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ABSTRACT uation is roughly to be equated with density. In an imaging ex-
This paper reviews and compares three maximum likeliho griment, X-rays or-rays are beamed from an external source
pap P rough the imaged object. These high energy photons can be

algorithms for transmission tomography. One of these alggt_opped or deflected by the object, or they can be detected by

rithms is the EM algorithm, one is based on a convexity argu_device on the opposite side of the object. Only a fraction of

mhen;?]tcajv(ljsneedisb;/nD; dilscr:ror:: dgg(nat(;?nct)?iﬁ?nf eTTEif) g:ﬁ?gg%}é photons successfully travel from source to detector along
phy, an 9 9 ’ 9 a_given flight path (projection). The probability of a photon
joy desirable local and global convergence properties and Coer\g_caping attenuation along a projection is given by expenenti-
bine gracefully with Bayesian smoothing priors. Preliminaré.

numerical testing of the algorithms on simulated data sugg %I g the negative of the line integral of the attenuation density

that the convex algorithm and the ad hoc gradient algorithm aeh%)ng the projection. In_determ|n|st|c recons_tructlon, _thes_e line
) . . . .. Infegrals are mathematically massaged to given the final image.
computationally superior to the EM algorithm. This superiorit

L . 0 account is taken of the fact that the observed data actually
stems from the larger number of exponentiations required .
the EM algorithm. The convex and gradient algorithms are W&¥n5|st of photqn counts. . . .
adapted to parallel computing. The stochastic model dep_ends on dividing the object of mter—
est into small non-overlapping regions of constant attenuation
called pixels. Typically the pixels are squares. To each pixel is
assigned an attenuation parameter. In the absence of the inter-
vening object, the number of photons generated and ultimately
detected along a projection follows a Poisson distribution. At-
tenuation randomly thins these photons. Since thinning a Pois-
son process yields a Poisson process, the number of photons de-
THE value of the EM algorithm in emission tomography igected also follows a Poisson distribution. The detected photon
now well established [17, 22, 24]. Not as widely appresounts constitute the observed data for stochastic reconstruc-
ciated is the potential of the EM algorithm in transmission tQign.
mography [17]. This paper reviews the EM algorithm for trans- The remainder of this paper builds on the above verbal model
mission tomography and compares it to two algorithms recenfly transmission tomography. Section 2 motivates three com-
introduced by Lange et al. [16] and Lange [12]. peting algorithms for maximum likelihood estimation of the at-
The traditional method of image reconstruction in transmigenuation parameters. Local convergence of the algorithms is
sion tomography relies on Fourier analysis and the Radon traBgamined under the simplifying assumption that the maximum
form [10]. An alternative to this deterministic reconstructiopoint is interior to the feasible region. Section 3 outlines how
method is to pose an explicitly stochastic model that permtige algorithms can be amended to incorporate Bayesian smooth-
parameter estimation by maximum likelihood [17]. In this conng parameters. Section 4 proves that two of the algorithms are
text the EM algorithm provides an easily implemented metheglobally convergent. Section 5 compares the numerical perfor-
for searching the likelihood surface. This does not mean thahnce of the algorithms on simulated data. The concluding dis-
the EM or competing stochastic algorithms can match Fouri@ission in Section 6 draws some preliminary conclusions about
methods in computational speed. But the increased realism p@g numerical efficiency of the algorithms and suggests topics
sible with a stochastic model does promise better image rec@s\-further research.
struction with lower patient radiation dose.
The object of transmission tomography is to reconstruct the Il. ALGORITHMS FORTRANSMISSION TOMOGRAPHY

local attenuation properties of the object being imaged. Atten—pq parameters of interest in transmission tomography are
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2 I ALGORITHMS FOR TRANSMISSION TOMOGRAPHY

pixel j, we have the obvious physical constrgint> 0. The vectory by
Poisson nature of X-ray generation implies that the various pro-

jections are independent and that the loglikelihood of the ob- o= 2 die_u"””n)lij 4)
served photon count§ can be written as J I > Yili;
wi o0
— . 7<li7/"> —_V./]. = n J —L n .
L) = ) _{~die Yillis p)} + c. (¥ W Sy B )

