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ABSTRACT

We provide a su�cient condition for convergence of a general class of alternating estimation-
maximization (EM) type continuous-parameter estimation algorithms with respect to a given norm.
This class includes EM, penalized EM, Green's OSL-EM, and other approximate EM algorithms.
The convergence analysis can be extended to include alternating coordinate-maximization EM algo-
rithms such as Meng and Rubin's ECM and Fessler and Hero's SAGE. The condition for monotone
convergence can be used to establish norms under which the distance between successive iterates and
the limit point of the EM-type algorithm approaches zero monotonically. For illustration, we apply
our results to estimation of Poisson rate parameters in emission tomography and establish that in
the �nal iterations the logarithm of the EM iterates converge monotonically in a weighted Euclidean
norm.
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I. INTRODUCTION

The maximum-likelihood (ML) expectation-maximization (EM) algorithm is a popular iterative
method for �nding the maximum likelihood estimate �̂ of a continuous parameter � when the
likelihood function is di�cult to maximize directly (e.g. Dempster, Laird, and Rubin (1977), Shepp
and Vardi (1982), Lange and Carson (1984), Miller and Snyder (1987), Feder, Oppenheim, and
Weinstein (1989), and Segal, Weinstein and Musicus (1991)). The penalized EM algorithm is a
variant of the EM algorithm which can be used for �nding maximum a posteriori (MAP) or posterior
mode estimates of a random parameter (e.g. Green (1990a,b), Hebert and Leahy (1989,1992)) . To
implement the EM algorithm the user �rst identi�es a complete data space, also called an augmented
data space (Wei and Tanner, (1990)), for which there exists a many-to-one mapping from the
complete data to the measurement data, called the incomplete data. Then one alternates between
estimating the conditional mean of the complete data log-likelihood function or log-posterior and
updating the parameter estimate.

Three types of convergence results are of practical importance: conditions under which the
sequence of estimates converges globally to a �xed point, norms under which the convergence is
monotone; and the asymptotic convergence rate of the algorithm. A number of authors have es-
tablished global convergence for the exact EM algorithm when the likelihood function satis�es
conditions such as boundedness and unimodality (see Wu (1983), Boyles (1983), Lange and Carson
(1984), Csiszar and Tusnady (1984)) . Sundberg (1976) and Louis (1982) have derived asymptotic
convergence rates for the EM algorithm which have been used for estimating asymptotic estima-
tor covariance (Louis (1982), Meng and Rubin (1991)) and for accelerating the basic algorithm
(Meilijson (1989)). A general property of the EM algorithm is that successive iterates monoton-
ically increase the likelihood. While increasing the likelihood is an attractive property, it does
not guarantee monotone convergence of the parameter estimates: successive iterates of the EM
algorithm reduce the distance to the ML estimate in some norm. In addition, for some imple-
mentations the region of convergence may only be a small subset of the entire parameter space so
that global convergence may not hold. Furthermore, in some cases the EM algorithm can only be
implemented by making simplifying approximations in the conditional expectation step (E) or the
maximization step (M). While the resultant approximate EM algorithm has a similar alternating
estimation-maximization structure, previous approaches developed to establish global convergence
of the exact EM algorithm may not be e�ective for studying asymptotic behavior of the algorithm.
In this paper we provide general conditions for monotone convergence and asymptotic convergence
rates for algorithms which can be implemented via alternating estimation-maximization. The basics
of this approach to EM algorithm convergence analysis were �rst introduced in Hero (1992).

We illustrate the application of our convergence methodology for two examples. A linear EM
algorithm for a simple linear Gaussian model provides the most transparent illustration of the
methodology. Then we consider the more interesting non-linear case of emission computed to-
mography (ECT) with Poisson statistics implemented with the EM algorithm of Shepp and Vardi
(1982). For the ECT problem we show that when the EM algorithm converges to a strictly pos-
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itive estimate, in the �nal iterations convergence is monotone in the following sense: the natural
logarithm of the n-th iterate converges monotonically as n ! 1 to the natural logarithm of the
ML estimate in a weighted Euclidean norm.

