (20) is nonnegative. This follows
because the directionµn − µn+1 fromµn+1 is a descent direc-
tion. The quadratic form in (20) is positive definite and bounded
below by the contribution of the Gibbs prior

∑

j

γ
∑

{k:{j,k}∈N}

wjkψ
′′(2µj − µ

n
j − µ

n
k )(µ

n+1
j − µnj )

2

≥ c‖µn+1 − µn‖2.

The constantc appearing in this last inequality is positive owing
to part c) and the assumption thatψ(r) is twice continuously

differentiable and satisfiesψ′′(r) > 0 for all r. Combining
these developments with inequality (13) yields

∆(µn+1)−∆(µn) ≥ Υ(µn+1 | µn)−Υ(µn | µn)

≥ c‖µn+1 − µn‖2.

Appeal to d) of the current lemma now finishes the proof of e).
Part f) is an immediate consequence of e).

The preceding two lemmas set the stage for our proof of
global convergence.

Theorem 1 If the initial iterateµ0 has all components positive,
then the sequenceµn converges to the global maximum of the
log posterior∆(µ).

PROOF: Because the sequenceµn is confined to a compact set,
it suffices to show that limit set of the sequence reduces to a
single point and that this point is the maximum point. Suppose
thatµ∞ = limk→∞ µnk is the limit of some subsequenceµnk .
Let us first show thatµ∞ is a stationary point of∆(µ). As noted
in c) of Lemma 2, we must demonstrate that all components of
µ∞ satisfy eitherµ∞j = 0 or ∂

∂µj
∆(µ∞) = 0. In the nontrivial

caseµ∞j > 0, the conditionµnk+1j = εµnkj cannot hold for

infinitely manyk since this would driveµnk+1j to 0 rather than

to µ∞j , in contradiction to f) of Lemma 3. Thusµnk+1j = µ̂nkj
is true for all largek. It is then clear that the two equations

0 =
∂

∂µj
Υ(µ | µnk) |µ=µ̂nk

∂

∂µj
∆(µnk) =

∂

∂µj
Υ(µ | µnk) |µ=µnk

yield in the limit the desired condition∂∂µj∆(µ
∞) = 0.

Next observe that the limit set ofµn is connected because of
assertion e) of Lemma 3 [21]. Since the limit set is contained
in the set of stationary points of∆(µ), and the stationary points
are finite in number, connectedness demands that the limit set
consist of a single stationary point.

Thus we may assume thatlimn→∞ µn = µ∞ exists. To
prove thatµ∞ is the maximum point, it suffices to verify that
each componentµ∞j satisfyingµ∞j = 0 also satisfies the Kuhn-
Tucker condition ∂

∂µj
∆(µ∞) ≤ 0 [11]. If the contrary con-

dition ∂
∂µj
∆(µ∞) > 0 holds for such a boundary component,

then

∂

∂µj
Υ(µ | µn) |µ=µn=

∂

∂µj
∆(µn) > 0

holds for all largen. However, this situation entails

µn+1j = µ̂nj

≥ µnj ,

which clearly is in conflict withlimn→∞ µnj = 0. This contra-
diction establishes thatµ∞ is the maximum point.

V. PERFORMANCE ONSIMULATIONS

In this section we describe some representative simulations
demonstrating the relative convergence rates of the three algo-
rithms. For these examples, we used the penalized versions (16)
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and (18) of the algorithms with a simple quadratic smoothing
prior of the form

U(µ) = γ
∑

j

∑

k∈Nj

wjk(µj − µk)
2,

whereNj denotes the usual 8 pixel neighborhood of thejth
square pixel. Conventionally one sets the weightswjk to 1 for
horizontal and vertical neighbors and to1√

2
for diagonal neigh-

bors. This choice leads to spatially-variant image resolution, so
we used the modified weights described in [4] to make the res-
olution approximately uniform. We selected the regularization
parameterγ as suggested by Fessler [4] to achieve a resolution
of 2.5 pixels or 1.125cm full-width at half maximum (FWHM).

For testing the algorithms, we used the synthetic attenu-
ation map shown in Figure 1, representing a human thorax
with linear attenuation coefficients 0.0165/mm, 0.0096/mm,
and 0.0025/mm for bone, soft tissue, and lungs, respectively.
The image was decomposed into a 128 by 64 array of 4.5mm
pixels. We simulated a PET transmission scan with 192 radial
bins and 256 angles uniformly spaced over180◦. The lij fac-
tors correspond to 6mm wide strip integrals on 3mm center-
to-center spacing. (This is an approximation to the ideal line
integral that accounts for finite detector width.) Thedi factors
were generated using pseudo-random log-normal variates with
a standard deviation of 0.3, to account for detector efficiency
variations, and scaled so that

∑
i di exp(−〈li, µ〉) was one mil-

lion counts. Pseudo-random Poisson transmission projections
Yi were generated with meansdi exp(−〈li, µ〉).

We initialized the iterative algorithms with two different start-
ing conditionsµ0. In the first case we started from the filtered
backprojection (FBP) image shown in Figure 1, except that we
first reset all attenuation values to no less than0.01 of the max-
imum estimated value. We reconstructed the FBP image with a
second order Butterworth filter at a resolution of 2.5 pixels or
1.125cm FWHM. In the second case we started from a uniform
image with attenuation coefficient 0.008/mm. For the M step
of the EM algorithm we employed Newton’s method for each
parameter [19]. For the gradient algorithm, we enforced mono-
tonicity by repeatedly halving the step size until the objective
function increased.