3

In equation (1),d; is the expected number of photon counthis is a scaled_gradient algorithm vyith a nonconstant diago-
leaving the source along thih projection;c is an irrelevant Nal scaling matrix. For brevity we will refer to (4) simply as
constant; .. is the vector of attenuation parameters I; is ggrad|ent allgorith.m. It can be heuristically motivated by not-
the vector of intersection lengtihs for the ith projection; and g thatd;e """} is the expected number of photons detected
(li, ) denotes the inner prodult ; 1;;u;. This inner product along projection. Y; is the observed number of photons de-
can be interpreted as the line integral of the discretized atten{zgt€d- Each of these is weighted by the intersection lehgth

tion from source to detector along projection for pixel j, and the results are summed over all projectibns
intersecting pixel. If 7 is too large, the numerator tends to
A. EM Algorithm be smaller than the denominator in (4) apl;ﬁ“ < pj.o If

One can deduce an EM algorithm for this model by defip; is too small, the reversg’*!

77" > uj tends to occur. Un-

ing the complete data as the number of photons entering datfunately, there are no obvious guarantees that the algorithm
leaving each pixel along each projection. LUét; and V;;  will either increase the loglikelihood (1) or preserve param-

be the numbers of photons entering and leaving, respectiv&ligr nonnegativity constraints. These defects can be remedied
pixel j along projectioni. The E step of the EM algorithm re-by taking only a fractional step in the direction implied by the
quires the conditional expectations;; = E(U;; | Vi, u") and incrementu” ' — p™ defined in (4).

N;; = E(V;; | Y;, u™); Lange and Carson [17] prove that )
” (Vs | Y, %) g [L71p C. Convex Algorithm

M;; = Y;+de Zkesﬁ Lk dje={Ln™) Lange [12] discusses yet a third algorithm for transmission
= Ll tomography. This algorithm bears a striking resemblance to the
Ny = Y;+die “resiotn 0 o= lon®) EM algorithm although it does not invoke any notions of miss-

] ] _ing data. To motivate the algorithm, rewrite the loglikelihood
where S;; is the set of pixels between the source and pjxel 55

along projectioni. TheQ(p | ¢™) function of the EM algorithm
[1] then turns out to be L(p) = =) fil{li,m)

Qu | ™)
_ NI A iy using the strictly convex functiong(t) = d;e~t + Y;t. We can
B ;; [~ Nighigpts + (Mij = Nig)In(1 — e )] construct the algorithm by imitating certain arguments of De
Pierro for emission tomography [2, 3]. The crux of the matter is
The M step of the EM algorithm consists in maximizinghat at iteratiom
Q(p | u™) with respect tou. Setting the partial derivative of

Q(p | u™) with respect tqu; equal to 0 yields the transcenden- Lip) = =Y £ i N_ZLU“ )
tal equation - - (T, ™) o
Mij — Nij)liy _ “ N
0 = Nyl W Nl ) > YN ) 6
i i enats —1 iog " I

Lange and Carson [17] are quick to point out that the solution = Qul),
of this transcendental equation can be approximated by with strict inequality unlesg2 (I;, u) = £&(1;, u™) for all i
Mi ) 'U’Z I

1 S (My; — Nij) and allj # k. If u; = pj for all j, then the inequality (5)
H; -1 S (My; + Nyl () is an equality. The functio®) (i | u™) defined on the right of
2 e T (5) is the analog of the function by the same name in classical
assuming the produ@ju?“ is small. Ollinger [19] argues EM theory [1]. It is specifically designed so that the difference

that it is safer to solve (2) iteratively by Newton's method of(1) — Q(p | p™) attains its minimum o aty = p™.
like algorithms. Just as in the usual EM theory, we chopge! to maximize

Q| u™). If untis so selected, then

B. Gradient Algorithm 41 11 +1 +1
The EM algorithm is cumbersome because of the large num—L(” ) = L(Mn )- QELH n ) +nQ(Mn e
L(p™) = Qu" | p™) + Q(u™ [ 1)

ber of exponentiations it entails. An alternative algorithm sug-
gested in Lange et al. [16] updates the attenuation parameter = L(p"),

Vv



II-D Local Convergence 3

with strict inequality whenu™*! = p™. We will refer to this D. Local Convergence
method of selecting™*! as the convex algorithm.