II. AN ARCHETYPE ALGORITHM

Let � = [�1; : : : ; �p]
T be a real parameter residing in an open subset � of the p-dimensional

space IRp. Given a general function Q : � � � ! IR and an initial point �0 2 �, consider the
following recursive algorithm, called the A-algorithm:

A-algorithm: �i+1 = argmax�2�Q(�; �
i); i = 0; 1; : : : : (1)

If there are multiple maxima, then �i+1 can be taken to be any one of them. Let �� 2 � be a �xed
point of (1), i.e. �� satis�es: �� = argmax�2�Q(�; �

�)

By suitable speci�cation of the function Q(�; �) the A-algorithm specializes to many popular
iterative estimation algorithms. For example, for complete data X and incomplete data Y the
EM algorithm is obtained by identifying Q(�; �) = Efln f(X; �)jY; �g, where f(X; �) is a density
function of the random variable X for a particular value of an unknown parameter �. If a penalty
function P (�) is introduced then Q(�; �) = Efln f(X; �)jY; �g � P (�) gives the EM algorithm
for penalized ML estimation, or, if exp (�P (�)) is a prior for �, it gives the EM algorithm for
the posterior mode. Alternatively, when Q(�; �) = Efln f(X; �)jY; �g � (rP )(�)[� � �] we obtain
the one-step-late approximation of Green (1990a,b) to the EM algorithm for the posterior mode.
Likewise, the generalized EM algorithm of De Pierro (1993) and the linearized EM algorithm
of Antoniadis and Hero (1994) are A-algorithms (see Hero and Fessler (1993)). Fessler and Hero
(1994) extend the convergence results of this paper to the space-alternating generalized EM (SAGE)
algorithm in which the functional Q(�; �) changes with iteration. Similar extensions apply to the
study of monotone norm convergence for the multi-cycle expectation/conditional maximization
(ECM) algorithm of Meng and Rubin (1993) and the ECME algorithm of Liu and Rubin (1994).

Let k � k denote a vector norm on IRp. For any p � p matrix A the induced matrix norm jjjAjjj
(see section 5.6 of Horn and Johnson (1985)) of A is de�ned as:

jjjAjjj
def
= max

u2IRp�f0g

kAuk

kuk
;

where the maximization is over non-zero u in IRp. A special case is the matrix-2 norm jjjAjjj2 which
is induced by the Euclidean vector norm kuk22 = uTu. We say that a sequence ui, i = 1; 2; : : :,
converges monotonically to a point u� in the norm k � k if:

kui+1 � u�k � �kui � u�k; i = 1; 2; : : : ;
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for some constant �, � 2 [0; 1). Consider the general linear iteration of the form vi+1 = Avi; i =
1; 2; : : : ; with jjjAjjj < 1. Then, since kvi+1k � jjjAjjj � kvik < kvik, the sequence fvig converges
monotonically to zero and the asymptotic rate of convergence is speci�ed by the root convergence
factor �(A) which is de�ned as the largest magnitude eigenvalue of A (Ortega and Rheinboldt
(1970, p. 301)). If A is real symmetric non-negative de�nite then �(A) = jjjAjjj2. The above simple
convergence conditions only apply to linear iterations. Theorem 1 below gives a related set of
convergence conditions for the generally non-linear A-algorithm.

Assume that the function Q(�; �) is twice continuously di�erentiable in both arguments � and �
over �; � 2 �. De�ne the Hessian matrix of Q over ��� as the following block partitioned 2p� 2p
matrix:

r2Q(�; �) =

"
r20Q(�; �) r11Q(�; �)

(r11Q(�; �))T r02Q(�; �)

#
; (2)

where r20Q(�; �) = r�rT
�Q(�; �), r

02Q(�; �) = r�r
T

�
Q(�; �), and r11Q(�; �) = r�r

T
�Q(�; �) are

p � p matrices of partial derivatives @2

@�i@�j
Q(�; �), @2

@�i@�j
Q(�; �), and @2

@�i@�j
Q(�; �), i; j = 1; : : : ; p,

respectively.