Figure 2 shows a plot of the increase in the log-posterior
∆(µn) − ∆(µ0) function versus iterationn for the algorithms
initialized with the FBP image. The computation time per iter-
ation varies among the algorithms, so a more objective compar-
ison is total computation time, which is shown in Figure 3 as
cumulative CPU time as measured on a DEC 3000/800 work-
station. The EM algorithm requiresN0 exponentiations per it-
eration, whereN0 is the number of non-zerolij factors (N0 ≈
5.6×106 in this case). The convex algorithm and gradient algo-
rithm only requireNp exponentiations per iteration, whereNp
is the number of projections (Np = 256 × 192 ≈ 5 × 104 in
this case). Thus, when measured against CPU time, the gradient
algorithm and the convex algorithm approach the asymptote of
the log-posterior much faster than the EM algorithm (although
not 100 times faster since the inner products use much of the
time per iteration).

Figures 4 and 5 are analogous to Figures 2 and 3 except that
here the algorithms are initialized with the uniform image. In
this case the convex algorithm converges faster than the gradient
algorithm and the EM algorithm in terms of both CPU time and
number of iterations.

It is obvious from these figures that conclusions drawn about
convergence rates depend strongly on the starting conditions of
the algorithms. In the above cases, the initial FBP image has
much higher log-posterior than the initial uniform image, and
subsequent iterations make smaller changes in the log-posterior.
Thus the plots for starting with the FBP image are more related
to asymptotic convergence rate, whereas the plots for starting
with the uniform image measure initial performance of the al-
gorithms far from the optimal point.

Maximizing the log-posterior is a surrogate for the real goal
of producing better images. Figure 6 compares the images pro-
duced by the three algorithms after 15, 30, 60 and 110 seconds
of CPU time. The images from the EM algorithm are blurry,
reflecting slow convergence starting from an initial uniform im-
age. The gradient and convex algorithms produce very similar
images and obviously converge much faster than the EM algo-
rithm. As can seen from a comparison of Figures 1 and 6, the
maximum a posteriori images have fewer streak artifacts than
the FBP image.

VI. D ISCUSSION

Because the EM algorithm for transmission tomography is
beginning to see practical application [18, 19, 23], it is timely
to review and compare its performance with competing algo-
rithms. Our limited experience confirms the widespread im-
pression that incorporating a smoothing prior enhances over-
all image quality. This practical improvement is consistent
with the better theoretical behavior of the smoothed algo-
rithms. For instance, sufficient smoothing automatically turns
an ill-conditioned maximum likelihood problem into an well-
conditioned maximum a posteriori problem.

The smoothed versions of the gradient algorithm (4) and the
convex algorithm (7) appear to be considerably more efficient
than the EM algorithm. This is not surprising in view of the
larger number of exponentiations entailed by the EM algorithm.
We anticipate that this superiority will continue to hold in other
simulation trials. Because we understand its convergence be-
havior better, we tend to prefer the convex algorithm to the gra-
dient algorithm.

The convex and gradient algorithms should adapt well to ar-
ray and parallel processing. A substantial proportion of the
computation load for both algorithms involves calculation of the
discrete line integrals〈li, µ〉. These and subsequent operations
are perfect candidates for array and parallel processing. The EM
algorithm, in contrast, is more awkward to implement since it
involves sequential calculation of many partial line integrals. Of
course, the algorithm of choice depends on the intended com-
puter. It is noteworthy that on conventional serial workstations a
non-parallelizable coordinate ascent algorithm converges faster
from a FBP starting image than any the three algorithms exam-
ined here [5]

The EM and convex algorithms, and possibly the gradient
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algorithm as well, could benefit from the quasi-Newton accel-
eration techniques recently suggested by Lange [15]. These
techniques attempt to build better approximations to the Hes-
siand2∆ of the log posterior using the diagonal Hessiand2Υ of
the comparison functionΥ as a base. The presence of boundary
constraints on the parameters complicates quasi-Newton meth-
ods, but perhaps the addition of small barrier terms to the log-
likelihood will make acceleration techniques practical without
detracting much from the final image.

Although the algorithms discussed here show definite
promise, further theoretical improvements are to be expected.
At the same time computing costs continue to drop, and proces-
sor speeds to increase. These trends imply an accelerating tran-
sition away from Fourier methods and toward statistical meth-
ods of image reconstruction.
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Figure 1: Digital thorax phantom (top), and image recon-
structed using filtered backprojection (bottom).
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Figure 2: Increase in log-posterior∆(µn)−∆(µ0) versus iteration starting with the FBP image.
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Figure 3: Increase in log-posterior∆(µn)−∆(µ0) versus CPU seconds starting with the FBP image.
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Figure 4: Increase in log-posterior∆(µn)−∆(µ0) versus iteration starting with the uniform image.
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Figure 5: Increase in log-posterior∆(µn)−∆(µ0) versus CPU seconds starting with the uniform image.
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Figure 6: Images reconstructed after approximately 15, 30, 60, and 110 CPU seconds (left to right) when initialized with the
uniform image. Top: iterations 1, 3, 6, and 11 of the EM algorithm. Middle: iterations 4, 12, 24, and 44 of the gradient algorithm.
Bottom: iterations 4, 12, 22, and 40 of the convex algorithm.