L To analyze the behavior of the algorithm (7) in a neighbor-
To maximizeQ(u | u™) set

hood of the maximum poinf;,, we make the simplifying as-
sumptions thafi exists, is unique, and occurs in the interior of
0 = 8# (| 1) the feasible region. We can then view the iterates given by (7)

’ as moving toward a fixed point of the map
- - lz]f zv M >) (6)
G(p) = p+ D(p)dL(p),
7_51 iy >
= — Z Lij[—die "9 g Yil. whereD(u) is the diagonal matrix withth diagonal entry
h dental be solved | Djj(n) = H
The transcendental equation (6) can not be solved exactly. It 3i S L (L, pydge— (o)

does have a unique solution, however. Ordinarily, this solution
is positive. Indeed, the right hand side of (6) is strictly decreagnddL () is the score vector witlith entry
ingin u;. Forp; = 0, its value is— ), l;;[—d; + Y;], which is P
usually positive becausé ~ d; for a projection that does not —L(p) = > ljldie "~y
sample the object and; <« d; for a projection that does sub- On;j ;
stantially sample the object. For = oo, the right hand side of
(6)is— )", 1;;Y;, which is negative. Thus typically the solutlonIO
falls somewhere on the open interyé] co).

We can solve equation (6) by Newton’s method. Since

According to a theorem of Ostrowski [20], the fixed pqiris
cally attractive provided the spectral radius of the differential
dG () is strictly less than 1. This spectral radius determines the
linear convergence rate of the algorithm. Siadg ) = 0, it

0? follows that

WQ(M | 1™) |u:u"
dG(i) = I+ D(R)d*L(i)
= —Z b B ) D(R)[D(R) " + d*L()],

whered?L(j1) is the second differential or Hessian matrix of

*:‘—j, (i, u™)

= —Z %ai,u”)die 7 , L(p). To estimate the spectral radius @€(ii) requires a
j lemma.
and Lemma 1 Supposed and B are symmetric matrices with
0 n 0 n and B positive definite andl — B positive semidefinite. Then
a—ujQ(M | 1) Jp=pum 8—ML(“ ) the eigenvalues o~ (A4 — B) lieon [0, 1).

for ,LL;L > 0, one Step of Newton’s method gives the approximate ProoE This well-known result is proved with minor nota-

solufion tional differences by Green [9].
n [ |
M;LH = u° s —T iL(M“) In the usual EM theory [1], the matrix differenck— B is
22 Lig{ls, pr)dze 1™ O, identified with the expected information of the complete data
> lildie ™ bor™) — Y] 4y giventhe observed data. In the currentalgorithm, we identify
S 1 (0 i,u”>d'6*<l““"> (™) with D(ﬂ_)*l_andB_ with —c_lQ_L(ﬂ). Assuming that alfi; > 0,
Y lldie W™ (1 4 (1, ™)) — V] the matrixA is p05|t_|ve deflnlt_e. Positive _deflnltene_ssl_a)ﬁs a
= Y L 2y consequence of strict concavity bfu). Strict concavity is hard
> L (L, prydie— Eonm) to verify in practice; a necessary condition is that the number of

This approximate solution of the M step coincides with the arojections exceeds the number of pixels.

gorithm proposed in equation (9) of [12]. The idea of solv- In any case to apply the lemma, we need to verify that B

ing the M Step approximate|y by one Step of Newton’s methéﬂ pOSitive semidefinite. Direct Computation with an arbitrary
is motivated in [14]. One of the results in [14] says that eve{ectorv gives

this approximate solution of the M step leads to an increase in

L(u) in a neighborhood of the optimal point. (This theory does v'(A— B Z die= o (] Z lU p (8)
not quite fit the current problem because of the presence of the j
boundarieg:; > 0.) _ Z die= o (1, )

The algorithm (7) also has the potential disadvantage of giv-
ing M?H < 0wheny7 > 0. This drawback is apt to be more
theoretical than practical, however. As argued above, the &ew Cauchy’s inequality implies
act solution of (6) is usually positive. If the Newton iterate (7)
approximates this solution well, then the Newton iterate will <li,ﬂ>[z Lij Q] > (I;,v)2. 9)
usually be positive as well.