A region of monotone convergence relative to the vector norm k � k of the A-algorithm (1) is
de�ned as any open ball B(��; �) = f� : k� � ��k < �g centered at � = �� with radius � > 0 such
that if the initial point �0 is in this region then k�i � ��k, i = 1; 2; : : :, converges monotonically to
zero. Note that as de�ned, the shape in IRp of the region of monotone convergence depends on the
norm used. For the Euclidean norm kuk2 = uTu the region of monotone convergence is a spherically
shaped region in �. For a general positive de�nite matrix B the induced norm kuk2 = uTBu makes
this region an ellipsoid in �. Since all norms are equivalent for the case of a �nite dimensional
parameter space, monotone convergence in a given norm implies convergence, however possibly
non-monotone, in any other norm.

De�ne the p�pmatrices obtained by averagingr20Q(u; u) andr11Q(u; u) over the line segments

u 2
�!
��� and u 2

�!
���:

(3)

A1(�; �) = �

Z 1

0
r20Q(t� + (1� t)��; t� + (1� t)��)dt

A2(�; �) =
Z 1

0
r11Q(t� + (1� t)��; t� + (1� t)��)dt:

Also, de�ne the following set:

S(�) = f� 2 � : Q(�; �) � Q(�; �)g:

By the construction of the A-algorithm (1), we have �i+1 2 S(�i).

4



De�nition 1 For a given vector norm k � k and induced matrix norm jjj � jjj de�ne R+ � � as the
largest open ball B(��; �) = f� : k� � ��k < �g such that for each � 2 B(��; �):

A1(�; �) > 0; for all � 2 S(�) (4)

and for some 0 � � < 1����
����
����hA1(�; �)

i�1
�A2(�; �)

����
����
���� � �; for all � 2 S(�). (5)

The following convergence theorem establishes that, if R+ is not empty, the region in De�nition
1 is a region of monotone convergence in the norm k � k for an algorithm of the form (1). One can
show that R+ is non-empty for su�ciently regular problems. For example, assume that: i) Q(�; �)
is continuously twice di�erentiable in � and �; ii) Q can be written as Q(�; �) = L(�)+H(�; �) where
H(�; �) � H(�; �) and r11H(�; �) = �r20H(�; �) � 0 (as is always the case for an EM algorithm
(see Dempster, Laird, Rubin (1977))); iii) L(�) has a local maximum at � = �� and iv) there exists
a level L� such that L(�) is strictly concave over the set f� : L(�) > L�g. Note that under these
conditions it follows from Corollary 1 of Wu (1983), that the set f� : L(�) > L�g is a region of
convergence to the global maximum, i.e. if the initial point �0 is selected from this set subsequent
iterates �i will converge to ��, although it is not generally a region of monotone convergence in norm.
A non-empty region of monotone convergence R+ is established as follows. By assumptions i and

iv, for any � > 0 there exists a � > 0 such that if � 2 B2(�
�; �)

def
= f� : k����k2 < �g then f� : L(�) �

L(�)g � B2(�; �). Since Q(�; �)�Q(�; �) � L(�)�L(�) we have S(�) � f� : L(�) � L(�)g. Thus for

� 2 B2(�
�; �) and � 2 S(�) we have: A1(�; �) = �r20Q(��; ��) +O(�) and

���������[A1(�; �)]
�1A2(�; �)