4 Il INCORPORATION OF SMOOTHING PRIORS

When (9) is multiplied byl;e~¢# and the result summed onneighbors. Defining the pixels as regular hexagons eliminates
1, the required inequality diagonal nearest neighbors and permits all weights to be equal.
The constany scales the overall strength assigned to the prior.
Choice of the potential functioti(r) is the most crucial fea-
tyre of the Gibbs prior. It is convenient to assume that) is
even, twice continuously differentiable, and strictly convex with
¥"(r) > 0 for all r. Strict convexity leads to strict concavity
of the log posterioA (1) = L(u) — U(p) and permits simple
modification of the EM algorithm and the convex algorithm.

v'(A—B)v >0

follows. Local attractiveness is now established by appealing
Ostrowski’s theorem and the lemma.

In the eventthafl;, i) < 1 for all ¢, the algorithm (4) is also
locally attractive. Indeed, the nonnegativity of (9) then yields

X 02 There are many potential functions satisfying these conditions.
Z dge= ) Z lij=- One obvious example ig(r) = r2. This choice tends to deter
@ J Hi the formation of boundaries, and Green [8, 9] has suggested the
_ Zdie—uivﬂ) (I;,v)>2 > 0. (10) gentler alternative)(r) = In[cosh(r)], which grows for large
7 |r| linearly rather than quadraticly. Lange [13] lists a number of

X other potential functions exhibiting linear growth|at = co.
Now substitute the identity_, die~“/1;; = 37, Yilij, which  pe pierro [2,3] has proposed an elegant alternative to Green's
follows from £ () = 0, in (10). This substitution proves method of handling the energy functioh() when maximizing
the positive semidefiniteness df— B, whereB = —d?L(j1), Q(u | u™) — U(u). Paralleling his treatment of the loglikeli-
A= F(p)~t, andF(4) is diagonal withjth diagonal entry hood, De Pierro exploits convexity so as to reduce maximiza-
tion of Q(u | p") — U(p) to a sequence of one-dimensional

F(p)j; = Fi maximization problems. Now convexity and evenness of the
> Yili; potential functiony(r) together imply

Thus, if attenuation is sufficiently weak fdk;, i) < 1 to hold Wl — )

uniformly in 4, then the gradient algorithm (4) is locally at- /;7 H )

tracted toj. | A | = (G2 — i = ] 2 )

In practice, the assumption thét, i) < 1 holds uniformly

in 7 is suspect. If we replace this condition B}, i) < ¢ < lw(Quj — = ) + 11#(2/% — = ), (12)

— 2 2 )

uniformly in ¢ for ¢ > 1, then the above argument can be

amended to show that the gradient algoritpifi™ = 1" +  with strict inequality unlesg; +u, = 7 + 2. Inequality (12)

ﬁ%ﬂﬂ”) converges locally. in turn yields
I1l. I NCORPORATION OFSMOOTHING PRIORS -U(w)
How can the above algorithms be modified to take into ac- = -7 Z Wik (j — pk)
count a smoothing prior [6, 7]? The loglikelihood is changed to {5, k}eN
the log posterioA () = L(p) — U(p), whereU(p) is some > x Z Wikt (2415 — pu — )

energy function penalizing large deviations between neighbor-

ing pixels. For the EM algorithm and the convex algorithm, the ~ kieN
Q(p | ™) function is then changed @ (i | ™) — U(p). The 3 Z Wik 2k — pi — p)
maximumy™+! of this amended function satisfies {j,k}eN
9 ( o w = —Vip|p").
0 = —Qulu")—+—U), (11)
Op; |#7) O,

In both the EM and the convex algorithms, we now substitute

Green [8,9] decouples and approximately solves the set of eqiig: comparison function

tions (11) by pretending that the argumentﬁ&U(u) is the . . .

constani™ instead of the unknowp. ’ Tlulp") = Quln") =Vipln")
The Gibbs priors introduced by Geman and McClure [6,

take the form ?!)rthe comparison functio@(x | u™)—U (u). By construction

this amended strictly concave comparison function provides the
Up) = v D wisd(py — i), bound

i, k}eN
oo | Al) =T | ") = A" =T [ 1), (19)
wherey and the weightsv;;, are positive constantsy is a set
of unordered pairgj, k} defining a neighborhood system, anan the log posterioA(p). If the maximum of Y (u | u™) oc-
¢(r), r real, is a potential function. For instance, if the pixelsurs atji", then some componeni§ may satisfyi = 0. We
are squares, we might define the weightsugy = 1 for or- can avoid these boundary problems by defining the next iter-
thogonal nearest neighbors amg, = % for diagonal nearest ate ™! to have componen]z:zs}“rl = max (4}, euy) for some



constant in the open interval0,1). To prove the crucial in- IV. GLoBAL CONVERGENCE OF THEALGORITHMS

equality A(u""") > A(u"), we now argue as follows. The g the EM algorithm and the convex algorithm converge
choice offi entails to the global maximum of the log posterior. Our proof of this

9 fact incorporates features from previous proofs of Lange and

8—T(u | u™) |M:H? (7 —py) > 0 (14) Carson [17] and De Pierro [2]. As noted above, the next iterate

Hi w7t of either of these algorithms is defined componentwise by

n+1 __ ~n n AN A .
becauser (4 | u") separates the parametgarjsand T(u | py T = max(4}, ep’), wherep? either equal®) or provides

H o] ny _ H _
1) has the same sign as the differefie— u*. The mequal- the unique root 0F,; T(w | u) =0, and wheres_|s_ some coln
|ty (14) remains valid Whew?ﬂ is substituted fogi® and the stant in the interva(0, 1). Observe that our definition Qf"*
partial derivative is evaluated at any pojiit betweernu” and

differs slightly from De Pierro’s [2], who takes! "™ = A7
12+ Inequality (13) and the mean value theorem then imply yvheneverii' > 0. Itis convenient to assume thﬁ‘? > 0 for

aII j since then//”rl > ( for all n andj. It is also natural

Apm) to assume that for each pixglthere is some projectiohwith
Yili; > 0.
n n+1 n n n 1lig
z A"+ T(p | ) = L™ [ ut) (15) Convergence of the iterated hinges on strict concavity of
— )+ Y | p) [, = (Mnﬂ ) thg log posterior. To establlsh this fgct, we assume that the
Z o ! ! neighborhood systenv of the Gibbs prioJ () is connected.
> A(u") If the pixels are considered as nodes of a graph, with two neigh-
- ’ boring pixels connected by an edge, then this assumption means
with strict inequality whenu"+1 # um. that it is possible to find some sequence of edges leading from

In practice, instead of maximizirfj(x | ™), one could set- any pixel to any other pixel. Strict concavity and related prop-

tle for one step of Newton’s method and use the a|gorithm erties of the IOg pOSterior are summarized in the next lemma.
Recall that)(r) is even, twice continuously differentiable, and

it o % (1| ™) |pmpn satisfies)” (r) > 0 for all r.
Foo = 20 (| 1) lumpr Lemma 2 LetA(u) = L(u) — U(p) be the log posterior. Then
82 A(p™) a) A(p) is strictly concave.
7, pp—TTE . (16) _
Hs LA (| pn) |y b) lim |, 00 A() = —o0. Consequently)(u) has a unique

maximum.