��������� =
jjj[r20Q(��; ��)]�1r11Q(��; ��)jjj + O(�). By assumptions ii) and iv) the matrix �r20Q(��; ��) is
symmetric positive de�nite and r11Q(��; ��) is symmetric non-negative de�nite. Hence, for suf-
�ciently small � > 0, for all � 2 B2(��; �) and for all � 2 S(�) the condition (4) is satis�ed
and, de�ning the norm k � k by kuk2 = uT [�r20Q(��; ��)]u: jjj[�r20Q(��; ��)]�1r11Q(��; ��)jjj =
� ([�r20Q(��; ��)]�1r11Q(��; ��)) = � ([�r20L(��)�r20H(��; ��)]�1 [�r20H(��; ��)]) < 1 so that
the condition (5) is also satis�ed. Thus R+ is non-empty for any EM algorithm satisfying the
regularity conditions i-iv.

Theorem 1 Let �� 2 � be a �xed point of the A algorithm (1), where �i+1 = argmax�2�Q(�; �
i),

i = 0; 1; : : :. Assume: i) for all � 2 �, the maximum max�Q(�; �) is achieved on the interior of the
set �; ii) Q(�; �) is twice continuously di�erentiable in � 2 � and � 2 �, and iii) the A-algorithm
(1) is initialized at a point �0 2 R+ for a norm k � k.

1. The iterates �i; i = 0; 1; : : : all lie in R+,

2. the successive di�erences ��i = �i � �� of the A algorithm obey the recursion:

��i+1 = [A1(�
i+1; �i)]�1A2(�

i+1; �i) ���i; i = 0; 1; : : : : (6)
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3. the norm k��ik converges monotonically to zero with at least linear rate, and

4. ��i asymptotically converges to zero with root convergence factor

�
��
�r20Q(��; ��)

��1
r11Q(��; ��)

�
< 1:

If the iterates are initialized within a region R+, or for that matter if any iterate �i lies in
R+, then all subsequent iterates will also lie within R+. Within that region, Theorem 1 provides
a functional relationship (6) between successive iterates, which in turn ensures that the iterates
converge monotonically in norm to �� with an asymptotic linear rate governed by the spectral radius
of a matrix depending on the partial derivatives of Q. When specialized to the EM algorithm, the
root convergence factor is equivalent to the expression obtained by Dempster, Laird and Rubin
(1977) and used by Meng and Rubin (1991) to estimate the asymptotic estimator covariance matrix.

Proof of Theorem 1:

De�ne �� = � � �� and ��i = �i � ��. Convergence will be established by showing that

k��i+1k � �k��ik for some 0 � � < 1. De�ne the 2p � 1 vectors � =
h
�

�i

i
, �� =

h
��

��

i
and

�� = � � ��. By assumption ii of the Theorem we can use the Taylor formula with remainder
(Polak (1971, Eq. B.1.4))

h(�)� h(��) =

Z 1

0
(rh) (t� + (1� t)��)dt ��

to expand the column vector h(�)
def
= [r10Q(�; �i)]T about the point � = �� to obtain from (3)

r10Q(�; �i) = �A1(�; �
i)�� + A2(�; �

i)��i: (7)

To obtain (7) we have used the assumption that �� is a �xed point of the A-algorithm: h(��) =
r10Q(��; ��) = 0.

Since �i+1 = argmax�Q(�; �
i) lies in the interior of �, we have r10Q(�i+1; �i) = 0. Therefore

from (7):

�A1(�
i+1; �i)��i+1 +A2(�

i+1; �i)��i = 0: (8)

We prove the �rst part of the theorem using induction. We have �0 2 R+ by assumption. Now
suppose �i 2 R+. Since �i+1 2 S(�i), by (4) A1(�i+1; �i) is invertible, so rearranging (8) shows:

��i+1 = [A1(�
i+1; �i)]�1A2(�

i+1; �i) ���i; (9)
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and

k��i+1k �
������A1(�

i+1; �i)]�1A2(�
i+1; �i)

������ � k��ik
� sup

�2S(�i)

������[A1(�; �
i)]�1A2(�; �

i)
������ � k��ik

� �k��ik; (10)

where the last inequality follows from (5) and the supposition that �i 2 R+. Since � < 1 and R+

is an open ball centered at �� which contains �i, this implies that �i+1 2 R+, proving the induction
step. Furthermore, from (10) we conclude that k��ik = k�i � ��k converges monotonically to zero
with at least linear convergence rate.