How to accommodate a smoothing prior in algorithm (4) is
not altogether obvious. The problem is that algorithm (4) is
not motivated by optimization of a simple functigy(u | ™) of A(u) is finite.

designed to force an increaselifu). Itis interesting that the ppoor Strict concavity is verified by examining the quadratic
guadratic function

c) The sef{y : ﬂaa A(u) =0 forall j} of stationary points

form
Qu | 1")
oy )’ Vil 22T, it
> {uy > dilige=tor) — TLT} a7
j i J which reduces to

is maximized by (4), but this choice @(x | ™) may not _Zdiefui,m {1, €)?
guarantee the increaggu™*!) > L(u™). For this reason there -
is little point in applying De Pierro’s transformation (i) to " 9
V(p | p™). Our limited numerical experience suggests that the - Z Wiy = 1) (&5 — &k)” (19)

alternative algorithm {s,k}eN

Because of the assumption that(r) > 0 and the connect-

o n
[ S WJA(” ) ; (18) edness of the pixels, the second sum in (19) is negative unless
I / SS—MQ(M | u™) | e —88—;3 (um) ¢ = & forall j andk. If ¢ is constant, substitution of this
! ! constant into the first sum of (19) shows that the first sum is
= u+ K i A(p" negative.
> Yilij + pf 8u2 = U (un) O For b) it suffices to prove that
performs better, wher@ (. | p™) is defined by formula (17). ||;}ﬁgloo L(p) = —o0

This is just one step of Newton’s method applied to the function
Q(p | ™) — U(p), but omitting the off-diagonal entries of thesinceU () is bounded below. Indeed, the bouind,, U (1) >
HessiandU (u™). —oo follows directly from the boundnf, ¢(r) > —oco. The



6 V  PERFORMANCE ON SIMULATIONS

limiting behavior of L(x) holds because if any componegnt differentiable and satisfieg”(r) > 0 for all ». Combining
tends tooco, then the assumptiojl;; > 0 for some projection these developments with inequality (13) yields
i forces the conclusiolim,, o, Y; (I;, p™) = 0. nal n ntl | m nlom

Part c) follows from the fact that an unconstrained, strictly AE™) - AW = T ") =T [ ")

concave function can have at most one stationary point. Corre- > cfutt - lin|\2~
sponding to each set of possible boundary restrictions: 0, Apnea to d) of the current lemma now finishes the proof of e).
there is consequently at most one stationary point. B pot ) is an immediate consequence of e) m

The next lemma states some properties of the iterationThe preceding two lemmas set the stage for our proof of
n
scheme.™. global convergence.

Lemma 3 Suppose that the iterations begin wijth having all

> Theorem 1 If the initial iterate .° has all components positive,
components positive. Then

then the sequengg® converges to the global maximum of the

a) All components of each iteraté are positive. log posteriorA ().

) . ) PROOF. Because the sequeng® is confined to a compact set,
b) Agﬂnﬂ) > A(um), with strict inequality when:" ! % g ttices to show that limit set of the sequence reduces to a
B single point and that this point is the maximum point. Suppose
c) The iterateg:” all belong to the same compact, convex sef1t#™ = limg_oc u™* is the limit of some subsequenpé*.
Let us first show that > is a stationary point o\ (x). As noted
d) lim, 0o A(u™) exists and is finite. in c) of Lemma 2, we must demonstrate that all components of
p> satisfy eithep.;° = 0 or %A(/ﬁo) = 0. In the nontrivial

e) The Euclidean distandgu"*! — u"|| between successive ) n
iteratesy” ! and ™ tends ta0. caseus® > 0, the condltlonujk = ep;" cannot hold for

infinitely manyk since this would drivgu;““rl to 0 rather than
f) If some subsequenge* converges tq.>, then the subse- to ;% in contradiction to f) of Lemma 3. Thys}**! =

quenceu ! also converges tp™. is true for all largek. It is then clear that the two equations
PrRoOOF. Part a) follows directly from the definition @f**! and 0 — iT( | ™) [y pn
the positivity of the components af . Part b) restates inequal- Oy pin HERTE
ity (15). Part c) is true since all iterates belong to the set 0 - 0 -
3—,M'A(H ) = G—M-T(M | ™) L=
{n: A(u) > A(u°)}- ’ ’

yield in the limit the desired conditiog%A(;f’") =0.

This set is compact because of the coercivenesS(pf) estab-  Next observe that the limit set pf* is connected because of
lished in b) of Lemma 2. It is convex becaus¢y) is concave. assertion e) of Lemma 3 [21]. Since the limit set is contained
Part d) follows from b) and the boundedness/dfu) on the i the set of stationary points @ (1), and the stationary points
compact sefu : A(u) > A(u)}. are finite in number, connectedness demands that the limit set

To prove e) we expand (. | p") — T(u" | p") in @ sec- consist of a single stationary point.
ond order Taylor's expansion aroupd*t. If d¥(u | u") Thus we may assume thit, . u" = u™ exists. To
andd*Y (p | 1) denote the first and second differentials ofrove thay is the maximum point, it suffices to verify that

T(p | p™) with respect to its left argument, then each components* satisfyingu2® = 0 also satisfies the Kuhn-
n n n| on Tucker condition-2-A(u>) < 0 [11]. If the contrary con-
TG %) =0 | ) dition 52~ A 8Mor(wuml)f_ [h] bound ' t
n n n ition 2~ A(>) > 0 holds for such a boundary component,
= AT | ) s (07— ) (o) On i A0 y comp
1
=5 (= ) Y (| ") a0 ), ) 0
2 — (| p") |p=pn= =—A") > 0

where@ is some point on the line segment betweéh and S .
41, The linear term in (20) is nonnegative. This followdolds for all largen. However, this situation entails
because the directiqu® — "+ from " *! is a descent direc- ntl  _
tion. The quadratic formin (20) is positive definite and bounded
below by the contribution of the Gibbs prior

v
=

which clearly is in conflict withim,, , o, py = 0. This contra-

Sy DY wat"(2m; — pf — ) (upT = p})?  diction establishes that™ is the maximum point. n
J {k:{j,k}EN} V. p s
> C||y,n+1 o lunHQ . PERFORMANCE ONSIMULATIONS

In this section we describe some representative simulations
The constant appearing in this last inequality is positive owinglemonstrating the relative convergence rates of the three algo-
to part ¢) and the assumption thafr) is twice continuously rithms. For these examples, we used the penalized versions (16)



and (18) of the algorithms with a simple quadratic smoothing Figures 4 and 5 are analogous to Figures 2 and 3 except that

prior of the form here the algorithms are initialized with the uniform image. In
this case the convex algorithm converges faster than the gradient
Up) = ~ Z Z wik (g — ), algorithm and the EM algorithm in terms of both CPU time and
7 kEN; number of iterations.

It is obvious from these figures that conclusions drawn about
where \V; denotes the usual 8 pixel neighborhood of fitle convergence rates depend strongly on the starting conditions of
square pixel. Conventionally one sets the weighjs to 1 for the algorithms. In the above cases, the initial FBP image has
horizontal and vertical neighbors andfg for diagonal neigh- much higher log-posterior than the initial uniform image, and
bors. This choice leads to spatially-variant image resolution, $gbsequent iterations make smaller changes in the log-posterior.
we used the modified weights described in [4] to make the réldaus the plots for starting with the FBP image are more related
olution approximately uniform. We selected the regularizatida asymptotic convergence rate, whereas the plots for starting
parametety as suggested by Fessler [4] to achieve a resolutigfth the uniform image measure initial performance of the al-
of 2.5 pixels or 1.125cm full-width at half maximum (FWHM).gorithms far from the optimal point.

For testing the algorithms, we used the synthetic attenu-Maximizing the log-posterior is a surrogate for the real goal
ation map shown in Figure 1, representing a human thor@kproducing better images. Figure 6 compares the images pro-
with linear attenuation coefficients 0.0165/mm, 0.0096/mrfluced by the three algorithms after 15, 30, 60 and 110 seconds
and 0.0025/mm for bone, soft tissue, and lungs, respectivedy.CPU time. The images from the EM algorithm are blurry,
The image was decomposed into a 128 by 64 array of 4.5nfiflecting slow convergence starting from an initial uniformim-
pixels. We simulated a PET transmission scan with 192 rad@&ge. The gradient and convex algorithms produce very similar
bins and 256 angles uniformly spaced o¥86°. Thel;; fac- images and obviously converge much faster than the EM algo-
tors correspond to 6mm wide strip integrals on 3mm centéithm. As can seen from a comparison of Figures 1 and 6, the
to-center spacing. (This is an approximation to the ideal lif@aximum a posteriori images have fewer streak artifacts than
integral that accounts for finite detector width.) Thefactors the FBP image.
were generated using pseudo-random log-normal variates with