Next we establish the asymptotic convergence rate stated in the theorem. By continuity of the
derivatives of Q(�; �i) and the result (10) we obtain:

A1(�
i+1; �i) = �r20Q(��; ��) + O(k��ik)

A2(�
i+1; �i) = r11Q(��; ��) + O(k��ik):

Thus, by continuity of the matrix norm:

� � sup
�2S(�i)

������[A1(�; �
i)]�1A2(�; �

i)
������ =

�����������r20Q(��; ��)
��1

r11Q(��; ��)
���������+O(k��ik):

Since � < 1 taking the limit of the right hand side as i!1 establishes that�����������r20Q(��; ��)
��1

r11Q(��; ��)
��������� < 1: (11)

Furthermore (9) takes the asymptotic form: ��i+1 = [�r20Q(��; ��)]�1r11Q(��; ��)���i+o(k��ik):
Therefore the asymptotic rate of convergence is given by the root convergence factor
� ([�r20Q(��; ��)]�1r11Q(��; ��)) : For any matrix A we have �(A) � jjjAjjj (Horn and Johnson
(1985, Thm. 5.6.9)) so that, in view of (11), the root convergence factor is less than one. 2

As will be seen in the next section, to apply Theorem 1 it is sometimes useful to make a
transformation of parameters � ! � . Consider a smooth invertible functional transformation g:
� = g(�). Then �i can be represented as g�1(� i), where g�1 is the inverse of g, the sequence f� ig
is generated by an analogous A-algorithm:

� i+1 = argmax�2g(�) ~Q(�; �
i); i = 0; 1; : : : ;

and

~Q(�; � i)
def
= Q

�
g�1(�); g�1(� i)

�
= Q(�; �i)

��
�=g�1(�);�i=g�1 (�i)

:
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The convergence properties of the sequence � i = g(�i) can be studied using Theorem 1 with A1

and A2 de�ned in terms of the mixed partial derivatives of ~Q:

r11 ~Q(�; � i) = J�T (�)
�
r11Q

�
g�1(�); g�1(� i)

��
J�1(� i) (12)

r20 ~Q(�; � i) = J�T (�)
�
r20Q

�
g�1(�); g�1(� i)

��
J�1(�); (13)

where J(�) = rg(�)j
�=g�1(�) is the p� p Jacobian matrix of partial derivatives of g.

III. Examples

To illustrate the usefulness of Theorem 1 we consider two examples. For more details we refer
the reader to Hero and Fessler (1993).

III.a. Linear Gaussian Model

Consider the following model:

Y = G� +Wy

where G is a known m� p matrix with full column rank p � m, and Wy is an m-dimensional zero
mean Gaussian noise with known positive de�nite covariance matrix �yy. The ML estimator of �
given Y is the weighted least squares estimator which is the solution �� to the normal equations:

[GT��1
yyG]�� = GT��1

yyY: (14)

An EM algorithm for estimating � can be derived by decomposing the matrix G into the
matrix product: G = BC, where the m � n matrix B has full row rank m, the n � p matrix
C has full column rank p, and p � m � n. With this decomposition we de�ne the hypothetical
observations X = C� +Wx where Wx is a zero mean Gaussian noise with �-independent positive
de�nite covariance matrix �xx. We assume that Wx and Wy are statistically independent. Using
(X;Y) as a complete data set, the EM algorithm takes the form of the A-algorithm (1) with
Q(�; �) = Efln f(X; �)jY; �g given by:

Q(�; �) = �TFX� � �TFY � + �TGT��1
yy y�

1
2�

TFX�; (15)

where FX = Ef�r2
� ln f(X; �)g = CT��1

xxC and FY = Ef�r2
� ln f(Y; �)g = GT��1

yyG are re-
spectively the Fisher information matrices for � associated with data sets X and Y. Since the Q
function (15) is quadratic the M step is in closed form and we have the EM recursion:

�i+1 = [I � F�1
X FY ]�

i + F�1
X GT��1

yyY: (16)
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For diagonal FX the EM recursion is equivalent to the well known Jacobi iterations technique
(Golub and Van Loan (1989, Sec. 10.1.2)) for solving linear equations of the type (14). The
advantages of Jacobi iterations relative to direct solution of (14) are: i) the computations in (16)
are parallelizable; ii) if the iterations of (16) converge rapidly, a good approximation to (14) can be
obtained with fewer oating point operations, particularly if G is large but sparse.

The convergence properties of the Jacobi iteration (16) are well known. However, due to the
simplicity of this example it is instructive to illustrate how Theorem 1 directly applies. It is easy
to see that A1(�; �) = �

R 1
0 r

20Q(�; �)dt = FX and A2(�; �) =
R 1
0 r

11Q(�; �)dt = FX � FY . The
condition A1(�; �) > 0 (4) is satis�ed since C is full rank. Thus we obtain directly from Theorem
1 the recursion for ��i = �i � ��:

��i+1 = (I� F�1
X FY )��

i:

We remark that, unless I� F�1
X FY is symmetric, convergence of ��i is not monotone with respect

to the unweighted Euclidean norm.

The ��i+1 recursion is equivalent to

F
1
2
X��

i+1 = F
�
1
2

X [FX � FY ]F
�
1
2

X � F
1
2
X��

i

Take the Euclidean norm of both sides to obtain

k��i+1k �

����
����
����F�

1
2

X [FX � FY ]F
�
1
2

X

����
����
����
2

� k��ik

where jjj�jjj2 is the matrix-2 norm and k �k is the weighted Euclidean norm de�ned on vectors u 2 IRp

kuk2
def
= uTFXu: (17)

Since jjjAjjj2 = �(A) for symmetric nonnegative de�nite A

����
����
����F�

1
2

X [FX � FY ]F
�
1
2

X

����
����
����
2

= �

�
F
�
1
2

X [FX � FY ]F
�
1
2

X

�
= �

�
I� F�1

X FY

�
< 1;

where the strict inequality follows from the fact that the eigenvalues of I � F�1
X FY all lie in the

interval [0; 1) due to nonnegative de�niteness of FX �FY . Thus conditions (4) and (5) hold for all
�; � and the region of monotone convergence R+ is the entire parameter space � = IRp. By part 2
of Theorem 1, convergence of the EM algorithm is monotone in the weighted Euclidean norm (17)
and by part 4 the root convergence factor is the maximum eigenvalue of I� F�1

X FY .

III.b. ECT Image Reconstruction
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In the ECT problem the objective is to estimate the intensity vector � = [�1; : : : ; �p]T , �b � 0,
governing the number of gamma-ray emissions N = [N1; : : : ;Np]

T over an imaging volume of p
pixels. The estimate of � must be based on the projection data Y = [Y1; : : : ;Ym]

T . The elements
Nb of N are independent Poisson distributed with rate parameters �b, and the elements Yd of Y
are independent Poisson distributed with rate parameters �d(�) =

Pp

b=1 Pdjb�b, where Pdjb is the
transition probability corresponding to emissions from pixel b being detected at detector module d.
We will only consider the unpenalized EM algorithm here. A similar treatment of penalized EM is
contained in Hero and Fessler (1993). To ensure a unique ML estimate we assume that m � p, the
m � p system matrix (Pdjb; d = 1; : : : ; m; b = 1; : : : ; p) has full column rank, and (�d(�), Yd) are
strictly positive for all d = 1; : : : ; m. We also assume that the ML estimate �� lies in the interior,
��b > 0, b = 1; : : : ; p, of the parameter space.