a standard deviation of 0.3, to account for detector efficiency VI. Discussion

variations, and scaled so thal; d; exp(—(l;, 1)) was one mil-  Because the EM algorithm for transmission tomography is
lion counts. Pseudo-random Poisson transmission projecti@egjinning to see practical application [18, 19, 23], it is timely
Y; were generated with meadsexp(—(l;, ). to review and compare its performance with competing algo-

We initialized the iterative algorithms with two different startrithms. Our limited experience confirms the widespread im-
ing conditionsi:®. In the first case we started from the filtereghression that incorporating a smoothing prior enhances over-
backprojection (FBP) image shown in Figure 1, except that val image quality. This practical improvement is consistent
first reset all attenuation values to no less thax of the max- with the better theoretical behavior of the smoothed algo-
imum estimated value. We reconstructed the FBP image withidams. For instance, sufficient smoothing automatically turns
second order Butterworth filter at a resolution of 2.5 pixels @mn ill-conditioned maximum likelihood problem into an well-
1.125cm FWHM. In the second case we started from a unifogonditioned maximum a posteriori problem.
image with attenuation coefficient 0.008/mm. For the M step The smoothed versions of the gradient algorithm (4) and the
of the EM algorithm we employed Newton’s method for eacbonvex algorithm (7) appear to be considerably more efficient
parameter [19]. For the gradient algorithm, we enforced monvan the EM algorithm. This is not surprising in view of the
tonicity by repeatedly halving the step size until the objectiMarger number of exponentiations entailed by the EM algorithm.
function increased. We anticipate that this superiority will continue to hold in other

Figure 2 shows a plot of the increase in the log-posterisimulation trials. Because we understand its convergence be-
A(u™) — A(u?) function versus iteration for the algorithms havior better, we tend to prefer the convex algorithm to the gra-
initialized with the FBP image. The computation time per itedient algorithm.
ation varies among the algorithms, so a more objective comparThe convex and gradient algorithms should adapt well to ar-
ison is total computation time, which is shown in Figure 3 asy and parallel processing. A substantial proportion of the
cumulative CPU time as measured on a DEC 3000/800 wodemputation load for both algorithms involves calculation of the
station. The EM algorithm requird$, exponentiations per it- discrete line integralg;, ). These and subsequent operations
eration, whereV is the number of non-zery; factors (Vo ~ are perfect candidates for array and parallel processing. The EM
5.6 x 108 in this case). The convex algorithm and gradient algaigorithm, in contrast, is more awkward to implement since it
rithm only requireN,, exponentiations per iteration, whehg, involves sequential calculation of many partial line integrals. Of
is the number of projections\, = 256 x 192 ~ 5 x 10* in  course, the algorithm of choice depends on the intended com-
this case). Thus, when measured against CPU time, the gradjmrier. It is noteworthy that on conventional serial workstations a
algorithm and the convex algorithm approach the asymptoterafn-parallelizable coordinate ascent algorithm converges faster
the log-posterior much faster than the EM algorithm (althoudtom a FBP starting image than any the three algorithms exam-
not 100 times faster since the inner products use much of tireed here [5]
time per iteration). The EM and convex algorithms, and possibly the gradient
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At the same time computing costs continue to drop, and proces- |, 9, pp. 439-446, corrections ibid. vol. 10, p. 228, 1990.
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Figure 1: Digital thorax phantom (top), and image recon-
structed using filtered backprojection (bottom).
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Figure 2: Increase in log-posteriar(1") — A(u°) versus iteration starting with the FBP image.
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Figure 6: Images reconstructed after approximately 15, 30, 60, and 110 CPU seconds (left to right) when initialized with the
uniform image. Top: iterations 1, 3, 6, and 11 of the EM algorithm. Middle: iterations 4, 12, 24, and 44 of the gradient algorithm.
Bottom: iterations 4, 12, 22, and 40 of the convex algorithm.