The standard choice of complete data X for estimation of � via the EM algorithm is the set
fNdbg

m;p

d=1;b=1, where Ndb denotes the number of emissions in pixel b which are detected at detector
d (see Lange and Carson (1984)). These complete data are related to the incomplete data via the
deterministic many-to-one mapping: Yd =

Pp

b=1Ndb, d = 1; : : : ; m. It is easily established that
fNdbg are independent Poisson random variables with intensity E�fNdbg = Pdjb�b, d = 1; : : : ; m,
b = 1; : : : ; p, and that the Q function in the A-algorithm (1) is (Green, (1990a,b))

Q(�; �i) = Efln f(X; �)jY; �ig =
mX
d=1

pX
b=1

"
YdPdjb�

i
b

�d(�i)
ln(Pdjb�b)� Pdjb�b

#
:

By solving for � = �i+1 in the equation r�Q(�; �i) = 0 the EM algorithm is obtained:

�i+1b =
�ib
Pb

mX
d=1

YdPdjb

�d(�i)
; b = 1; : : : ; p; (18)

where Pb
def
=
Pp

b=1 Pdjb is positive under the assumption that Pdjb has full column rank.

We have:

�r20Q(�; �i) = diagb

�
�ib
�b

�
� [B(�i) +C(�i)] � diagb

�
�ib
�b

�
(19)

r11Q(�; �i) = diagb

�
�ib
�b

�
�C(�i) (20)

where, similar to the de�nition in Green (1990a), B(�i) is the positive de�nite p� p matrix:

B(�i)
def
=

mX
d=1

Yd

[�d(�i)]2
Pdj�P

T
dj�;

Pdj� = [Pdj1; : : : ; Pdjp]
T , and B(�i) +C(�i) is the p� p positive de�nite matrix

B(�i) +C(�i)
def
= diagb

 
1

�ib

mX
d=1

YdPdjb

�d(�i)

!
:
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From (19) and (20) it can be shown that for any �i, the norm sup�2S(�i) jjjA1(�; �i)]�1A2(�; �i)jjj2
is greater than or equal to 2� ([B(��) +C(��)]�1C(��)). Now � ([B(��) +C(��)]�1C(��)) < 1 but
it is typically greater than 0:5 and Theorem 1 cannot be applied to establish monotone convergence
of �i in Euclidean norm. The principal di�culty lies in the unboundedness of (19) and (20) as a
function of �.

Consider the alternative parameterization de�ned by the logarithmic transformation g:

� = ln � = [ln �1; : : : ; ln �p]
T :

Using the relations (12)-(13), and the identities (19)-(20):

�r20Q(�; � i) = diagb

�
e�

i
b

�
� [B

�
e�

i
�
+C

�
e�

i
�
] � diagb

�
e�

i
b

�
(21)

r11Q(�; � i) = diagb

�
e�

i
b

�
�C

�
e�

i
�
� diagb

�
e�

i
b

�
: (22)

Note that unlike (19) and (20), which are in the original parameter coordinates, the matrices (21)
and (22) are constant and bounded in the transformed parameter � = ln �.

Let A1(�; �) and A2(�; �) be de�ned as in (3) with the integrands (21) and (22), respectively. If
�i lies in the interior of �, �r20Q(�; � i) (21) is positive de�nite. In this case the recursion (6) of
Theorem 1 applies to �� i = � ln �i = ln(�i=��). After some algebraic manipulations we obtain:

� ln �i+1 = [~B(�i) + ~C(�i)]�1 ~C(�i) �� ln �i; (23)

where

~B(�i) + ~C(�i) = diagb

 
mX
d=1

Yd

Z 1

0

Pdjb(�
i
b=�

�
b)

t��bPp

b=1 Pdjb(�ib=�
�
b)

t��b
dt

!
(24)

~C(�i) =
mX
d=1

Yd

  Z 1

0

Pdjj(�ij=�
�
j )

t��jPp

b=1 Pdjb(�ib=�
�
b)

t��b
�

Pdjk(�ik=�
�
k)

t��kPp

b=1 Pdjb(�ib=�
�
b)

t��b
dt

!!
j;k=1;:::;p

For simplicity, in the sequel we suppress the functional dependence on �i in the notation for
~B(�i) and ~C(�i). The recursion (23) is equivalent to:

[ ~B+ ~C]
1
2� ln �i+1 = [~B+ ~C]�

1
2 ~C[ ~B+ ~C]�

1
2 � [ ~B+ ~C]

1
2� ln �i:

Taking the Euclidean norm of both sides we obtain:

�
� ln �i+1

�T
[ ~B+ ~C]

�
� ln �i+1

�
�

����
����
����[ ~B+ ~C]�

1
2 ~C[ ~B+ ~C]�

1
2

����
����
����
2

�
�
� ln �i

�T
[ ~B+ ~C]

�
� ln �i

�
= �

�
[ ~B+ ~C]�1 ~C

�
�
�
� ln �i

�T
[ ~B+ ~C]

�
� ln �i

�
: (25)
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It can easily be shown that if �i is in the interior of � then ~B is positive de�nite, ~C is non-negative

de�nite and therefore �
�
[ ~B+ ~C]�1 ~C

�
< 1.

From (24) we obtain the small ��i asymptotic forms:

~B + ~C = diagb

 
��b

mX
d=1

Yd

Pdjb

�d(��)

!
+ I O(k��ik2)

�
�
[ ~B+ ~C]�1 ~C

�
= �

�
[B+C]�1C

�
+O(k��ik2):

where, as long as �� is in the interior of �, � ([B+C]�1C) = � < 1. Furthermore, since �� is a
stationary point of (18):

Pp

d=1Yd
Pdjb

�d(��)
= Pb: Thus to order O(k��

ik2) (25) is equivalent to:

pX
b=1

Pb�
�
b

�
ln �i+1b � ln ��b

�2
� �

pX
b=1

Pb�
�
b

�
ln �ib � ln ��b

�2

We thus obtain the following theorem.

Theorem 2 Assume that the unpenalized ECT EM algorithm speci�ed by (18) converges to the
strictly positive limit ��. Then, for some su�ciently large positive integer M :

k ln �i+1 � ln ��k � �k ln �i � ln ��k; i �M;

where � = �([B+C]�1C), B = B(��), C = C(��), the norm k � k is de�ned as:

kuk2
def
=

pX
b=1

Pb�
�
b u

2
b ; (26)

and Pb
def
=
Pm

d=1 Pdjb.

Lange and Carson (1984) showed that the ECT EM algorithm converges to the maximum
likelihood estimate. As long as �� is strictly positive, the theorem asserts that in the �nal iterations
of the algorithm the logarithmic di�erences ln �i � ln �� converge monotonically to zero relative to
the norm (26).

IV. CONCLUDING COMMENTS

We have presented a general methodology for studying the norm convergence properties of EM-
type algorithms. Since Theorem 1 can specify a norm relative to which convergence of a properly

12



implemented EM algorithm must be monotone our results may provide a practical veri�cation tool,
similar to checking the increasing-likelihood property, for testing for errors in algorithm implemen-
tation. To perform such a test the algorithm should be run to its convergence limit whereby the
�nal iterations can be checked for the norm reducing property.

A weakness of the method given here is that it does not apply to cases where the maximization
in the M step is achieved on a boundary of the parameter space. While there are a certain number
of such problems where this method will not apply, we believe that the method will nonetheless be
useful for a number of applications areas.
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